1
|
Palangasinghe PC, Ko YZ, Hsu TW, Wickramasinghe MP, Shih HC, Shiao MS, Chiang YC. Genetic Structure and Conservation Management of Endemic Salix kusanoi in Fragmented Habitats of Taiwan. PLANTS (BASEL, SWITZERLAND) 2025; 14:1080. [PMID: 40219147 PMCID: PMC11990847 DOI: 10.3390/plants14071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Salix kusanoi is an endangered riparian tree species endemic to Taiwan. This study aimed to evaluate the genetic diversity and population structure across eight fragmented populations employing 33 microsatellite loci. The findings revealed moderate genetic diversity (mean AE = 3.85, HO = 0.22) and significant deviations from the Hardy-Weinberg equilibrium. This indicated an evolutionary pressure, such as genetic drift and inbreeding. The Analysis of Molecular Variance (AMOVA) demonstrated evident genetic differentiation among populations (FST = 0.30). Principal Coordinates Analysis (PCoA) and Bayesian clustering (STRUCTURE) described distinct regional genetic patterns, with K = 5 providing a robust context for understanding localized genetic variation. Conservation interventions, including targeted in situ conservation for genetically unique populations (SBF) and genetic rescue strategies for genetically underprivileged populations (NW and NT), are proposed to safeguard the genetic integrity and adaptive potential of S. kusanoi.
Collapse
Affiliation(s)
- Piumi Chathurika Palangasinghe
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 804, Taiwan; (P.C.P.); (Y.-Z.K.); (M.P.W.)
| | - Ya-Zhu Ko
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 804, Taiwan; (P.C.P.); (Y.-Z.K.); (M.P.W.)
| | - Tsai-Wen Hsu
- Taiwan Biodiversity Research Institute, Nantou 552, Taiwan;
| | - Manupa Pabasara Wickramasinghe
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 804, Taiwan; (P.C.P.); (Y.-Z.K.); (M.P.W.)
| | - Huei-Chuan Shih
- Department of Nursing, Meiho University, Pingtung 912, Taiwan;
| | - Meng-Shin Shiao
- Research Laboratory Section, Offices of Health Science Research, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Nakhon Pathom 10400, Thailand
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Road, Kaohsiung 804, Taiwan; (P.C.P.); (Y.-Z.K.); (M.P.W.)
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Unweaving the population structure and genetic diversity of Canadian shrub willow. Sci Rep 2022; 12:17254. [PMID: 36241753 PMCID: PMC9568530 DOI: 10.1038/s41598-022-20498-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/14/2022] [Indexed: 01/06/2023] Open
Abstract
Perennial shrub willow are increasingly being promoted in short-rotation coppice systems as biomass feedstocks, for phytoremediation applications, and for the diverse ecosystem services that can accrue. This renewed interest has led to widespread willow cultivation, particularly of non-native varieties. However, Canadian willow species have not been widely adopted and their inherent diversity has not yet been thoroughly investigated. In this study, 324 genotypes of Salix famelica and Salix eriocephala collected from 33 sites of origin were analyzed using 26,016 single nucleotide polymorphisms to reveal patterns of population structure and genetic diversity. Analyses by Bayesian methods and principal component analysis detected five main clusters that appeared to be largely shaped by geoclimatic variables including mean annual precipitation and the number of frost-free days. The overall observed (HO) and expected (HE) heterozygosity were 0.126 and 0.179, respectively. An analysis of molecular variance revealed that the highest genetic variation occurred within genotypes (69%), while 8% of the variation existed among clusters and 23% between genotypes within clusters. These findings provide new insights into the extent of genetic variation that exists within native shrub willow species which could be leveraged in pan-Canadian willow breeding programs.
