1
|
Thapa A, Hasan MR, Kabir AH. Trichoderma afroharzianum T22 Induces Rhizobia and Flavonoid-Driven Symbiosis to Promote Tolerance to Alkaline Stress in Garden Pea. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40298200 DOI: 10.1111/pce.15581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Soil alkalinity is a limiting factor for crops, yet the role of beneficial fungi in mitigating this abiotic stress in garden pea is understudied. In this study, Trichoderma afroharzianum T22 colonised the roots of garden pea cultivars exposed to soil alkalinity in a host-specific manner. In alkaline-exposed Sugar Snap, T22 improved growth parameters, consistent with increased tissue mineral content, particularly Fe and Mn, as well as enhanced rhizosphere siderophore levels. The split-root assay demonstrated that the beneficial effects of T22 on alkaline stress mitigation are the result of a whole-plant association rather than localised root-specific effects. RNA-seq analysis showed 575 and 818 differentially expressed genes upregulated and downregulated in the roots inoculated with T22 under alkaline conditions. The upregulated genes were mostly involved in the flavonoid biosynthetic pathway (monooxygenase activity, ammonia-lyase activity, 4-coumarate-CoA ligase), along with genes related to mineral transport and redox homoeostasis. Further, a flavonoid precursor restored plant health even in the absence of T22, confirming the role of microbial symbiosis in mitigating alkaline stress. Interestingly, T22 restored the abundance of rhizobia, particularly Rhizobium leguminosarum and Rhizobium indicum, along with the induction of NifA, NifD, and NifH in nodules, suggesting a connection between T22 and rhizobia under soil alkalinity. Further, the elevated rhizosphere siderophore, root flavonoid, expression of PsCoA (4-coumarate-CoA ligase) as well as the relative abundance of TaAOX1 and R. leguminosarum diminished when T22 was substituted with exogenous Fe. This suggests that exogenous Fe eliminates the need for microbiome-driven mineral mobilisation, while T22-mediated alkaline stress mitigation depends on flavonoid-driven symbiosis and R. leguminosarum abundance. It was further supported by the positive interaction of T22 on R. leguminosarum growth in alkaline media. Thus, the beneficial effect of T22 on rhizobia likely stems from their interactions, not solely from the improved mineral status, particularly Fe, in plants. This study provides the first mechanistic insights into T22 interactions with host and rhizobia, advancing microbiome strategies to alleviate soil alkalinity in peas and other legumes.
Collapse
Affiliation(s)
- Asha Thapa
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Md Rokibul Hasan
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| | - Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, Monroe, Louisiana, USA
| |
Collapse
|
2
|
Rycroft SL, Henry HAL. High freezing sensitivity of legumes relative to other herbaceous species in northern temperate plant communities. ANNALS OF BOTANY 2024; 134:283-294. [PMID: 38742700 PMCID: PMC11232518 DOI: 10.1093/aob/mcae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND AIMS Reduced snow cover and increased air temperature variability are predicted to expose overwintering herbaceous plants to more severe freezing in some northern temperate regions. Legumes are a key functional group that may exhibit lower freezing tolerance than other species in these regions, but this trend has been observed only for non-native legumes. Our aim was to confirm if this trend is restricted to non-native legumes or whether native legumes in these regions also exhibit low freezing tolerance. METHODS First, we transplanted legumes (five non-native species and four native species) into either an old field (non-native) or a prairie (native) and used snow removal to expose the plots to increased soil freezing. Second, we grew plants in mesocosms (old field) and pots (prairie species) and exposed them in controlled environment chambers to a range of freezing treatments (control, 0, -5 or -10 °C) in winter or spring. We assessed freezing responses by comparing differences in biomass, cover and nodulation between freezing (or snow removal) treatments and controls. KEY RESULTS Among legume species, lower freezing tolerance was positively correlated with a lower proportion of nodulated plants and active nodules, and under controlled conditions, freezing-induced reductions in above-ground biomass were lower on average in native legumes than in non-native legumes. Nevertheless, both non-native and native legumes (except Desmodium canadense) exhibited greater reductions in biomass in response to increased freezing than their non-leguminous neighbours, both in controlled environments and in the field. CONCLUSIONS These results demonstrate that both native and non-native legumes exhibit low freezing tolerance relative to other herbaceous species in northern temperate plant communities. By reducing legume biomass and nodulation, increased soil freezing could reduce nitrogen inputs into these systems.
Collapse
Affiliation(s)
- Samuel L Rycroft
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON N6A 5B7, Canada
| | - Hugh A L Henry
- Department of Biology, University of Western Ontario, 1151 Richmond St. N, London, ON N6A 5B7, Canada
| |
Collapse
|
3
|
Williams A, Sinanaj B, Hoysted GA. Plant-microbe interactions through a lens: tales from the mycorrhizosphere. ANNALS OF BOTANY 2024; 133:399-412. [PMID: 38085925 PMCID: PMC11006548 DOI: 10.1093/aob/mcad191] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 04/12/2024]
Abstract
BACKGROUND The soil microbiome plays a pivotal role in maintaining ecological balance, supporting food production, preserving water quality and safeguarding human health. Understanding the intricate dynamics within the soil microbiome necessitates unravelling complex bacterial-fungal interactions (BFIs). BFIs occur in diverse habitats, such as the phyllosphere, rhizosphere and bulk soil, where they exert substantial influence on plant-microbe associations, nutrient cycling and overall ecosystem functions. In various symbiotic associations, fungi form mycorrhizal connections with plant roots, enhancing nutrient uptake through the root and mycorrhizal pathways. Concurrently, specific soil bacteria, including mycorrhiza helper bacteria, play a pivotal role in nutrient acquisition and promoting plant growth. Chemical communication and biofilm formation further shape plant-microbial interactions, affecting plant growth, disease resistance and nutrient acquisition processes. SCOPE Promoting synergistic interactions between mycorrhizal fungi and soil microbes holds immense potential for advancing ecological knowledge and conservation. However, despite the significant progress, gaps remain in our understanding of the evolutionary significance, perception, functional traits and ecological relevance of BFIs. Here we review recent findings obtained with respect to complex microbial communities - particularly in the mycorrhizosphere - and include the latest advances in the field, outlining their profound impacts on our understanding of ecosystem dynamics and plant physiology and function. CONCLUSIONS Deepening our understanding of plant BFIs can help assess their capabilities with regard to ecological and agricultural safe-guarding, in particular buffering soil stresses, and ensuring sustainable land management practices. Preserving and enhancing soil biodiversity emerge as critical imperatives in sustaining life on Earth amidst pressures of anthropogenic climate change. A holistic approach integrates scientific knowledge on bacteria and fungi, which includes their potential to foster resilient soil ecosystems for present and future generations.
