1
|
Kates HR, O'Meara BC, LaFrance R, Stull GW, James EK, Liu SY, Tian Q, Yi TS, Conde D, Kirst M, Ané JM, Soltis DE, Guralnick RP, Soltis PS, Folk RA. Shifts in evolutionary lability underlie independent gains and losses of root-nodule symbiosis in a single clade of plants. Nat Commun 2024; 15:4262. [PMID: 38802387 PMCID: PMC11130336 DOI: 10.1038/s41467-024-48036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Root nodule symbiosis (RNS) is a complex trait that enables plants to access atmospheric nitrogen converted into usable forms through a mutualistic relationship with soil bacteria. Pinpointing the evolutionary origins of RNS is critical for understanding its genetic basis, but building this evolutionary context is complicated by data limitations and the intermittent presence of RNS in a single clade of ca. 30,000 species of flowering plants, i.e., the nitrogen-fixing clade (NFC). We developed the most extensive de novo phylogeny for the NFC and an RNS trait database to reconstruct the evolution of RNS. Our analysis identifies evolutionary rate heterogeneity associated with a two-step process: An ancestral precursor state transitioned to a more labile state from which RNS was rapidly gained at multiple points in the NFC. We illustrate how a two-step process could explain multiple independent gains and losses of RNS, contrary to recent hypotheses suggesting one gain and numerous losses, and suggest a broader phylogenetic and genetic scope may be required for genome-phenome mapping.
Collapse
Affiliation(s)
- Heather R Kates
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| | - Brian C O'Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996-1610, USA
| | - Raphael LaFrance
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Euan K James
- The James Hutton Institute, Invergowrie Dundee, Scotland, UK
| | - Shui-Yin Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Qin Tian
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Daniel Conde
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Matias Kirst
- Genetics Institute, University of Florida, Gainesville, FL, USA
- School of Forest, Fisheries and Geomatic Sciences, University of Florida, Gainesville, FL, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
2
|
Yang T, Cai B, Jia Z, Wang Y, Wang J, King GJ, Ge X, Li Z. Sinapis genomes provide insights into whole-genome triplication and divergence patterns within tribe Brassiceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:246-261. [PMID: 36424891 DOI: 10.1111/tpj.16043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Sinapis alba and Sinapis arvensis are mustard crops within the Brassiceae tribe of the Brassicaceae family, and represent an important genetic resource for crop improvement. We performed the de novo assembly of Brassica nigra, S. alba, and S. arvensis, and conducted comparative genomics to investigate the pattern of genomic evolution since an ancient whole-genome triplication event. Both Sinapis species retained evidence of the Brassiceae whole-genome triplication approximately 20.5 million years ago (Mya), with subgenome dominance observed in gene density, gene expression, and selective constraint. While S. alba diverged from the ancestor of Brassica and Raphanus at approximately 12.5 Mya, the divergence time of S. arvensis and B. nigra was approximately 6.5 Mya. S. arvensis and B. nigra had greater collinearity compared with their relationship to either Brassica rapa or Brassica oleracea. Two chromosomes of S. alba (Sal03 and Sal08) were completely collinear with two ancestral chromosomes proposed in the Ancestral Crucifer Karyotype (ACK) genomic block model, the first time this has been observed in the Brassiceae. These results are consistent with S. alba representing a relatively ancient lineage of the species evolved from the common ancestor of tribe Brassiceae, and suggest that the phylogeny of the Brassica and Sinapis genera requires some revision. Our study provides new insights into the genome evolution and phylogenetic relationships of Brassiceae and provides genomic information for genetic improvement of these plants.
Collapse
Affiliation(s)
- Taihua Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bowei Cai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, 2480, Australia
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Zuo (左胜) S, Guo (郭新异) X, Mandáková T, Edginton M, Al-Shehbaz IA, Lysak MA. Genome diploidization associates with cladogenesis, trait disparity, and plastid gene evolution. PLANT PHYSIOLOGY 2022; 190:403-420. [PMID: 35670733 PMCID: PMC9434143 DOI: 10.1093/plphys/kiac268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/09/2022] [Indexed: 05/20/2023]
Abstract
Angiosperm genome evolution was marked by many clade-specific whole-genome duplication events. The Microlepidieae is one of the monophyletic clades in the mustard family (Brassicaceae) formed after an ancient allotetraploidization. Postpolyploid cladogenesis has resulted in the extant c. 17 genera and 60 species endemic to Australia and New Zealand (10 species). As postpolyploid genome diploidization is a trial-and-error process under natural selection, it may proceed with different intensity and be associated with speciation events. In Microlepidieae, different extents of homoeologous recombination between the two parental subgenomes generated clades marked by slow ("cold") versus fast ("hot") genome diploidization. To gain a deeper understanding of postpolyploid genome evolution in Microlepidieae, we analyzed phylogenetic relationships in this tribe using complete chloroplast sequences, entire 35S rDNA units, and abundant repetitive sequences. The four recovered intra-tribal clades mirror the varied diploidization of Microlepidieae genomes, suggesting that the intrinsic genomic features underlying the extent of diploidization are shared among genera and species within one clade. Nevertheless, even congeneric species may exert considerable morphological disparity (e.g. in fruit shape), whereas some species within different clades experience extensive morphological convergence despite the different pace of their genome diploidization. We showed that faster genome diploidization is positively associated with mean morphological disparity and evolution of chloroplast genes (plastid-nuclear genome coevolution). Higher speciation rates in perennials than in annual species were observed. Altogether, our results confirm the potential of Microlepidieae as a promising subject for the analysis of postpolyploid genome diploidization in Brassicaceae.