Collapse
|
3
|
Population Genetic Diversity and Structure of an Endangered Salicaceae Species in Northeast China: Chosenia arbutifolia (Pall.) A. Skv. FORESTS 2021. [DOI: 10.3390/f12091282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chosenia arbutifolia (Pall.) A. Skv. is a unique and endangered species belonging to the Salicaceae family. It has great potential for ornamental and industrial use. However, human interference has led to a decrease in and fragmentation of its natural populations in the past two decades. To effectively evaluate, utilize, and conserve available resources, the genetic diversity and population structure of C. arbutifolia were analyzed in this study. A total of 142 individuals from ten provenances were sampled and sequenced. Moderate diversity was detected among these, with a mean expected heterozygosity and Shannon’s Wiener index of 0.3505 and 0.5258, respectively. The inbreeding coefficient was negative, indicating a significant excess of heterozygotes. The fixation index varied from 0.0068 to 0.3063, showing a varied genetic differentiation between populations. Analysis of molecular variance demonstrated that differentiation accounted for 82.23% of the total variation among individuals, while the remaining 17.77% variation was between populations. Furthermore, the results of population structure analysis indicated that the 142 individuals originated from three primitive groups. To provide genetic information and help design conservation and management strategies, landscape genomics analysis was performed by investigating loci associated with environmental variables. Eighteen SNP markers were associated with altitude and annual average temperature, of which five were ascribed with specific functions. In conclusion, the current study furthers the understanding of C. arbutifolia genetic architecture and provides insights for germplasm protection.
Collapse
|
4
|
Palmquist EC, Allan GJ, Ogle K, Whitham TG, Butterfield BJ, Shafroth PB. Riverine complexity and life history inform restoration in riparian environments in the southwestern United States. Restor Ecol 2021. [DOI: 10.1111/rec.13418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emily C. Palmquist
- Grand Canyon Monitoring and Research Center U.S. Geological Survey, Southwest Biological Science Center 2255 North Gemini Drive Flagstaff AZ 86001 U.S.A
- Department of Biological Sciences Northern Arizona University Flagstaff AZ 86011 U.S.A
| | - Gerard J. Allan
- Department of Biological Sciences Northern Arizona University Flagstaff AZ 86011 U.S.A
- Center for Adaptable Western Landscapes Northern Arizona University Box 5640 Flagstaff AZ 86011 U.S.A
| | - Kiona Ogle
- School of Informatics, Computing and Cyber Systems Northern Arizona University Box 5693 Flagstaff AZ 86011 U.S.A
| | - Thomas G. Whitham
- Department of Biological Sciences Northern Arizona University Flagstaff AZ 86011 U.S.A
- Center for Adaptable Western Landscapes Northern Arizona University Box 5640 Flagstaff AZ 86011 U.S.A
| | - Bradley J. Butterfield
- Center for Ecosystem Science and Society Northern Arizona University Box 5640 Flagstaff AZ 86011 U.S.A
| | - Patrick B. Shafroth
- Fort Collins Science Center U.S. Geological Survey 2150 Centre Avenue, Building C Fort Collins CO 80526 U.S.A
| |
Collapse
|
5
|
Gouker FE, Carlson CH, Zou J, Evans L, Crowell CR, Smart CD, DiFazio SP, Smart LB. Sexual dimorphism in the dioecious willow Salix purpurea. AMERICAN JOURNAL OF BOTANY 2021; 108:1374-1387. [PMID: 34406658 DOI: 10.1002/ajb2.1704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/28/2021] [Indexed: 06/13/2023]
Abstract
PREMISE The evolution of sex chromosomes is driven by sexual dimorphism, yet it can be challenging to document sexually dimorphic traits in dioecious plant species. At the genetic level, sexual dimorphism can be identified through sequence variation between females and males associated with sexually antagonistic traits and different fitness optima. This study aims to examine sexual dimorphism for 26 traits in three populations of Salix purpurea (a diversity panel and F1 and F2 populations) and determine the effect of the traits on biomass yield, a key trait in Salix bioenergy crops across multiple years, locations, and under manipulated growth conditions. METHODS Sexual dimorphism was evaluated for morphological, phenological, physiological, and wood composition traits in a diversity panel of unrelated S. purpurea accessions and in full-sib F1 and F2 families produced through controlled cross pollinations and grown in replicated field trials. RESULTS We observed sexual dimorphism in the timing of development for several traits that were highly predictive of biomass yield across three populations of S. purpurea. Across all populations and years surveyed, males had significantly shallower branching angle. Male plants highly predictive of biomass yield across three populations of S. purpurea also accumulated more nitrogen under fertilizer amendment as measured by SPAD in the diversity panel and had greater susceptibility to the rust fungus Melampsora americana in the F2 family. Allometric modelling of biomass yield showed an effect of sex and of location on the interaction between yield and stem height. CONCLUSIONS These results provide evidence of sexual dimorphism for certain traits in S. purpurea that may be involved in sex chromosome evolution.