Collapse
Affiliation(s)
- Alex Williams
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, S10 2TN, UK
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of Bioscience, University of Sheffield, Sheffield, S10 2TN, UK
| | - Grace A Hoysted
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
4
|
Mohd-Radzman NA, Drapek C. Compartmentalisation: A strategy for optimising symbiosis and tradeoff management. PLANT, CELL & ENVIRONMENT 2023; 46:2998-3011. [PMID: 36717758 DOI: 10.1111/pce.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Plant root architecture is developmentally plastic in response to fluctuating nutrient levels in the soil. Part of this developmental plasticity is the formation of dedicated root cells and organs to host mutualistic symbionts. Structures like nitrogen-fixing nodules serve as alternative nutrient acquisition strategies during starvation conditions. Some root systems can also form myconodules-globular root structures that can host mycorrhizal fungi. The myconodule association is different from the wide-spread arbuscular mycorrhization. This range of symbiotic associations provides different degrees of compartmentalisation, from the cellular to organ scale, which allows the plant host to regulate the entry and extent of symbiotic interactions. In this review, we discuss the degrees of symbiont compartmentalisation by the plant host as a developmental strategy and speculate how spatial confinement mitigates risks associated with root symbiosis.
Collapse
Affiliation(s)
| | - Colleen Drapek
- Sainsbury Laboratory Cambridge University (SLCU), Bateman Street, Cambridge, UK
| |
Collapse
|
5
|
Nobarinezhad MH, Wallace LE. Fine-scale genetic structure in rhizosphere microbial communities associated with Chamaecrista fasciculata (Fabaceae). Ecol Evol 2023; 13:e10570. [PMID: 37753306 PMCID: PMC10518841 DOI: 10.1002/ece3.10570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/27/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Soil microbiota of the rhizosphere are an important extension of the plant phenotype because they impact the health and fitness of host plants. The composition of these communities is expected to differ among host plants due to influence by host genotype. Given that many plant populations exhibit fine-scale genetic structure (SGS), associated microbial communities may also exhibit SGS. In this study, we tested this hypothesis using Chamaecrista fasciculata, a legume species that has previously been determined to have significant SGS. We collected genetic data from prokaryotic and fungal rhizosphere communities in association with 70 plants in an area of ~400 square meters to investigate the presence of SGS in microbial communities. Bacteria of Acidobacteria, Protobacteria, and Bacteroidetes and fungi of Basidiomycota, Ascomycota, and Mortierellomycota were dominant members of the rhizosphere. Although microbial alpha diversity did not differ significantly among plants hosts, we detected significant compositional differences among the microbial communities as well as isolation by distance. The strongest factor associated with microbial distance was genetic distance of the other microbial community, followed by geographic distance, but there was not a significant association with plant genetic distance for either microbial community. This study further demonstrates the strong potential for spatial structuring of soil microbial communities at the smallest spatial scales and provides further insight into the complexity of factors that influence microbial composition in soils and in association with host plants.
Collapse
Affiliation(s)
| | - Lisa E. Wallace
- Department of Biological SciencesOld Dominion UniversityNorfolkVirginiaUSA
| |
Collapse
|
6
|
Kalapchieva S, Tringovska I, Bozhinova R, Kosev V, Hristeva T. Population Response of Rhizosphere Microbiota of Garden Pea Genotypes to Inoculation with Arbuscular Mycorrhizal Fungi. Int J Mol Sci 2023; 24:1119. [PMID: 36674632 PMCID: PMC9866347 DOI: 10.3390/ijms24021119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
This study of a legume's rhizosphere in tripartite symbiosis focused on the relationships between the symbionts and less on the overall rhizosphere microbiome. We used an experimental model with different garden pea genotypes inoculated with AM fungi (Rhizophagus irregularis and with a mix of AM species) to study their influence on the population levels of main trophic groups of soil microorganisms as well as their structure and functional relationships in the rhizosphere microbial community. The experiments were carried out at two phenological cycles of the plants. Analyzes were performed according to classical methods: microbial population density defined as CUF/g a.d.s. and root colonization rate with AMF (%). We found a proven dominant effect of AMF on the densities of micromycetes and actinomycetes in the direction of reduction, suggesting antagonism, and on ammonifying, phosphate-solubilizing and free-living diazotrophic Azotobacter bacteria in the direction of stimulation, an indicator of mutualistic relationships. We determined that the genotype was decisive for the formation of populations of bacteria immobilizing mineral NH4+-N and bacteria Rhizobium. We reported significant two-way relationships between trophic groups related associated with soil nitrogen and phosphorus ions availability. The preserved proportions between trophic groups in the microbial communities were indicative of structural and functional stability.
Collapse
Affiliation(s)
- Slavka Kalapchieva
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 4003 Plovdiv, Bulgaria
| | - Ivanka Tringovska
- Maritsa Vegetable Crops Research Institute, Agricultural Academy, 4003 Plovdiv, Bulgaria
| | - Radka Bozhinova
- Tobacco and Tobacco Products Institute, Agricultural Academy, 4108 Plovdiv, Bulgaria
| | - Valentin Kosev
- Institute of Forage Crops, Agricultural Academy, 5800 Pleven, Bulgaria
| | - Tsveta Hristeva
- Tobacco and Tobacco Products Institute, Agricultural Academy, 4108 Plovdiv, Bulgaria
| |
Collapse
|
7
|
Soil microbes and associated extracellular enzymes largely impact nutrient bioavailability in acidic and nutrient poor grassland ecosystem soils. Sci Rep 2022; 12:12601. [PMID: 35871260 PMCID: PMC9308775 DOI: 10.1038/s41598-022-16949-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Understanding the role of soil microbes and their associated extracellular enzymes in long-term grassland experiments presents an opportunity for testing relevant ecological questions on grassland nutrient dynamics and functioning. Veld fertilizer trials initiated in 1951 in South Africa were used to assess soil functional microbial diversity and their metabolic activities in the nutrient-poor grassland soils. Phosphorus and liming trials used for this specific study comprised of superphosphate (336 kg ha−1) and dolomitic lime (2250 kg ha−1) (P + L), superphosphate (336 kg ha−1) (+ P) and control trials. These soils were analyzed for their nutrient concentrations, pH, total cations and exchange acidity, microflora and extracellular enzyme activities. The analysed soil characteristics showed significant differences except nitrogen (N) and organic carbon (C) concentrations showing no significant differences. P-solubilizing, N-cycling and N-fixing microbial diversity varied among the different soil treatments. β-glucosaminidase enzyme activity was high in control soils compared to P-fertilized and limed soils. Alkaline phosphatase showed increased activity in P-fertilized soils, whereas acid phosphatase showed increased activity in control soils. Therefore, the application of superphosphate and liming influences the relative abundance of bacterial communities with nutrient cycling and fixing functions which account for nutrient bioavailability in acidic and nutrient stressed grassland ecosystem soils.