Collapse
Affiliation(s)
| | | | - Terezie Mandáková
- CEITEC – Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, CZ-625 00, Czech Republic
| | - Mark Edginton
- Queensland Herbarium, Department of Environment and Science, Brisbane Botanic Gardens, Mt Coot-tha Road, Toowong, QLD 4066, Australia
| | | | | |
Collapse
|
4
|
Gomes Pacheco T, Morais da Silva G, de Santana Lopes A, de Oliveira JD, Rogalski JM, Balsanelli E, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. Phylogenetic and evolutionary features of the plastome of Tropaeolum pentaphyllum Lam. (Tropaeolaceae). PLANTA 2020; 252:17. [PMID: 32666132 DOI: 10.1007/s00425-020-03427-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Complete plastome sequence of Tropaeolum pentaphyllum revealed molecular markers, hotspots of nucleotide polymorphism, RNA editing sites and phylogenetic aspects Tropaeolaceae Juss. ex DC. comprises approximately 95 species across North and South Americas. Tropaeolum pentaphyllum Lam. is an unconventional and endangered species with occurrence in some countries of South America. Although this species presents nutritional, medicinal and ornamental uses, genetic studies involving natural populations or promising genotypes are practically non-existent. Here, we report the nucleotide sequence of T. pentaphyllum plastome. It represents the first complete plastome sequence of the family Tropaeolaceae to be fully sequenced and analyzed in detail. The sequencing data revealed that the T. pentaphyllum plastome is highly similar to the plastomes of other Brassicales. Notwithstanding, our analyses detected some specific features concerning events of IR expansion and structural changes in some genes such as matK, rpoA, and rpoC2. We also detected 251 SSR loci, nine hotspots of nucleotide polymorphism, and two specific RNA editing sites in the plastome of T. pentaphyllum. Moreover, plastid phylogenomic inference indicated a closed relationship between the families Tropaeolaceae and Akaniaceae, which formed a sister group to Moringaceae-Caricaceae. Finally, our data bring new molecular markers and evolutionary features to be applied in the natural population, germplasm collection, and genotype selection aiming conservation, genetic diversity evaluation, and exploitation of this endangered species.
Collapse
Affiliation(s)
- Túlio Gomes Pacheco
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Gleyson Morais da Silva
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Amanda de Santana Lopes
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - José Daniel de Oliveira
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Juliana Marcia Rogalski
- Núcleo de Ciências Biológicas e Ambientais, Instituto Federal do Rio Grande do Sul, Distrito Engenheiro Luiz Englert, Sertão, RS, Brazil
| | - Eduardo Balsanelli
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Emanuel Maltempi de Souza
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Fábio de Oliveira Pedrosa
- Núcleo de Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcelo Rogalski
- Laboratório de Fisiologia Molecular de Plantas, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
5
|
Koch MA, Lemmel C. Zahora, a new monotypic genus from tribe Brassiceae (Brassicaceae) endemic to the Moroccan Sahara. PHYTOKEYS 2019; 135:119-131. [PMID: 31849563 PMCID: PMC6908512 DOI: 10.3897/phytokeys.135.46946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Zahora ait-atta Lemmel & M.Koch, a new species from the Moroccan Sahara, is described and documented here and constitutes a monotypic new genus. The new taxon belongs to the tribe Brassiceae (Brassicaceae), and cytogenetic and phylogenetic analyses reveal that this diploid species has a remote status of Miocene origin in the northwestern Sahara Desert. We examined the morphological differences between morphologically related genera and provide photographs of the new species. The new genus may play a key role in future Brassica-Raphanus crop research since it is placed phylogenetically at the base of a generically highly diverse clade including Raphanus sativus, and it shows affinities to various Brassica species.