Collapse
Affiliation(s)
- Fred E Gouker
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Junzhu Zou
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Luke Evans
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Chase R Crowell
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, 14456, USA
| |
Collapse
|
6
|
Hyden B, Carlson CH, Gouker FE, Schmutz J, Barry K, Lipzen A, Sharma A, Sandor L, Tuskan GA, Feng G, Olson MS, DiFazio SP, Smart LB. Integrative genomics reveals paths to sex dimorphism in Salix purpurea L. HORTICULTURE RESEARCH 2021; 8:170. [PMID: 34333534 PMCID: PMC8325687 DOI: 10.1038/s41438-021-00606-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 05/16/2023]
Abstract
Sex dimorphism and gene expression were studied in developing catkins in 159 F2 individuals from the bioenergy crop Salix purpurea, and potential mechanisms and pathways for regulating sex development were explored. Differential expression, eQTL, bisulfite sequencing, and network analysis were used to characterize sex dimorphism, detect candidate master regulator genes, and identify pathways through which the sex determination region (SDR) may mediate sex dimorphism. Eleven genes are presented as candidates for master regulators of sex, supported by gene expression and network analyses. These include genes putatively involved in hormone signaling, epigenetic modification, and regulation of transcription. eQTL analysis revealed a suite of transcription factors and genes involved in secondary metabolism and floral development that were predicted to be under direct control of the sex determination region. Furthermore, data from bisulfite sequencing and small RNA sequencing revealed strong differences in expression between males and females that would implicate both of these processes in sex dimorphism pathways. These data indicate that the mechanism of sex determination in Salix purpurea is likely different from that observed in the related genus Populus. This further demonstrates the dynamic nature of SDRs in plants, which involves a multitude of mechanisms of sex determination and a high rate of turnover.
Collapse
Affiliation(s)
- Brennan Hyden
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Fred E Gouker
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
- Floral and Nursery Plants Research Unit, US National Arboretum, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Jeremy Schmutz
- United States Department of Energy, Joint Genome Institute, Berkeley, CA, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Kerrie Barry
- United States Department of Energy, Joint Genome Institute, Berkeley, CA, USA
| | - Anna Lipzen
- United States Department of Energy, Joint Genome Institute, Berkeley, CA, USA
| | - Aditi Sharma
- United States Department of Energy, Joint Genome Institute, Berkeley, CA, USA
| | - Laura Sandor
- United States Department of Energy, Joint Genome Institute, Berkeley, CA, USA
| | - Gerald A Tuskan
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Guanqiao Feng
- Department of Biology, Texas Tech University, Lubbock, TX, USA
| | - Matthew S Olson
- Department of Biology, Texas Tech University, Lubbock, TX, USA
| | - Stephen P DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA.
| |
Collapse
|
7
|
Genetic Diversity and Genetic Relationships of Purple Willow (Salix purpurea L.) from Natural Locations. Int J Mol Sci 2017. [PMID: 29301207 DOI: 10.3390/ijms19010105.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the genetic diversity and structure of 13 natural locations of Salix purpurea were determined with the use of AFLP (amplified length polymorphism), RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeats). The genetic relationships between 91 examined S. purpurea genotypes were evaluated by analyses of molecular variance (AMOVA), principal coordinates analyses (PCoA) and UPGMA (unweighted pair group method with arithmetic mean) dendrograms for both single marker types and a combination of all marker systems. The locations were assigned to distinct regions and the analysis of AMOVA (analysis of molecular variance) revealed a high genetic diversity within locations. The genetic diversity between both regions and locations was relatively low, but typical for many woody plant species. The results noted for the analyzed marker types were generally comparable with few differences in the genetic relationships among S. purpurea locations. A combination of several marker systems could thus be ideally suited to understand genetic diversity patterns of the species. This study makes the first attempt to broaden our knowledge of the genetic parameters of the purple willow (S. purpurea) from natural location for research and several applications, inter alia breeding purposes.