Collapse
|
8
|
Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153765. [PMID: 35952452 DOI: 10.1016/j.jplph.2022.153765] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
Nitrogen fixing symbioses between plants and bacteria are ancient and, while not numerous, are formed in diverse lineages of plants ranging from microalgae to angiosperms. One symbiosis stands out as the most widespread one is that between legumes and rhizobia, leading to the formation of nitrogen-fixing nodules. The legume family is one of the largest and most diverse group of plants and legumes have been used by humans since the beginning of agriculture, both as high nitrogen food, as well as pastures and rotation crops. One open question is whether their ability to form a nitrogen-fixing symbiosis has contributed to legumes' success, and whether legumes have any unique characteristics that have made them more diverse and widespread than other groups of plants. This review examines the evolutionary journey that has led to the diversification of legumes, in particular its nitrogen-fixing symbiosis, and asks four questions to investigate which legume traits might have contributed to their success: 1. In what ways do legumes differ from other plant groups that have evolved nitrogen-fixing symbioses? In order to answer this question, the characteristics of the symbioses, and efficiencies of nitrogen fixation are compared between different groups of nitrogen fixing plants. 2. Could certain unique features of legumes be a reason for their success? This section examines the manifestations and possible benefits of a nitrogen-rich 'lifestyle' in legumes. 3. If nitrogen fixation was a reason for such a success, why have some species lost the symbiosis? Formation of symbioses has trade-offs, and while these are less well known for non-legumes, there are known energetic and ecological reasons for loss of symbiotic potential in legumes. 4. What can we learn from the unique traits of legumes for future crop improvements? While exploiting some of the physiological properties of legumes could be used to improve legume breeding, our increasing molecular understanding of the essential regulators of root nodule symbioses raise hope of creating new nitrogen fixing symbioses in other crop species.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| |
Collapse
|
9
|
Burghardt LT, Epstein B, Hoge M, Trujillo DI, Tiffin P. Host-Associated Rhizobial Fitness: Dependence on Nitrogen, Density, Community Complexity, and Legume Genotype. Appl Environ Microbiol 2022; 88:e0052622. [PMID: 35852362 PMCID: PMC9361818 DOI: 10.1128/aem.00526-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
The environmental context of the nitrogen-fixing mutualism between leguminous plants and rhizobial bacteria varies over space and time. Variation in resource availability, population density, and composition likely affect the ecology and evolution of rhizobia and their symbiotic interactions with hosts. We examined how host genotype, nitrogen addition, rhizobial density, and community complexity affected selection on 68 rhizobial strains in the Sinorhizobium meliloti-Medicago truncatula mutualism. As expected, host genotype had a substantial effect on the size, number, and strain composition of root nodules (the symbiotic organ). The understudied environmental variable of rhizobial density had a stronger effect on nodule strain frequency than the addition of low nitrogen levels. Higher inoculum density resulted in a nodule community that was less diverse and more beneficial but only in the context of the more selective host genotype. Higher density resulted in more diverse and less beneficial nodule communities with the less selective host. Density effects on strain composition deserve additional scrutiny as they can create feedback between ecological and evolutionary processes. Finally, we found that relative strain rankings were stable across increasing community complexity (2, 3, 8, or 68 strains). This unexpected result suggests that higher-order interactions between strains are rare in the context of nodule formation and development. Our work highlights the importance of examining mechanisms of density-dependent strain fitness and developing theoretical predictions that incorporate density dependence. Furthermore, our results have translational relevance for overcoming establishment barriers in bioinoculants and motivating breeding programs that maintain beneficial plant-microbe interactions across diverse agroecological contexts. IMPORTANCE Legume crops establish beneficial associations with rhizobial bacteria that perform biological nitrogen fixation, providing nitrogen to plants without the economic and greenhouse gas emission costs of chemical nitrogen inputs. Here, we examine the influence of three environmental factors that vary in agricultural fields on strain relative fitness in nodules. In addition to manipulating nitrogen, we also use two biotic variables that have rarely been examined: the rhizobial community's density and complexity. Taken together, our results suggest that (i) breeding legume varieties that select beneficial strains despite environmental variation is possible, (ii) changes in rhizobial population densities that occur routinely in agricultural fields could drive evolutionary changes in rhizobial populations, and (iii) the lack of higher-order interactions between strains will allow the high-throughput assessments of rhizobia winners and losers during plant interactions.
Collapse
Affiliation(s)
- Liana T. Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Plant Science Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Michelle Hoge
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Diana I. Trujillo
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
10
|
Zhang W, Luo X, Mei YZ, Yang Q, Zhang AY, Chen M, Mei Y, Ma CY, Du YC, Li M, Zhu Q, Sun K, Xu FJ, Dai CC. Priming of rhizobial nodulation signaling in the mycosphere accelerates nodulation of legume hosts. THE NEW PHYTOLOGIST 2022; 235:1212-1230. [PMID: 35488499 DOI: 10.1111/nph.18192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The simultaneous symbiosis of leguminous plants with two root mutualists, endophytic fungi and rhizobia is common in nature, yet how two mutualists interact and co-exist before infecting plants and the concomitant effects on nodulation are less understood. Using a combination of metabolic analysis, fungal deletion mutants and comparative transcriptomics, we demonstrated that Bradyrhizobium and a facultatively biotrophic fungus, Phomopsis liquidambaris, interacted to stimulate fungal flavonoid production, and thereby primed Bradyrhizobial nodulation signaling, enhancing Bradyrhizobial responses to root exudates and leading to early nodulation of peanut (Arachis hypogaea), and such effects were compromised when disturbing fungal flavonoid biosynthesis. Stress sensitivity assays and reactive oxygen species (ROS) determination revealed that flavonoid production acted as a strategy to alleviate hyphal oxidative stress during P. liquidambaris-Bradyrhizobial interactions. By investigating the interactions between P. liquidambaris and a collection of 38 rhizobacteria, from distinct bacterial genera, we additionally showed that the flavonoid-ROS module contributed to the maintenance of fungal and bacterial co-existence, and fungal niche colonization under soil conditions. Our results demonstrate for the first time that rhizobial nodulation signaling can be primed by fungi before symbiosis with host plants and highlight the importance of flavonoid in tripartite interactions between legumes, beneficial fungi and rhizobia.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Xue Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yan-Zhen Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Qian Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ai-Yue Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Man Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Yan Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Chen-Yu Ma
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ying-Chun Du
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Qiang Zhu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Fang-Ji Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences (SAAS), Jinan, 250100, Shandong, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
11
|
Dabré ÉE, Hijri M, Favret C. Influence on Soybean Aphid by the Tripartite Interaction between Soybean, a Rhizobium Bacterium, and an Arbuscular Mycorrhizal Fungus. Microorganisms 2022; 10:microorganisms10061196. [PMID: 35744714 PMCID: PMC9228533 DOI: 10.3390/microorganisms10061196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
The inoculation of arbuscular mycorrhizal (AM) fungi and rhizobia in legumes has been proven to increase plant growth and yield. To date, studies of the effects of these interactions on phytophagous insects have shown them to be context-dependent depending on the inoculant strain, the plant, and the insect species. Here, we document how a symbiosis involving an AM fungus, Rhizophagus irregularis; a rhizobium, Bradyrhizobium japonicum; and soybean, Glycine max, influences the soybean aphid, Aphis glycines. Soybean co-inoculated with the AM fungus–rhizobium pair increased the plant’s biomass, nodulation, mycorrhizal colonization, nitrogen, and carbon concentrations, but decreased phosphorus concentration. Similar effects were observed with rhizobium alone, with the exception that root biomass was unaffected. With AM fungus alone, we only observed an increase in mycorrhizal colonization and phosphorus concentration. The aphids experienced an increased reproductive rate with the double inoculation, followed by rhizobium alone, whereas no effect was observed with the AM fungus. The size of individual aphids was not affected. Furthermore, we found positive correlation between nitrogen concentration and aphid population density. Our results confirm that co-inoculation of two symbionts can enhance both plant and phytophagous insect performance beyond what either symbiont can contribute alone.