Collapse
Affiliation(s)
- Marcus A. Koch
- Centre for Organismal Studies, Dept. Biodiversity and Plant Systematics, Heidelberg University, Heidelberg, GermanyHeidelberg UniversityHeidelbergGermany
| | - Claude Lemmel
- Atlas Sahara, Boudenib, MoroccoUnaffiliatedBoudenibMorocco
| |
Collapse
|
6
|
How to build a fruit: Transcriptomics of a novel fruit type in the Brassiceae. PLoS One 2019; 14:e0209535. [PMID: 31318861 PMCID: PMC6638736 DOI: 10.1371/journal.pone.0209535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 06/25/2019] [Indexed: 11/19/2022] Open
Abstract
Comparative gene expression studies are invaluable for predicting how existing genetic pathways may be modified or redeployed to produce novel and variable phenotypes. Fruits are ecologically important organs because of their impact on plant fitness and seed dispersal, modifications in which results in morphological variation across species. A novel fruit type in the Brassicaceae known as heteroarthrocarpy enables distinct dispersal methods in a single fruit through segmentation via a lateral joint and variable dehiscence at maturity. Given the close relationship to Arabidopsis, species that exhibit heteroarthrocarpy are powerful models to elucidate how differences in gene expression of a fruit patterning pathway may result in novel fruit types. Transcriptomes of distal, joint, and proximal regions from Erucaria erucarioides and Cakile lanceolata were analyzed to elucidate within fruit and between species differences in whole transcriptome, gene ontology, and fruit patterning expression profiles. Whole transcriptome expression profiles vary between fruit regions in patterns that are consistent with fruit anatomy. These transcriptomic variances do not correlate with changes in gene ontology, as they remain generally stable within and between both species. Upstream regulators in the fruit patterning pathway, FILAMENTOUS FLOWER and YABBY3, are expressed in the distal and proximal regions of E. erucarioides, but not in the joint, implicating alterations in the pathway in heteroarthrocarpic fruits. Downstream gene, INDEHISCENT, is significantly upregulated in the abscissing joint region of C. lanceolata, which suggests repurposing of valve margin genes for novel joint disarticulation in an otherwise indehiscent fruit. In summary, these data are consistent with modifications in fruit patterning genes producing heteroarthrocarpic fruits through different components of the pathway relative to other indehiscent, non-heteroarthrocarpic, species within the family. Our understanding of fruit development in Arabidopsis is now extended to atypical siliques within the Brassicaceae, facilitating future studies on seed shattering in important Brassicaceous crops and pernicious weeds.
Collapse
|
7
|
Deanna R, Larter MD, Barboza GE, Smith SD. Repeated evolution of a morphological novelty: a phylogenetic analysis of the inflated fruiting calyx in the Physalideae tribe (Solanaceae). AMERICAN JOURNAL OF BOTANY 2019; 106:270-279. [PMID: 30779447 DOI: 10.1002/ajb2.1242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY The evolution of novel fruit morphologies has been integral to the success of angiosperms. The inflated fruiting calyx, in which the balloon-like calyx swells to completely surround the fruit, has evolved repeatedly across angiosperms and is postulated to aid in protection and dispersal. We investigated the evolution of this trait in the tomatillos and their allies (Physalideae, Solanaceae). METHODS The Physalideae phylogeny was estimated using four regions (ITS, LEAFY, trnL-F, waxy) with maximum likelihood (ML) and Bayesian inference. Under the best-fitting ML model of trait evolution, we estimated ancestral states along with the numbers of gains and losses of fruiting calyx accrescence and inflation with Bayesian stochastic mapping. Also, phylogenetic signal in calyx morphology was examined with two metrics (parsimony score and Fritz and Purvis's D). KEY RESULTS Based on our well-resolved and densely sampled phylogeny, we infer that calyx evolution has proceeded in a stepwise and directional fashion, from non-accrescent to accrescent to inflated. In total, we inferred 24 gains of accrescence, 24 subsequent transitions to a fully inflated calyx, and only two reversals. Despite this lability, fruiting calyx accrescence and inflation showed strong phylogenetic signal. CONCLUSIONS Our phylogeny greatly improves the resolution of Physalideae and highlights the need for taxonomic work. The comparative analyses reveal that the inflated fruiting calyx has evolved many times and that the trajectory toward this phenotype is generally stepwise and irreversible. These results provide a strong foundation for studying the genetic and developmental mechanisms responsible for the repeated origins of this charismatic fruit trait.