Collapse
|
8
|
Sulima P, Prinz K, Przyborowski JA. Genetic Diversity and Genetic Relationships of Purple Willow (Salix purpurea L.) from Natural Locations. Int J Mol Sci 2017; 19:ijms19010105. [PMID: 29301207 PMCID: PMC5796055 DOI: 10.3390/ijms19010105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 11/16/2022] Open
Abstract
In this study, the genetic diversity and structure of 13 natural locations of Salix purpurea were determined with the use of AFLP (amplified length polymorphism), RAPD (randomly amplified polymorphic DNA) and ISSR (inter-simple sequence repeats). The genetic relationships between 91 examined S. purpurea genotypes were evaluated by analyses of molecular variance (AMOVA), principal coordinates analyses (PCoA) and UPGMA (unweighted pair group method with arithmetic mean) dendrograms for both single marker types and a combination of all marker systems. The locations were assigned to distinct regions and the analysis of AMOVA (analysis of molecular variance) revealed a high genetic diversity within locations. The genetic diversity between both regions and locations was relatively low, but typical for many woody plant species. The results noted for the analyzed marker types were generally comparable with few differences in the genetic relationships among S. purpurea locations. A combination of several marker systems could thus be ideally suited to understand genetic diversity patterns of the species. This study makes the first attempt to broaden our knowledge of the genetic parameters of the purple willow (S. purpurea) from natural location for research and several applications, inter alia breeding purposes.
Collapse
Affiliation(s)
- Paweł Sulima
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland.
| | - Kathleen Prinz
- Institute for Systematic Botany, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany.
| | - Jerzy A Przyborowski
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, 10-724 Olsztyn, Poland.
| |
Collapse
|
9
|
Jia H, Yang H, Sun P, Li J, Zhang J, Guo Y, Han X, Zhang G, Lu M, Hu J. De novo transcriptome assembly, development of EST-SSR markers and population genetic analyses for the desert biomass willow, Salix psammophila. Sci Rep 2016; 6:39591. [PMID: 27995985 PMCID: PMC5171774 DOI: 10.1038/srep39591] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 11/25/2016] [Indexed: 12/27/2022] Open
Abstract
Salix psammophila, a sandy shrub known as desert willow, is regarded as a potential biomass feedstock and plays an important role in maintaining local ecosystems. However, a lack of genomic data and efficient molecular markers limit the study of its population evolution and genetic breeding. In this study, chromosome counts, flow cytometry and SSR analyses indicated that S. psammophila is tetraploid. A total of 6,346 EST-SSRs were detected based on 71,458 de novo assembled unigenes from transcriptome data. Twenty-seven EST-SSR markers were developed to evaluate the genetic diversity and population structure of S. psammophila from eight natural populations in Northern China. High levels of genetic diversity (mean 10.63 alleles per locus; mean HE 0.689) were dectected in S. psammophila. The weak population structure and little genetic differentiation (pairwise FST = 0.006-0.016) were found among Population 1-Population 7 (Pop1-Pop7; Inner Mongolia and Shaanxi), but Pop8 (Ningxia) was clearly separated from Pop1-Pop7 and moderate differentiation (pairwise FST = 0.045-0.055) was detected between them, which may be influenced by local habitat conditions. Molecular variance analyses indicated that most of the genetic variation (94.27%) existed within populations. These results provide valuable genetic informations for natural resource conservation and breeding programme optimisation of S. psammophila.