Collapse
Affiliation(s)
- Élisée Emmanuel Dabré
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (M.H.); (C.F.)
- Correspondence: ; Tel.: +1-1514-649-7152 or +226-71075150
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (M.H.); (C.F.)
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Colin Favret
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (M.H.); (C.F.)
| |
Collapse
|
12
|
Dabré ÉE, Brodeur J, Hijri M, Favret C. The Effects of an Arbuscular Mycorrhizal Fungus and Rhizobium Symbioses on Soybean Aphid Mostly Fail to Propagate to the Third Trophic Level. Microorganisms 2022; 10:microorganisms10061158. [PMID: 35744676 PMCID: PMC9230877 DOI: 10.3390/microorganisms10061158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
The cascading effects of microbe–plant symbioses on the second trophic level, such as phytophagous insects, have been most studied. However, few studies have examined the higher third trophic level, i.e., their natural enemies. We investigated the effects of the symbiotic associations between an arbuscular mycorrhizal (AM) fungus, Rhizophagus irregularis (Glomerales: Glomeraceae), a nitrogen-fixing bacterium, Bradyrhizobium japonicum (Rhizobiales: Bradyrhizobiaceae), and soybean, Glycine max (L.) Merr. (Fabaceae) on two natural enemies of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), the ladybird beetle Coleomegilla maculata (De Geer) (Coleoptera: Coccinellidae), and the parasitoid Aphelinus certus Yasnosh (Hymenoptera: Aphelinidae). We measured the growth and survival in the predator and parasitoid reared on aphids feeding on soybean inoculated seedlings. The rhizobium symbiosis alone was affected with a decreased rate of parasitoid emergence, presumably due to decreased host quality. However, number of mummies, sex-ratio, development time, and parasitoid size were all unaffected by inoculation. AM fungus alone or co-inoculated with the rhizobium was unaffected with any of the parameters of the parasitoid. For the predator, none of the measured parameters was affected with any inoculant. Here, it appears that whatever benefits the microbe–plant symbioses confer on the second trophic level are little transferred up to the third.
Collapse
Affiliation(s)
- Élisée Emmanuel Dabré
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.B.); (M.H.); (C.F.)
- Correspondence: ; Tel.: +1-514-649-7152 or +226-71075150
| | - Jacques Brodeur
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.B.); (M.H.); (C.F.)
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.B.); (M.H.); (C.F.)
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Colin Favret
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada; (J.B.); (M.H.); (C.F.)
| |
Collapse
|
13
|
Zhou J, Wilson GWT, Cobb AB, Zhang Y, Liu L, Zhang X, Sun F. Mycorrhizal and rhizobial interactions influence model grassland plant community structure and productivity. MYCORRHIZA 2022; 32:15-32. [PMID: 35037106 DOI: 10.1007/s00572-021-01061-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi and rhizobium are likely important drivers of plant coexistence and grassland productivity due to complementary roles in supplying limiting nutrients. However, the interactive effects of mycorrhizal and rhizobial associations on plant community productivity and competitive dynamics remain unclear. To address this, we conducted a greenhouse experiment to determine the influences of these key microbial functional groups on communities comprising three plant species by comparing plant communities grown with or without each symbiont. We also utilized N-fertilization and clipping treatments to explore potential shifts in mycorrhizal and rhizobial benefits across abiotic and biotic conditions. Our research suggests AM fungi and rhizobium co-inoculation was strongly facilitative for plant community productivity and legume (Medicago sativa) growth and nodulation. Plant competitiveness shifted in the presence of AM fungi and rhizobium, favoring M. sativa over a neighboring C4 grass (Andropogon gerardii) and C3 forb (Ratibida pinnata). This may be due to rhizobial symbiosis as well as the relatively greater mycorrhizal growth response of M. sativa, compared to the other model plants. Clipping and N-fertilization altered relative costs and benefits of both symbioses, presumably by altering host-plant nitrogen and carbon dynamics, leading to a relative decrease in mycorrhizal responsiveness and proportional biomass of M. sativa relative to the total biomass of the entire plant community, with a concomitant relative increase in A. gerardii and R. pinnata proportional biomass. Our results demonstrate a strong influence of both microbial symbioses on host-plant competitiveness and community dynamics across clipping and N-fertilization treatments, suggesting the symbiotic rhizosphere community is critical for legume establishment in grasslands.
Collapse
Affiliation(s)
- Jiqiong Zhou
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China.
| | - Gail W T Wilson
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 008C AGH74078, USA
| | - Adam B Cobb
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, 008C AGH74078, USA
| | - Yingjun Zhang
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Feida Sun
- Department of Grassland Science, College of Grassland Science & Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Pandit A, Kochar M, Srivastava S, Johny L, Adholeya A. Diversity and Functionalities of Unknown Mycorrhizal Fungal Microbiota. Microbiol Res 2021; 256:126940. [PMID: 34923238 DOI: 10.1016/j.micres.2021.126940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 01/10/2023]
Abstract
Beneficial ecosystem services provided by arbuscular mycorrhizal fungi (AMF) are the outcome of their synergistic actions with diverse bacterial communities (AMF-associated bacteria; AAB) living in strict association with AMF hyphae and spores. Herein, bacterial diversity associated with 6 AMF species from 33 different co-cultures belonging to order Glomerales and Diversisporales were identified, using a combination of culture-dependent functional analyses and amplicon sequencing. Overall, 231 bacterial strains were isolated from the AMF spores and hyphae which covered 30 bacterial genera and 52 species. Hierarchical clustering based on plant growth promoting traits identified 9 clades comprising diverse bacterial genera with clades 7, 8 and 9 representing the most functionally rich AAB. High-throughput amplicon sequencing across a small subset of 8 AMF co-cultures spread across 3 AMF genera identified Operational Taxonomic Units belonging to 118 bacterial genera. The study revealed a greater diversity of AAB from spores of in vitro transformed AMF root co-cultures rather than in situ, pot AMF cultures. Functionally active, culturable AABs with multiple plant growth promoting traits such as phosphate solubilisation, nitrogen fixation, biofilm formation, enzyme and plant growth regulator production along with biocontrol activity were identified. These properties could be utilized individually and/or as consortia with AMF, as biological growth enhancers.