Collapse
Affiliation(s)
- Rocío Deanna
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), CC 495, Córdoba, 5000, Argentina
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80305, USA
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas (FCQ, UNC), Medina Allende s.n., Córdoba, 5000, Argentina
| | - Maximilian D Larter
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80305, USA
| | - Gloria E Barboza
- Instituto Multidisciplinario de Biología Vegetal, IMBIV (CONICET-UNC), CC 495, Córdoba, 5000, Argentina
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80305, USA
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas (FCQ, UNC), Medina Allende s.n., Córdoba, 5000, Argentina
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80305, USA
| |
Collapse
|
8
|
Abstract
In 2017, The American Naturalist celebrated its 150th anniversary. It was founded as a journal of natural history, yet it developed into an important vehicle of the evolutionary synthesis. During the early years of the journal and through much of the twentieth century, evolutionary theory was developed to explain the history of nature before humankind existed to alter it-when time was expansive and uncommon events, though rare, were frequent enough to effect evolutionary change. Today, with the influence of human activity, dispersal patterns are fundamentally altered, genetic variation is locally limiting in small and fragmented populations, and environments are changing so rapidly that time itself seems limited. How can we use this theory, which was built to explain the past and which depends on an excess of chances and time, to address the challenges of the present and the future when chances are fewer and time seems so short? And does the habit of naturalists to observe, describe, and cultivate a fascination with nature have a place in contemporary science?
Collapse
|
9
|
de Santana Lopes A, Gomes Pacheco T, do Nascimento Vieira L, Guerra MP, Nodari RO, Maltempi de Souza E, de Oliveira Pedrosa F, Rogalski M. The Crambe abyssinica plastome: Brassicaceae phylogenomic analysis, evolution of RNA editing sites, hotspot and microsatellite characterization of the tribe Brassiceae. Gene 2018; 671:36-49. [DOI: 10.1016/j.gene.2018.05.088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022]
|
10
|
Kawanabe T, Nukii H, Furihata HY, Yoshida T, Kawabe A. The complete chloroplast genome of Sisymbrium irio. Mitochondrial DNA B Resour 2018; 3:488-489. [PMID: 33474214 PMCID: PMC7799896 DOI: 10.1080/23802359.2018.1464412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The complete chloroplast genome of Sisymbrium irio was determined. The length of the complete chloroplast genome is 154,001 bp. The whole chloroplast genome consists of 83,891 bp long single copy (LSC) and 17,630 bp small single copy (SSC) regions, separated by a pair of 26,240 bp inverted repeat (IR) regions. The S. irio chloroplast genome encodes 112 annotated known unique genes including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The phylogenetic position of S. irio is sister to Brassiceae and Thlaspideae.
Collapse
Affiliation(s)
| | - Hiroaki Nukii
- Faculty of Life Science, Kyoto Sangyo University, Kyoto, Japan
| | | | | | - Akira Kawabe
- Faculty of Life Science, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
11
|
Lu JJ, Tan DY, Baskin CC, Baskin JM. Delayed dehiscence of the pericarp: role in germination and retention of viability of seeds of two cold desert annual Brassicaceae species. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:14-22. [PMID: 27037632 DOI: 10.1111/plb.12457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Considerable variation occurs in post-maturity timing of dehiscence in fruits of Brassicaceae species, and several studies have shown that the pericarp plays an important role in seed germination and retention of viability in species with indehiscent fruits. However, little is known about the significance to seed biology of delay in pericarp dehiscence for <1 year in the field. Thus, we determined the role of the pericarps of Leptaleum filifolium and Neotorularia korolkovii, which open in <1 year after fruit maturity and dispersal, in seed germination and retention of seed viability. We compared dormancy-break via after-ripening in the laboratory and germination phenology and retention of seed viability in intact siliques and isolated seeds buried in an experimental garden. Seeds of both species have Type 6 non-deep physiological dormancy, which is enhanced by the pericarp. Seeds of both species after-ripened during summer 2013, and some of them germinated in autumn and some in the following spring in watered and non-watered soil. Germination percentages of seeds in siliques increased in soil in spring 2014, after the pericarps had opened. Most isolated seeds of L. filifolium and N. korolkovii had germinated or were dead by spring 2014 and summer 2015, respectively, whereas 60% of the seeds of both species in the (opened) pericarps were viable after 24 months. Thus, although the pericarp opened 9-10 months after burial, its presence had a significant effect on seed dormancy, germination phenology and retention of viability of seeds of L. filifolium and N. korolkovii.