Collapse
Affiliation(s)
- Huixia Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Haifeng Yang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Pei Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yinghua Guo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Guosheng Zhang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
10
|
Faivre-Rampant P, Zaina G, Jorge V, Giacomello S, Segura V, Scalabrin S, Guérin V, De Paoli E, Aluome C, Viger M, Cattonaro F, Payne A, PaulStephenRaj P, Le Paslier MC, Berard A, Allwright MR, Villar M, Taylor G, Bastien C, Morgante M. New resources for genetic studies in Populus nigra: genome-wide SNP discovery and development of a 12k Infinium array. Mol Ecol Resour 2016; 16:1023-36. [PMID: 26929265 DOI: 10.1111/1755-0998.12513] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
Whole genome resequencing of 51 Populus nigra (L.) individuals from across Western Europe was performed using Illumina platforms. A total number of 1 878 727 SNPs distributed along the P. nigra reference sequence were identified. The SNP calling accuracy was validated with Sanger sequencing. SNPs were selected within 14 previously identified QTL regions, 2916 expressional candidate genes related to rust resistance, wood properties, water-use efficiency and bud phenology and 1732 genes randomly spread across the genome. Over 10 000 SNPs were selected for the construction of a 12k Infinium Bead-Chip array dedicated to association mapping. The SNP genotyping assay was performed with 888 P. nigra individuals. The genotyping success rate was 91%. Our high success rate was due to the discovery panel design and the stringent parameters applied for SNP calling and selection. In the same set of P. nigra genotypes, linkage disequilibrium throughout the genome decayed on average within 5-7 kb to half of its maximum value. As an application test, ADMIXTURE analysis was performed with a selection of 600 SNPs spread throughout the genome and 706 individuals collected along 12 river basins. The admixture pattern was consistent with genetic diversity revealed by neutral markers and the geographical distribution of the populations. These newly developed SNP resources and genotyping array provide a valuable tool for population genetic studies and identification of QTLs through natural-population based genetic association studies in P. nigra.
Collapse
Affiliation(s)
| | - G Zaina
- DI4A, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - V Jorge
- INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - S Giacomello
- IGA, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100, Udine, Italy
| | - V Segura
- INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - S Scalabrin
- IGA, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100, Udine, Italy
| | - V Guérin
- INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - E De Paoli
- IGA, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100, Udine, Italy
| | - C Aluome
- INRA, US1279 EPGV, CEA-IG/CNG, F-91057, Evry, France.,INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - M Viger
- Centre For Biological Sciences, University of Southampton, Life Sciences, SO17 1BJ, Southampton, UK
| | - F Cattonaro
- IGA, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100, Udine, Italy
| | - A Payne
- Centre For Biological Sciences, University of Southampton, Life Sciences, SO17 1BJ, Southampton, UK
| | | | | | - A Berard
- INRA, US1279 EPGV, CEA-IG/CNG, F-91057, Evry, France
| | - M R Allwright
- Centre For Biological Sciences, University of Southampton, Life Sciences, SO17 1BJ, Southampton, UK
| | - M Villar
- INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - G Taylor
- Centre For Biological Sciences, University of Southampton, Life Sciences, SO17 1BJ, Southampton, UK
| | - C Bastien
- INRA, UR 0588 AGPF, Centre INRA Val de Loire, 2163 avenue de la Pomme de Pin, CS 40001 - Ardon, 45075, Orléans, France
| | - M Morgante
- DI4A, University of Udine, via delle Scienze 206, 33100, Udine, Italy.,IGA, Parco Scientifico e Tecnologico Luigi Danieli, via Jacopo Linussio 51, 33100, Udine, Italy
| |
Collapse
|
11
|
Douhovnikoff V, Leventhal M. The use of Hardy-Weinberg Equilibrium in clonal plant systems. Ecol Evol 2016; 6:1173-80. [PMID: 26839683 PMCID: PMC4725330 DOI: 10.1002/ece3.1946] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 11/07/2022] Open
Abstract
Traditionally population genetics precludes the use of the same genetic individual more than once in Hardy-Weinberg (HW) based calculations due to the model's explicit assumptions. However, when applied to clonal plant populations this can be difficult to do, and in some circumstances, it may be ecologically informative to use the ramet as the data unit. In fact, ecologists have varied the definition of the individual from a strict adherence to a single data point per genotype to a more inclusive approach of one data point per ramet. With the advent of molecular tools, the list of facultatively clonal plants and the recognition of their ecological relevance grows. There is an important risk of misinterpretation when HW calculations are applied to a clonal plant not recognized as clonal, as well as when the definition of the individual for those calculations is not clearly stated in a known clonal species. Focusing on heterozygosity values, we investigate cases that demonstrate the extreme range of potential modeling outcomes and describe the different contexts where a particular definition could better meet ecological modeling goals. We emphasize that the HW model can be ecologically relevant when applied to clonal plants, but caution is necessary in how it is used, reported, and interpreted. We propose that in known clonal plants, both genotype (GHet) and ramet (RHet) based calculations are reported to define the full range of potential values and better facilitate cross-study comparisons.