Collapse
Affiliation(s)
- Aditi Pandit
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| | - Mandira Kochar
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India.
| | - Shivani Srivastava
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| | - Leena Johny
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| | - Alok Adholeya
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, 122003, Haryana, India
| |
Collapse
|
15
|
Qin W, Yan H, Zou B, Guo R, Ci D, Tang Z, Zou X, Zhang X, Yu X, Wang Y, Si T. Arbuscular mycorrhizal fungi alleviate salinity stress in peanut: Evidence from pot‐grown and field experiments. Food Energy Secur 2021. [DOI: 10.1002/fes3.314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Wenjie Qin
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Hengyu Yan
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Bingyin Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Runze Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Dunwei Ci
- Shandong Peanut Research Institute Qingdao China
| | - Zhaohui Tang
- Institute of Crop Germplasm Resources Shandong Academy of Agricultural Sciences (SAAS) Jinan China
| | - Xiaoxia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Xiaojun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Xiaona Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Yuefu Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology College of Agronomy Qingdao Agricultural University Qingdao China
| |
Collapse
|
16
|
From the ground up: Building predictions for how climate change will affect belowground mutualisms, floral traits, and bee behavior. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Afkhami ME, Friesen ML, Stinchcombe JR. Multiple Mutualism Effects generate synergistic selection and strengthen fitness alignment in the interaction between legumes, rhizobia and mycorrhizal fungi. Ecol Lett 2021; 24:1824-1834. [PMID: 34110064 DOI: 10.1111/ele.13814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/02/2021] [Indexed: 01/05/2023]
Abstract
Nearly all organisms participate in multiple mutualisms, and complementarity within these complex interactions can result in synergistic fitness effects. However, it remains largely untested how multiple mutualisms impact eco-evolutionary dynamics in interacting species. We tested how multiple microbial mutualists-N-fixing bacteria and mycorrrhizal fungi-affected selection and heritability of traits in their shared host plant (Medicago truncatula), as well as fitness alignment between partners. Our results demonstrate for the first time that multiple mutualisms synergistically affect the selection and heritability of host traits and enhance fitness alignment between mutualists. Specifically, we found interaction with multiple microbial symbionts doubled the strength of natural selection on a plant architectural trait, resulted in 2- to 3-fold higher heritability of plant reproductive success, and more than doubled fitness alignment between N-fixing bacteria and plants. These findings show synergism generated by multiple mutualisms extends to key components of microevolutionary change, emphasising the importance of multiple mutualism effects on evolutionary trajectories.
Collapse
Affiliation(s)
| | - Maren L Friesen
- Department of Plant Pathology, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Tsiknia M, Tsikou D, Papadopoulou KK, Ehaliotis C. Multi-species relationships in legume roots: From pairwise legume-symbiont interactions to the plant - microbiome - soil continuum. FEMS Microbiol Ecol 2021; 97:5957530. [PMID: 33155054 DOI: 10.1093/femsec/fiaa222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/03/2020] [Indexed: 01/02/2023] Open
Abstract
Mutualistic relationships of legume plants with, either bacteria (like rhizobia) or fungi (like arbuscular mycorrhizal fungi), have been investigated intensively, usually as bi-partite interactions. However, diverse symbiotic interactions take place simultaneously or sequentially under field conditions. Their collective, but not additive, contribution to plant growth and performance remains hard to predict, and appears to be furthermore affected by crop species and genotype, non-symbiotic microbial interactions and environmental variables. The challenge is: (i) to unravel the complex overlapping mechanisms that operate between the microbial symbionts as well as between them, their hosts and the rhizosphere (ii) to understand the dynamics of the respective mechanisms in evolutionary and ecological terms. The target for agriculture, food security and the environment, is to use this insight as a solid basis for developing new integrated technologies, practices and strategies for the efficient use of beneficial microbes in legumes and other plants. We review recent advances in our understanding of the symbiotic interactions in legumes roots brought about with the aid of molecular and bioinformatics tools. We go through single symbiont-host interactions, proceed to tripartite symbiont-host interactions, appraise interactions of symbiotic and associative microbiomes with plants in the root-rhizoplane-soil continuum of habitats and end up by examining attempts to validate community ecology principles in the legume-microbe-soil biosystem.
Collapse
Affiliation(s)
- Myrto Tsiknia
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| | - Daniela Tsikou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Kalliope K Papadopoulou
- Laboratory of Plant and Environmental Biotechnology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Constantinos Ehaliotis
- Soils and Soil Chemistry Lab, Department of Natural Resources and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75 st., Athens 11855, Greece
| |
Collapse
|
19
|
Franklin JB, Hockey K, Maherali H. Population-level variation in host plant response to multiple microbial mutualists. AMERICAN JOURNAL OF BOTANY 2020; 107:1389-1400. [PMID: 33029783 DOI: 10.1002/ajb2.1543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Multipartite mutualisms are widespread in nature, but population-level variation in these interactions is rarely quantified. In the model multipartite mutualism between legumes, arbuscular mycorrhizal (AM) fungi and rhizobia bacteria, host responses to microbial partners are expected to be synergistic because the nutrients provided by each microbe colimit plant growth, but tests of this prediction have not been done in multiple host populations. METHODS To test whether plant response to associations with AM fungi and rhizobia varies among host populations and whether synergistic responses to microbial mutualists are common, we grew 34 Medicago truncatula populations in a factorial experiment that manipulated the presence or absence of each mutualist. RESULTS Plant growth increased in response to each mutualist, but there were no synergistic effects. Instead, plant response to inoculation with AM fungi was an order of magnitude higher than with rhizobia. Plant response to AM fungi varied among populations, whereas responses to rhizobia were relatively uniform. There was a positive correlation between plant host response to each mutualist but no correlation between AM fungal colonization and rhizobia nodulation of plant roots. CONCLUSIONS The greater population divergence in host response to AM fungi relative to rhizobia, weak correlation in host response to each microbial mutualist, and the absence of a correlation between measures of AM fungal and rhizobia performance suggests that each plant-microbe mutualism evolved independently among M. truncatula populations.
Collapse
Affiliation(s)
- James B Franklin
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Kendra Hockey
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Hafiz Maherali
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
20
|
Burghardt LT. Evolving together, evolving apart: measuring the fitness of rhizobial bacteria in and out of symbiosis with leguminous plants. THE NEW PHYTOLOGIST 2020; 228:28-34. [PMID: 31276218 DOI: 10.1111/nph.16045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 05/11/2023]
Abstract
Most plant-microbe interactions are facultative, with microbes experiencing temporally and spatially variable selection. How this variation affects microbial evolution is poorly understood. Given its tractability and ecological and agricultural importance, the legume-rhizobia nitrogen-fixing symbiosis is a powerful model for identifying traits and genes underlying bacterial fitness. New technologies allow high-throughput measurement of the relative fitness of bacterial mutants, strains and species in mixed inocula in the host, rhizosphere and soil environments. I consider how host genetic variation (G × G), other environmental factors (G × E), and host life-cycle variation may contribute to the maintenance of genetic variation and adaptive trajectories of rhizobia - and, potentially, other facultative symbionts. Lastly, I place these findings in the context of developing beneficial inoculants in a changing climate.