Collapse
Affiliation(s)
- J J Lu
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China
| | - D Y Tan
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China
| | - C C Baskin
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China
- Department of Biology, University of Kentucky, Lexington, KY, USA
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - J M Baskin
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China
- Department of Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Willis CG, Donohue K. The evolution of intrinsic reproductive isolation in the genus
Cakile
(Brassicaceae). J Evol Biol 2016; 30:361-376. [DOI: 10.1111/jeb.13011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 11/29/2022]
Affiliation(s)
- C. G. Willis
- Department of Biology Duke University Durham NC USA
| | - K. Donohue
- Department of Biology Duke University Durham NC USA
| |
Collapse
|
13
|
Primary seed dispersal by a sigmodontine rodent assemblage in a Peruvian montane forest. JOURNAL OF TROPICAL ECOLOGY 2016. [DOI: 10.1017/s0266467416000043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:We examined quantity and quality components of primary seed dispersal for an assemblage of sigmodontine rodents in a high-elevation montane tropical forest in Peru. We collected faecal samples from 134 individuals belonging to seven rodent species from the subfamily Sigmodontinae (Cricetidae) over a 2-y period. We conducted seed viability tests for seeds found in faecal samples. We identified seeds from eight plant families (Bromeliaceae, Annonaceae, Brassicaceae, Ericaceae, Melastomatacae, Myrtaceae, Rosaceae, Solanaceae), nine genera and 13 morphospecies. The most abundant seeds belonged toGaultheriasp. 1 (46% of total) andMiconiasp. 1 (31% of total), while the most viable seeds belonged toGreigiasp. (84% viability) andGuatteriasp. (80% viability). We utilized relative rodent abundance, seed species diversity, seed abundance and seed viability per rodent species to calculate an index of rodent disperser effectiveness, and found thatThomasomys kalinowskiiwas the most effective disperser, followed byAkodon torques,Calomys sorellus,Thomasomys oreas,Oligoryzomys andinusandMicroryzomys minutus. Plant genera dispersed by sigmodontine rodents overlapped more with bird- and terrestrial-mammal-dispersed plants than with bat-dispersed plants. Future neotropical seed dispersal studies should consider small rodents as potential seed-dispersers, especially in tropical habitats where small-seeded, berry-forming shrubs and trees are present.
Collapse
|
14
|
Evolution of dispersal in spatially and temporally variable environments: The importance of life cycles. Evolution 2015; 69:1925-37. [DOI: 10.1111/evo.12699] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/08/2015] [Indexed: 11/26/2022]
|
15
|
Dong Y, Wang YZ. Seed shattering: from models to crops. FRONTIERS IN PLANT SCIENCE 2015; 6:476. [PMID: 26157453 PMCID: PMC4478375 DOI: 10.3389/fpls.2015.00476] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/15/2015] [Indexed: 05/19/2023]
Abstract
Seed shattering (or pod dehiscence, or fruit shedding) is essential for the propagation of their offspring in wild plants but is a major cause of yield loss in crops. In the dicot model species, Arabidopsis thaliana, pod dehiscence necessitates a development of the abscission zones along the pod valve margins. In monocots, such as cereals, an abscission layer in the pedicle is required for the seed shattering process. In the past decade, great advances have been made in characterizing the genetic contributors that are involved in the complex regulatory network in the establishment of abscission cell identity. We summarize the recent burgeoning progress in the field of genetic regulation of pod dehiscence and fruit shedding, focusing mainly on the model species A. thaliana with its close relatives and the fleshy fruit species tomato, as well as the genetic basis responsible for the parallel loss of seed shattering in domesticated crops. This review shows how these individual genes are co-opted in the developmental process of the tissues that guarantee seed shattering. Research into the genetic mechanism underlying seed shattering provides a premier prerequisite for the future breeding program for harvest in crops.
Collapse
Affiliation(s)
| | - Yin-Zheng Wang
- *Correspondence: Yin-Zheng Wang, State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China,
| |
Collapse
|
16
|
Willis CG, Hall JC, Rubio de Casas R, Wang TY, Donohue K. Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae). ANNALS OF BOTANY 2014; 114:1675-86. [PMID: 25342656 PMCID: PMC4649692 DOI: 10.1093/aob/mcu196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/21/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Dispersal and establishment ability can influence evolutionary processes such as geographic isolation, adaptive divergence and extinction probability. Through these population-level dynamics, dispersal ability may also influence macro-evolutionary processes such as species distributions and diversification. This study examined patterns of evolution of dispersal-related fruit traits, and how the evolution of these traits is correlated with shifts in geographic range size, habitat and diversification rates in the tribe Brassiceae (Brassicaceae). METHODS The phylogenetic analysis included 72 taxa sampled from across the Brassiceae and included both nuclear and chloroplast markers. Dispersal-related fruit characters were scored and climate information for each taxon was retrieved from a database. Correlations between fruit traits, seed characters, habitat, range and climate were determined, together with trait-dependent diversification rates. KEY RESULTS It was found that the evolution of traits associated with limited dispersal evolved only in association with compensatory traits that increase dispersal ability. The evolution of increased dispersal ability occurred in multiple ways through the correlated evolution of different combinations of fruit traits. The evolution of traits that increase dispersal ability was in turn associated with larger seed size, increased geographic range size and higher diversification rates. CONCLUSIONS This study provides evidence that the evolution of increased dispersal ability and larger seed size, which may increase establishment ability, can also influence macro-evolutionary processes, possibly by increasing the propensity for long-distance dispersal. In particular, it may increase speciation and consequent diversification rates by increasing the likelihood of geographic and thereby reproductive isolation.