Collapse
Affiliation(s)
| | - Matthew Leventhal
- Biology DepartmentBowdoin College6500 College StationBrunswickMaine04011
| |
Collapse
|
12
|
Perdereau AC, Kelleher CT, Douglas GC, Hodkinson TR. High levels of gene flow and genetic diversity in Irish populations of Salix caprea L. inferred from chloroplast and nuclear SSR markers. BMC PLANT BIOLOGY 2014; 14:202. [PMID: 25928320 PMCID: PMC4440560 DOI: 10.1186/s12870-014-0202-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/17/2014] [Indexed: 05/07/2023]
Abstract
BACKGROUND Salix caprea is a cold-tolerant pioneer species that is ecologically important in Europe and western and central Asia. However, little data is available on its population genetic structure and molecular ecology. We describe the levels of geographic population genetic structure in natural Irish populations of S. caprea and determine the extent of gene flow and sexual reproduction using both chloroplast and nuclear simple sequence repeats (SSRs). RESULTS A total of 183 individuals from 21 semi-natural woodlands were collected and genotyped. Gene diversity across populations was high for the chloroplast SSRs (H T = 0.21-0.58) and 79 different haplotypes were discovered, among them 48% were unique to a single individual. Genetic differentiation of populations was found to be between moderate and high (mean G ST = 0.38). For the nuclear SSRs, G ST was low at 0.07 and observed heterozygosity across populations was high (H O = 0.32-0.51); only 9.8% of the genotypes discovered were present in two or more individuals. For both types of markers, AMOVA showed that most of the variation was within populations. Minor geographic pattern was confirmed by a Bayesian clustering analysis. Gene flow via pollen was found to be approximately 7 times more important than via seeds. CONCLUSIONS The data are consistent with outbreeding and indicate that there are no significant barriers for gene flow within Ireland over large geographic distances. Both pollen-mediated and seed-mediated gene flow were found to be high, with some of the populations being more than 200 km apart from each other. These findings could simply be due to human intervention through seed trade or accidental transportation of both seeds and pollen. These results are of value to breeders wishing to exploit natural genetic variation and foresters having to choose planting material.
Collapse
Affiliation(s)
- Aude C Perdereau
- Teagasc, Agriculture and Food Development Authority, Kinsealy Research Centre, Malahide Road, Dublin, D17, Ireland.
- Botany Building, School of Natural Sciences, Trinity College Dublin, Dublin, D2, Ireland.
- Trinity Centre for Biodiversity Research, Trinity College Dublin, Dublin, D2, Ireland.
| | - Colin T Kelleher
- DBN Plant Molecular Laboratory, National Botanic Gardens, Glasnevin, Dublin, D9, Ireland.
| | - Gerry C Douglas
- Teagasc, Agriculture and Food Development Authority, Kinsealy Research Centre, Malahide Road, Dublin, D17, Ireland.
| | - Trevor R Hodkinson
- Botany Building, School of Natural Sciences, Trinity College Dublin, Dublin, D2, Ireland.
- Trinity Centre for Biodiversity Research, Trinity College Dublin, Dublin, D2, Ireland.
| |
Collapse
|
13
|
Linkage between bacterial and fungal rhizosphere communities in hydrocarbon-contaminated soils is related to plant phylogeny. ISME JOURNAL 2013; 8:331-43. [PMID: 23985744 DOI: 10.1038/ismej.2013.149] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/16/2013] [Accepted: 07/24/2013] [Indexed: 11/08/2022]
Abstract
Phytoremediation is an attractive alternative to excavating and chemically treating contaminated soils. Certain plants can directly bioremediate by sequestering and/or transforming pollutants, but plants may also enhance bioremediation by promoting contaminant-degrading microorganisms in soils. In this study, we used high-throughput sequencing of bacterial 16S rRNA genes and the fungal internal transcribed spacer (ITS) region to compare the community composition of 66 soil samples from the rhizosphere of planted willows (Salix spp.) and six unplanted control samples at the site of a former petrochemical plant. The Bray-Curtis distance between bacterial communities across willow cultivars was significantly correlated with the distance between fungal communities in uncontaminated and moderately contaminated soils but not in highly contaminated (HC) soils (>2000 mg kg(-1) hydrocarbons). The mean dissimilarity between fungal, but not bacterial, communities from the rhizosphere of different cultivars increased substantially in the HC blocks. This divergence was partly related to high fungal sensitivity to hydrocarbon contaminants, as demonstrated by reduced Shannon diversity, but also to a stronger influence of willows on fungal communities. Abundance of the fungal class Pezizomycetes in HC soils was directly related to willow phylogeny, with Pezizomycetes dominating the rhizosphere of a monophyletic cluster of cultivars, while remaining in low relative abundance in other soils. This has implications for plant selection in phytoremediation, as fungal associations may affect the health of introduced plants and the success of co-inoculated microbial strains. An integrated understanding of the relationships between fungi, bacteria and plants will enable the design of treatments that specifically promote effective bioremediating communities.