Collapse
Affiliation(s)
- Liana T Burghardt
- Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St Paul, MN, 55108, USA
| |
Collapse
|
21
|
Batstone RT, Peters MAE, Simonsen AK, Stinchcombe JR, Frederickson ME. Environmental variation impacts trait expression and selection in the legume-rhizobium symbiosis. AMERICAN JOURNAL OF BOTANY 2020; 107:195-208. [PMID: 32064599 DOI: 10.1002/ajb2.1432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/04/2019] [Indexed: 05/22/2023]
Abstract
PREMISE The ecological outcomes of mutualism are well known to shift across abiotic or biotic environments, but few studies have addressed how different environments impact evolutionary responses, including the intensity of selection on and the expression of genetic variance in key mutualism-related traits. METHODS We planted 30 maternal lines of the legume Medicago lupulina in four field common gardens and compared our measures of selection on and genetic variance in nodulation, a key trait reflecting legume investment in the symbiosis, with those from a previous greenhouse experiment using the same 30 M. lupulina lines. RESULTS We found that both the mean and genetic variance for nodulation were much greater in the greenhouse than in the field and that the form of selection on nodulation significantly differed across environments. We also found significant genotype-by-environment (G × E) effects for fitness-related traits that were generated by differences in the rank order of plant lines among environments. CONCLUSIONS Overall, our results suggest that the expression of genotypic variation and selection on nodulation differ across environments. In the field, significant rank-order changes for plant fitness potentially help maintain genetic variation in natural populations, even in the face of directional or stabilizing selection.
Collapse
Affiliation(s)
- Rebecca T Batstone
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Carl Woese Institute for Genomic Biology, University of Illinois at Champaign-Urbana, Urbana, IL, 61801, USA
| | - Madeline A E Peters
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Anna K Simonsen
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Koffler Scientific Reserve, University of Toronto, King, ON, L7B 1K5, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| |
Collapse
|
22
|
Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME JOURNAL 2020; 14:1015-1029. [PMID: 31974462 DOI: 10.1038/s41396-020-0587-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022]
Abstract
The access of rhizobia to legume host is a prerequisite for nodulation. Rhizobia are poorly motile in soil, while filamentous fungi are known to grow extensively across soil pores. Since root exudates-driven bacterial chemotaxis cannot explain rhizobial long-distance dispersal, mycelia could constitute ideal dispersal networks to help rhizobial enrichment in the legume rhizosphere from bulk soil. Thus, we hypothesized that mycelia networks act as vectors that enable contact between rhizobia and legume and influence subsequent nodulation. By developing a soil microcosm system, we found that a facultatively biotrophic fungus, Phomopsis liquidambaris, helps rhizobial migration from bulk soil to the peanut (Arachis hypogaea) rhizosphere and, hence, triggers peanut-rhizobium nodulation but not seen in the absence of mycelia. Assays of dispersal modes suggested that cell proliferation and motility mediated rhizobial dispersal along mycelia, and fungal exudates might contribute to this process. Furthermore, transcriptomic analysis indicated that genes associated with the cell division, chemosensory system, flagellum biosynthesis, and motility were regulated by Ph. liquidambaris, thus accounting for the detected rhizobial dispersal along hyphae. Our results indicate that rhizobia use mycelia as dispersal networks that migrate to legume rhizosphere and trigger nodulation. This work highlights the importance of mycelial network-based bacterial dispersal in legume-rhizobium symbiosis.
Collapse
|
23
|
Arbuscular Mycorrhizal Fungus Improves Rhizobium–Glycyrrhiza Seedling Symbiosis under Drought Stress. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9100572] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Rhizobia and arbuscular mycorrhizal (AM) fungi can potentially alleviate the abiotic stress on the legume Glycyrrhiza (licorice), while the potential benefits these symbiotic microbes offer to their host plant are strongly influenced by environmental factors. A greenhouse pot experiment was conducted to investigate the effects of single and combined inoculation with a rhizobium Mesorhizobium tianshanense Chen and an AM fungus Rhizophagus irregularis Walker & Schuessler on Glycyrrhiza uralensis Fisch. seedling performance under different water regimes. Drought stress inhibited rhizobium nodulation but increased mycorrhizal colonization. Furthermore, co-inoculation of rhizobium and AM fungus favored nodulation under both well-watered and drought stress conditions. Glycyrrhiza seedling growth showed a high mycorrhizal dependency. The seedlings showed a negative growth dependency to rhizobium under well-watered conditions but showed a positive response under drought stress. R. irregularis-inoculated plants showed a much higher stress tolerance index (STI) value than M. tianshanense-inoculated plants. STI value was more pronounced when plants were co-inoculated with R. irregularis and M. tianshanense compared with single-inoculated plants. Plant nitrogen concentration and contents were significantly influenced by inoculation treatments and water regimes. R. irregularis inoculation significantly increased plant shoot and root phosphorus contents. AM fungus inoculation could improve Glycyrrhiza plant–rhizobium symbiosis under drought stress, thereby suggesting that tripartite symbiotic relationships were more effective for promoting plant growth and enhancing drought tolerance.
Collapse
|
24
|
Harnessing Soil Microbes to Improve Plant Phosphate Efficiency in Cropping Systems. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9030127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phosphorus is an essential macronutrient required for plant growth and development. It is central to many biological processes, including nucleic acid synthesis, respiration, and enzymatic activity. However, the strong adsorption of phosphorus by minerals in the soil decreases its availability to plants, thus reducing the productivity of agricultural and forestry ecosystems. This has resulted in a complete dependence on non-renewable chemical fertilizers that are environmentally damaging. Alternative strategies must be identified and implemented to help crops acquire phosphorus more sustainably. In this review, we highlight recent advances in our understanding and utilization of soil microbes to both solubilize inorganic phosphate from insoluble forms and allocate it directly to crop plants. Specifically, we focus on arbuscular mycorrhizal fungi, ectomycorrhizal fungi, and phosphate-solubilizing bacteria. Each of these play a major role in natural and agroecosystems, and their use as bioinoculants is an increasing trend in agricultural practices.
Collapse
|
25
|
Kafle A, Garcia K, Wang X, Pfeffer PE, Strahan GD, Bücking H. Nutrient demand and fungal access to resources control the carbon allocation to the symbiotic partners in tripartite interactions of Medicago truncatula. PLANT, CELL & ENVIRONMENT 2019; 42:270-284. [PMID: 29859016 DOI: 10.1111/pce.13359] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 05/04/2023]
Abstract
Legumes form tripartite interactions with arbuscular mycorrhizal fungi and rhizobia, and both root symbionts exchange nutrients against carbon from their host. The carbon costs of these interactions are substantial, but our current understanding of how the host controls its carbon allocation to individual root symbionts is limited. We examined nutrient uptake and carbon allocation in tripartite interactions of Medicago truncatula under different nutrient supply conditions, and when the fungal partner had access to nitrogen, and followed the gene expression of several plant transporters of the Sucrose Uptake Transporter (SUT) and Sugars Will Eventually be Exported Transporter (SWEET) family. Tripartite interactions led to synergistic growth responses and stimulated the phosphate and nitrogen uptake of the plant. Plant nutrient demand but also fungal access to nutrients played an important role for the carbon transport to different root symbionts, and the plant allocated more carbon to rhizobia under nitrogen demand, but more carbon to the fungal partner when nitrogen was available. These changes in carbon allocation were consistent with changes in the SUT and SWEET expression. Our study provides important insights into how the host plant controls its carbon allocation under different nutrient supply conditions and changes its carbon allocation to different root symbionts to maximize its symbiotic benefits.