Collapse
Affiliation(s)
- C G Willis
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - J C Hall
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - R Rubio de Casas
- Departamento de Ecología, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain
| | - T Y Wang
- Duke University School of Medicine, Duke University, DUMC 3710, Durham, NC 27710, USA
| | - K Donohue
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| |
Collapse
|
17
|
Salariato DL, Zuloaga FO, Cano A, Al-Shehbaz IA. Molecular phylogenetics of tribe Eudemeae (Brassicaceae) and implications for its morphology and distribution. Mol Phylogenet Evol 2014; 82 Pt A:43-59. [PMID: 25451804 DOI: 10.1016/j.ympev.2014.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/21/2014] [Accepted: 09/19/2014] [Indexed: 01/06/2023]
Abstract
Tribe Eudemeae comprises a morphologically heterogeneous group of genera distributed along the Andes of South America from Colombia southward into southern Chile and Argentina. The tribe currently includes seven genera: Aschersoniodoxa, Brayopsis, Dactylocardamum, Delpinophytum, Eudema, Onuris, and Xerodraba, and exhibits a wide morphological diversification in growth habit, inflorescences, and fruits. However, little is known about the phylogenetic relationships and evolution of the tribe. We present here a molecular phylogeny of representative sampling of all genera, utilizing sequence data from the nuclear ribosomal ITS region and chloroplast regions trnL-F, trnH-psbA, and rps16. Additionally, climatic niches of the tribe and its main lineages, along with the evolution of diagnostic morphological characters, were studied. All analyses confirmed the monophyly of Eudemeae, with the exception of Delpinophytum that was included with genera of the lineage I of Brassicaceae. Eudemeae is divided into two main lineages differentiated by their geographical distribution and climatic niche: the primarily north-central Andean lineage included Aschersoniodoxa, Brayopsis, Dactylocardamum, and Eudema, and the Patagonian and southern Andean lineage included Onuris and Xerodraba. Finally, ancestral-state reconstructions in the tribe generally reveal multiple and independent gains or losses of diagnostic morphological characters, such as growth form, inflorescence reduction, and fruit type. Relevant taxonomic implications stemming from the results are also discussed.
Collapse
Affiliation(s)
- Diego L Salariato
- Instituto de Botánica Darwinion (CONICET - ANCEFN), Labardén 200, Casilla de Correo 22, B1642HYD San Isidro, Buenos Aires, Argentina.
| | - Fernando O Zuloaga
- Instituto de Botánica Darwinion (CONICET - ANCEFN), Labardén 200, Casilla de Correo 22, B1642HYD San Isidro, Buenos Aires, Argentina
| | - Asunción Cano
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Arenales 1256, Lima 11, Peru; Instituto de Investigación de Ciencias Biológicas, Facultad de Ciencias Biológicas (UNMSM), Av. Venezuela s/n, Lima 1, Peru
| | | |
Collapse
|
18
|
Paritosh K, Gupta V, Yadava SK, Singh P, Pradhan AK, Pental D. RNA-seq based SNPs for mapping in Brassica juncea (AABB): synteny analysis between the two constituent genomes A (from B. rapa) and B (from B. nigra) shows highly divergent gene block arrangement and unique block fragmentation patterns. BMC Genomics 2014; 15:396. [PMID: 24886001 PMCID: PMC4045973 DOI: 10.1186/1471-2164-15-396] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/20/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Brassica juncea (AABB) is an allotetraploid species containing genomes of B. rapa (AA) and B. nigra (BB). It is a major oilseed crop in South Asia, and grown on approximately 6-7 million hectares of land in India during the winter season under dryland conditions. B. juncea has two well defined gene pools--Indian and east European. Hybrids between the two gene pools are heterotic for yield. A large number of qualitative and quantitative traits need to be introgressed from one gene pool into the other. This study explores the availability of SNPs in RNA-seq generated contigs, and their use for general mapping, fine mapping of selected regions, and comparative arrangement of gene blocks on B. juncea A and B genomes. RESULTS RNA isolated from two lines of B. juncea--Varuna (Indian type) and Heera (east European type)--was sequenced using Illumina paired end sequencing technology, and assembled using the Velvet de novo programme. A and B genome specific contigs were identified in two steps. First, by aligning contigs against the B. rapa protein database (available at BRAD), and second by comparing percentage identity at the nucleotide level with B. rapa CDS and B. nigra transcriptome. 135,693 SNPs were recorded in the assembled partial gene models of Varuna and Heera, 85,473 in the A genome and 50,236 in the B. Using KASpar technology, 999 markers were added to an earlier intron polymorphism marker based map of a B. juncea Varuna x Heera DH population. Many new gene blocks were identified in the B genome. A number of SNP markers covered single copy homoeologues of the A and B genomes, and these were used to identify homoeologous blocks between the two genomes. Comparison of the block architecture of A and B genomes revealed extensive differences in gene block associations and block fragmentation patterns. CONCLUSIONS Sufficient SNP markers are available for general and specific -region fine mapping of crosses between lines of two diverse B. juncea gene pools. Comparative gene block arrangement and block fragmentation patterns between A and B genomes support the hypothesis that the two genomes evolved from independent hexaploidy events.