Collapse
|
14
|
Microsatellite Markers of Willow Species and Characterization of 11 Polymorphic Microsatellites for Salix eriocephala (Salicaceae), a Potential Native Species for Biomass Production in Canada. PLANTS 2013; 2:203-10. [PMID: 27137372 PMCID: PMC4844361 DOI: 10.3390/plants2020203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/08/2013] [Accepted: 03/20/2013] [Indexed: 11/17/2022]
Abstract
Biomass produced from dedicated plantations constitutes a source of renewable energy and is expected to play an important role in several countries in the coming decades. The cultivation of woody crops such as willows therefore raises several environmental issues. In North America, several native willows are potentially interesting for biomass producers. Willow trees are diverse but few species used for environmental applications have been the object of molecular genetic studies. Based on the sequenced poplar genome, 24 microsatellite markers were assayed on five native North American willow species: Salix amygdaloides, S. discolor, S. eriocephala, S. interior and S. nigra. Polymorphic microsatellite markers were used to characterize the allele data on the shrub Salix eriocephala, a North American species with economic potential. Eleven markers amplified and confirmed the potential of this species. Analysis of samples from six populations in eastern Canada showed that all markers were variable as well as polymorphic in at least one population. The number of alleles per locus ranged from 1 to 9 (mean 2.95) and showed that these microsatellite markers can be used to assess genetic diversity of North American willow species.
Collapse
|
15
|
Thomas LK, Tölle L, Ziegenhagen B, Leyer I. Are vegetative reproduction capacities the cause of widespread invasion of Eurasian Salicaceae in Patagonian river landscapes? PLoS One 2012; 7:e50652. [PMID: 23226531 PMCID: PMC3514240 DOI: 10.1371/journal.pone.0050652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/24/2012] [Indexed: 12/03/2022] Open
Abstract
In recent decades, invasive willows and poplars (Salicaceae) have built dense floodplain forests along most of the rivers in Patagonia, Argentina. These invasion processes may affect Salix humboldtiana as the only native floodplain tree species in this region. It is assumed, that the property to reproduce vegetatively can play an important role in the establishment of invasive species in their new range. Thus, in order to contribute to a better understanding of willow and poplar invasions in riparian systems and to assess the potential impacts on S. humboldtiana the vegetative reproduction capacities of native and invasive Salicaceae were analysed. In a greenhouse experiment, we studied cutting survival and growth performance of the three most dominant invasive Salicaceae of the Patagonian Río Negro region (two Salix hybrids and Populus spec.), as well as S. humboldtiana, taking into account three different moisture and two different soil conditions. In a subsequent experiment, the shoot and root biomass of cuttings from the former experiment were removed and the bare cuttings were replanted to test their ability to re-sprout. The two invasive willow hybrids performed much better than S. humboldtiana and Populus spec. under all treatment combinations and tended to re-sprout more successfully after repeated biomass loss. Taking into account the ecology of vegetative and generative recruits of floodplain willows, the results indicate that the more vigorous vegetative reproduction capacity can be a crucial property for the success of invasive willow hybrids in Patagonia being a potential threat for S. humboldtiana.
Collapse
Affiliation(s)
- Lisa K Thomas
- Department of Conservation Biology, Faculty of Biology, Philipps-University Marburg, Marburg, Germany.
| | | | | | | |
Collapse
|