Collapse
Affiliation(s)
- Arjun Kafle
- South Dakota State University, Biology and Microbiology Department, Brookings, South Dakota
| | - Kevin Garcia
- South Dakota State University, Biology and Microbiology Department, Brookings, South Dakota
| | - Xiurong Wang
- South Dakota State University, Biology and Microbiology Department, Brookings, South Dakota
- South China Agricultural University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, Guangzhou, China
| | - Philip E Pfeffer
- Eastern Regional Research Center, USDA, Agricultural Research Service, Wyndmoor, Pennslyvania
| | - Gary D Strahan
- Eastern Regional Research Center, USDA, Agricultural Research Service, Wyndmoor, Pennslyvania
| | - Heike Bücking
- South Dakota State University, Biology and Microbiology Department, Brookings, South Dakota
| |
Collapse
|
26
|
Takács T, Cseresnyés I, Kovács R, Parádi I, Kelemen B, Szili-Kovács T, Füzy A. Symbiotic Effectivity of Dual and Tripartite Associations on Soybean ( Glycine max L. Merr.) Cultivars Inoculated With Bradyrhizobium japonicum and AM Fungi. FRONTIERS IN PLANT SCIENCE 2018; 9:1631. [PMID: 30483288 PMCID: PMC6243127 DOI: 10.3389/fpls.2018.01631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/19/2018] [Indexed: 05/21/2023]
Abstract
Soybean (Glycine max L. Merr.) is regarded worldwide as indisputably one of the most important crops for human food and animal feed. The presence of symbiotic bacteria and fungi is essential for soybean breeding, especially in low-input agricultural systems. Research on the cooperation between different microbial symbionts is a key to understanding how the health and productivity of the plant is supported. The symbiotic effectivity of dual and tripartite symbiotic agents was investigated in two pot experiments on different soybean cultivars with special regard to compatibility. In the Selection experiment, two out of sixteen soybean cultivars (Aliz, Emese) were chosen on the basis of their drought tolerance and used in all the other investigations. In the Compatibility experiment, the compatible coupling of symbiotic partners was selected based on the efficiency of single and co-inoculation with two Bradyrhizobium japonicum strains and two commercial arbuscular mycorrhizal fungal (AMF) products. Significant differences were found in the infectivity and effectivity of the microsymbionts. The rhizobial and AMF inoculation generally improved plant production, photosynthetic efficiency and root activity, but this effect depended on the type of symbiotic assotiation. Despite the low infectivity of AMF, inocula containing fungi were more beneficial than those containing only rhizobia. In the Drought Stress (DS) experiment, co-inoculated and control plants were grown in chernozem soil originating from organic farms. Emese was more resistant to drought stress than Aliz and produced a bigger root system. Under DS, the growth parameters of both microbially inoculated cultivars were better than that of control, proving that even drought tolerant genotypes can strengthen their endurance due to inoculation with AMF and nitrogen fixing bacteria. Root electrical capacitance (CR) showed a highly significant linear correlation with root and shoot dry mass and leaf area. The same root biomass was associated with higher CR in inoculated hosts. As CR method detects the absorptive surface increasing due to inoculation, it may be used to check the efficiency of the microbial treatment.
Collapse
Affiliation(s)
- Tünde Takács
- Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Imre Cseresnyés
- Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ramóna Kovács
- Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Parádi
- Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Bettina Kelemen
- Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tibor Szili-Kovács
- Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Füzy
- Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
27
|
Birnbaum C, Morald TK, Tibbett M, Bennett RG, Standish RJ. Effect of plant root symbionts on performance of native woody species in competition with an invasive grass in multispecies microcosms. Ecol Evol 2018; 8:8652-8664. [PMID: 30271534 PMCID: PMC6157687 DOI: 10.1002/ece3.4397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/30/2018] [Accepted: 06/17/2018] [Indexed: 11/08/2022] Open
Abstract
The majority of terrestrial plants form mutualistic associations with arbuscular mycorrhizal fungi (AMF) and rhizobia (i.e., nitrogen-fixing bacteria). Understanding these associations has important implications for ecological theory and for restoration practice. Here, we tested whether the presence of AMF and rhizobia influences the performance of native woody plants invaded by a non-native grass in experimental microcosms. We planted eight plant species (i.e., Acacia acuminata, A. microbotrya, Eucalyptus loxophleba subsp. loxophleba, E. astringens, Calothamnus quadrifidus, Callistemon phoeniceus, Hakea lissocarpha and H. prostrata) in microcosms of field-conditioned soil with and without addition of AMF and rhizobia in a fully factorial experimental design. After seedling establishment, we seeded half the microcosms with an invasive grass Bromus diandrus. We measured shoot and root biomass of native plants and Bromus, and on roots, the percentage colonization by AMF, number of rhizobia-forming nodules and number of proteaceous root clusters. We found no effect of plant root symbionts or Bromus addition on performance of myrtaceous, and as predicted, proteaceous species as they rely little or not at all on AMF and rhizobia. Soil treatments with AMF and rhizobia had a strong positive effect (i.e., larger biomass) on native legumes (A. microbotrya and A. acuminata). However, the beneficial effect of root symbionts on legumes became negative (i.e., lower biomass and less nodules) if Bromus was present, especially for one legume, i.e., A. acuminata, suggesting a disruptive effect of the invader on the mutualism. We also found a stimulating effect of Bromus on root nodule production in A. microbotrya and AMF colonization in A. acuminata which could be indicative of legumes' increased resource acquisition requirement, i.e., for nitrogen and phosphorus, respectively, in response to the Bromus addition. We have demonstrated the importance of measuring belowground effects because the aboveground effects gave limited indication of the effects occurring belowground.