Collapse
Affiliation(s)
| | | | | | | | | | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
19
|
Sharma S, Padmaja KL, Gupta V, Paritosh K, Pradhan AK, Pental D. Two plastid DNA lineages--Rapa/Oleracea and Nigra--within the tribe Brassiceae can be best explained by reciprocal crosses at hexaploidy: evidence from divergence times of the plastid genomes and R-block genes of the A and B genomes of Brassica juncea. PLoS One 2014; 9:e93260. [PMID: 24691069 PMCID: PMC3972200 DOI: 10.1371/journal.pone.0093260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/04/2014] [Indexed: 12/23/2022] Open
Abstract
Brassica species (tribe Brassiceae) belonging to U's triangle--B. rapa (AA), B. nigra (BB), B. oleracea (CC), B. juncea (AABB), B. napus (AACC) and B. carinata (BBCC)--originated via two polyploidization rounds: a U event producing the three allopolyploids, and a more ancient b genome-triplication event giving rise to the A-, B-, and C-genome diploid species. Molecular mapping studies, in situ hybridization, and genome sequencing of B. rapa support the genome triplication origin of tribe Brassiceae, and suggest that these three diploid species diversified from a common hexaploid ancestor. Analysis of plastid DNA has revealed two distinct lineages--Rapa/Oleracea and Nigra--that conflict with hexaploidization as a single event defining the tribe Brassiceae. We analysed an R-block region of A. thaliana present in six copies in B. juncea (AABB), three copies each on A- and B-genomes to study gene fractionation pattern and synonymous base substitution rates (Ks values). Divergence time of paralogues within the A and B genomes and homoeologues between the A and B genomes was estimated. Homoeologous R blocks of the A and B genomes exhibited high gene collinearity and a conserved gene fractionation pattern. The three progenitors of diploid Brassicas were estimated to have diverged approximately 12 mya. Divergence of B. rapa and B. nigra, calculated from plastid gene sequences, was estimated to have occurred approximately 12 mya, coinciding with the divergence of the three genomes participating in the b event. Divergence of B. juncea A and B genome homoeologues was estimated to have taken place around 7 mya. Based on divergence time estimates and the presence of distinct plastid lineages in tribe Brassiceae, it is concluded that at least two independent triplication events involving reciprocal crosses at the time of the b event have given rise to Rapa/Oleracea and Nigra lineages.
Collapse
Affiliation(s)
- Sarita Sharma
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - K. Lakshmi Padmaja
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Kumar Paritosh
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
20
|
Rešetnik I, Satovic Z, Schneeweiss GM, Liber Z. Phylogenetic relationships in Brassicaceae tribe Alysseae inferred from nuclear ribosomal and chloroplast DNA sequence data. Mol Phylogenet Evol 2013; 69:772-86. [DOI: 10.1016/j.ympev.2013.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/27/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
|
21
|
Karl R, Koch MA. A world-wide perspective on crucifer speciation and evolution: phylogenetics, biogeography and trait evolution in tribe Arabideae. ANNALS OF BOTANY 2013; 112:983-1001. [PMID: 23904444 PMCID: PMC3783230 DOI: 10.1093/aob/mct165] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/29/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Tribe Arabideae are the most species-rich monophyletic lineage in Brassicaceae. More than 500 species are distributed in the majority of mountain and alpine regions worldwide. This study provides the first comprehensive phylogenetic analysis for the species assemblage and tests for association of trait and characters, providing the first explanations for the enormous species radiation since the mid Miocene. METHODS Phylogenetic analyses of DNA sequence variation of nuclear encoded loci and plastid DNA are used to unravel a reliable phylogenetic tree. Trait and ancestral area reconstructions were performed and lineage-specific diversification rates were calculated to explain various radiations in the last 15 Myr in space and time. KEY RESULTS A well-resolved phylogenetic tree demonstrates the paraphyly of the genus Arabis and a new systematic concept is established. Initially, multiple radiations involved a split between lowland annuals and mountain/alpine perennial sister species. Subsequently, increased speciation rates occur in the perennial lineages. The centre of origin of tribe Arabideae is most likely the Irano-Turanian region from which the various clades colonized the temperate mountain and alpine regions of the world. CONCLUSIONS Mid Miocene early diversification started with increased speciation rates due to the emergence of various annual lineages. Subsequent radiations were mostly driven by diversification within perennial species during the Pliocene, but increased speciation rates also occurred during that epoch. Taxonomic concepts in Arabis are still in need of a major taxonomic revision to define monophyletic groups.
Collapse
Affiliation(s)
| | - Marcus A. Koch
- Department of Plant Systematics and Biodiversity, Center for Organismal Studies (COS Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
22
|
Zimmer EA, Wen J. Reprint of: using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 2013; 66:539-50. [PMID: 23375140 DOI: 10.1016/j.ympev.2013.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022]
Abstract
The paper reviews the current state of low and single copy nuclear markers that have been applied successfully in plant phylogenetics to date, and discusses case studies highlighting the potential of massively parallel high throughput or next-generation sequencing (NGS) approaches for molecular phylogenetic and evolutionary investigations. The current state, prospects and challenges of specific single- or low-copy plant nuclear markers as well as phylogenomic case studies are presented and evaluated.
Collapse
Affiliation(s)
- Elizabeth A Zimmer
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA.
| | | |
Collapse
|
23
|
Zimmer EA, Wen J. Using nuclear gene data for plant phylogenetics: Progress and prospects. Mol Phylogenet Evol 2012; 65:774-85. [DOI: 10.1016/j.ympev.2012.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 06/14/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
|
24
|
Avino M, Kramer EM, Donohue K, Hammel AJ, Hall JC. Understanding the basis of a novel fruit type in Brassicaceae: conservation and deviation in expression patterns of six genes. EvoDevo 2012; 3:20. [PMID: 22943452 PMCID: PMC3503883 DOI: 10.1186/2041-9139-3-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/28/2012] [Indexed: 11/10/2022] Open
Abstract
Background Variation in fruit morphology is important for plant fitness because it influences dispersal capabilities. Approximately half the members of tribe Brassiceae (Brassicaceae) exhibit fruits with segmentation and variable dehiscence, called heteroarthrocarpy. The knowledge of the genetics of fruit patterning in Arabidopsis offers the opportunity to ask: (1) whether this genetic pathway is conserved in taxa with different fruit morphologies; (2) how the pathway may be modified to produce indehiscence; and (3) whether the pathway has been recruited for a novel abscission zone. Methods We identified homologs of ALCATRAZ, FRUITFULL, INDEHISCENT, SHATTERPROOF, and REPLUMLESS from two taxa, representing different types of heteroarthrocarpy. Comparative gene expression of twelve loci was assessed to address how their expression may have been modified to produce heteroarthrocarpy. Results Studies demonstrated overall conservation in gene expression patterns between dehiscent segments of Erucaria erucarioides and Arabidopsis, with some difference in expression of genes that position the valve margin. In contrast, indehiscence in heteroarthrocarpic fruit segments was correlated with the elimination of the entire valve margin pathway in Erucaria and Cakile lanceolata as well as its absence from a novel lateral abscission zone. Conclusions These findings suggest that modifications in the valve margin positioning genes are responsible for differences between heteroarthrocarpic and Arabidopsis-like fruits and support the hypothesis that heteroarthrocarpy evolved via repositioning the valve margin. They also highlight conservation in the dehiscence pathway across Brassicaceae.
Collapse
Affiliation(s)
- Mariano Avino
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, CANADA.
| | | | | | | | | |
Collapse
|
25
|
Mathews S, Kramer EM. The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. THE NEW PHYTOLOGIST 2012; 194:910-923. [PMID: 22413867 DOI: 10.1111/j.1469-8137.2012.04091.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The study of developmental genetics is providing insights into how plant morphology can and does evolve, and into the fundamental nature of specific organs. This new understanding has the potential to revise significantly the way we think about seed plant evolution, especially with regard to reproductive structures. Here, we have sought to take a step in bridging the divide between genetic data and critical fields such as paleobotany and systematics. We discuss the evidence for several evolutionarily important interpretations, including the possibility that ovules represent meristematic axes with their own type of lateral determinate organs (integuments) and a model that considers carpels as analogs of complex leaves. In addition, we highlight the aspects of reproductive development that are likely to be highly labile and homoplastic, factors that have major implications for the understanding of seed plant relationships. Although these hypotheses may suggest that some long-standing interpretations are misleading, they also open up whole new avenues for comparative study and suggest concrete best practices for evolutionary analyses of development.
Collapse
Affiliation(s)
- Sarah Mathews
- Arnold Arboretum, Harvard University, 1300 Centre Street, Boston, MA 02131, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, USA
| |
Collapse
|