Collapse
Affiliation(s)
- Christina Birnbaum
- Environmental and Conservation SciencesSchool of Veterinary and Life SciencesMurdoch UniversityMurdochWAAustralia
| | - Tim K. Morald
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Mark Tibbett
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
- Centre for Agri‐Environmental Research & Soil Research CentreSchool of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| | - Richard G. Bennett
- Centre for Plant Genetics and BreedingThe University of Western AustraliaCrawleyWAAustralia
| | - Rachel J. Standish
- Environmental and Conservation SciencesSchool of Veterinary and Life SciencesMurdoch UniversityMurdochWAAustralia
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
28
|
Igiehon NO, Babalola OO. Below-ground-above-ground Plant-microbial Interactions: Focusing on Soybean, Rhizobacteria and Mycorrhizal Fungi. Open Microbiol J 2018; 12:261-279. [PMID: 30197700 PMCID: PMC6110075 DOI: 10.2174/1874285801812010261] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Organisms seldom exist in isolation and are usually involved in interactions with several hosts and these interactions in conjunction with the physicochemical parameters of the soil affect plant growth and development. Researches into below and aboveground microbial community are unveiling a myriad of intriguing interactions within the rhizosphere, and many of the interactions are facilitated by exudates that are secreted by plants roots. These interactions can be harnessed for beneficial use in agriculture to enhance crop productivity especially in semi-arid and arid environments. THE RHIZOSPHERE The rhizosphere is the region of soil close to plants roots that contain large number of diverse organisms. Examples of microbial candidates that are found in the rhizosphere include the Arbuscular Mycorrhizal Fungi (AMF) and rhizobacteria. These rhizosphere microorganisms use plant root secretions such as mucilage and flavonoids which are able to influence their diversity and function and also enhance their potential to colonize plants root. NATURAL INTERACTIONS BETWEEN MICROORGANISMS AND PLANT In the natural environments, plants live in interactions with different microorganisms, which thrive belowground in the rhizosphere and aboveground in the phyllosphere. Some of the plant-microbial interactions (which can be in the form of antagonism, amensalism, parasitism and symbiosis) protect the host plants against detrimental microbial and non-microbial invaders and provide nutrients for plants while others negatively affect plants. These interactions can influence below-ground-above-ground plants' biomass development thereby playing significant role in sustaining plants. Therefore, understanding microbial interactions within the rhizosphere and phyllosphere is urgent towards farming practices that are less dependent on conventional chemical fertilizers, which have known negative impacts on the environments. BELOW GROUND RHIZOBACTERIA INTERACTIONS ALLEVIATE DROUGHT STRESS Drought stress is one of the major factors militating against agricultural productivity globally and is likely to further increase. Belowground rhizobacteria interactions could play important role in alleviating drought stress in plants. These beneficial rhizobacterial colonize the rhizosphere of plants and impart drought tolerance by up regulation or down regulation of drought responsive genes such as ascorbate peroxidase, S-adenosyl-methionine synthetase, and heat shock protein. INSIGHTS INTO BELOW AND ABOVE THE GROUND MICROBIAL INTERACTIONS VIA OMIC STUDIES Investigating complex microbial community in the environment is a big challenge. Therefore, omic studies of microorganisms that inhabit the rhizosphere are important since this is where most plant-microbial interactions occur. One of the aims of this review is not to give detailed account of all the present omic techniques, but instead to highlight the current omic techniques that can possibly lead to detection of novel genes and their respective proteins within the rhizosphere which may be of significance in enhancing crop plants (such as soybean) productivity especially in semi-arid and arid environments. FUTURE PROSPECTS AND CONCLUSIONS Plant-microbial interactions are not totally understood, and there is, therefore, the need for further studies on these interactions in order to get more insights that may be useful in sustainable agricultural development. With the emergence of omic techniques, it is now possible to effectively monitor transformations in rhizosphere microbial community together with their effects on plant development. This may pave way for scientists to discover new microbial species that will interact effectively with plants. Such microbial species can be used as biofertilizers and/or bio-pesticides to increase crop yield and enhance global food security.
Collapse
Affiliation(s)
- Nicholas O. Igiehon
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho 2735, South Africa
| | - Olubukola O. Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
29
|
Palakurty SX, Stinchcombe JR, Afkhami ME. Cooperation and coexpression: How coexpression networks shift in response to multiple mutualists. Mol Ecol 2018. [DOI: 10.1111/mec.14550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| | | |
Collapse
|
30
|
Ossler JN, Heath KD. Shared Genes but Not Shared Genetic Variation: Legume Colonization by Two Belowground Symbionts. Am Nat 2018. [DOI: 10.1086/695829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Werner GDA, Zhou Y, Pieterse CMJ, Kiers ET. Tracking plant preference for higher-quality mycorrhizal symbionts under varying CO 2 conditions over multiple generations. Ecol Evol 2018; 8:78-87. [PMID: 29321853 PMCID: PMC5756855 DOI: 10.1002/ece3.3635] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 01/14/2023] Open
Abstract
The symbiosis between plants and root-colonizing arbuscular mycorrhizal (AM) fungi is one of the most ecologically important examples of interspecific cooperation in the world. AM fungi provide benefits to plants; in return plants allocate carbon resources to fungi, preferentially allocating more resources to higher-quality fungi. However, preferential allocations from plants to symbionts may vary with environmental context, particularly when resource availability affects the relative value of symbiotic services. We ask how differences in atmospheric CO 2-levels influence root colonization dynamics between AMF species that differ in their quality as symbiotic partners. We find that with increasing CO 2-conditions and over multiple plant generations, the more beneficial fungal species is able to achieve a relatively higher abundance. This suggests that increasing atmospheric carbon supply enables plants to more effectively allocate carbon to higher-quality mutualists, and over time helps reduce lower-quality AM abundance. Our results illustrate how environmental context may affect the extent to which organisms structure interactions with their mutualistic partners and have potential implications for mutualism stability and persistence under global change.
Collapse
Affiliation(s)
- Gijsbert D. A. Werner
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of ZoologyUniversity of OxfordOxfordUK
| | - Yeling Zhou
- Plant‐Microbe InteractionsDepartment of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Corné M. J. Pieterse
- Plant‐Microbe InteractionsDepartment of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
32
|
Keller KR, Carabajal S, Navarro F, Lau JA. Effects of multiple mutualists on plants and their associated arthropod communities. Oecologia 2017; 186:185-194. [DOI: 10.1007/s00442-017-3984-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/12/2017] [Indexed: 02/02/2023]
|
33
|
Burghardt LT, Guhlin J, Chun CL, Liu J, Sadowsky MJ, Stupar RM, Young ND, Tiffin P. Transcriptomic basis of genome by genome variation in a legume‐rhizobia mutualism. Mol Ecol 2017; 26:6122-6135. [DOI: 10.1111/mec.14285] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/10/2017] [Indexed: 02/01/2023]
Affiliation(s)
- Liana T. Burghardt
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
| | - Joseph Guhlin
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
| | - Chan Lan Chun
- BioTechnology Institute University of Minnesota St. Paul MN USA
| | - Junqi Liu
- Department of Agronomy and Plant Genetics University of Minnesota St. Paul MN USA
| | | | - Robert M. Stupar
- Department of Agronomy and Plant Genetics University of Minnesota St. Paul MN USA
| | - Nevin D. Young
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
- Department of Plant Pathology University of Minnesota St. Paul MN USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology University of Minnesota St. Paul MN USA
| |
Collapse
|
34
|
Franklin OD, Morrissey MB. Inference of selection gradients using performance measures as fitness proxies. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12737] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oliver D. Franklin
- Department of Integrative Biology University of Guelph Guelph ON N1G 2W1 Canada
| | - Michael B. Morrissey
- Dyers Brae House School of Biology University of St Andrews St Andrews KY18 9TH UK
| |
Collapse
|
35
|
Sugiyama A, Saida Y, Yoshimizu M, Takanashi K, Sosso D, Frommer WB, Yazaki K. Molecular Characterization of LjSWEET3, a Sugar Transporter in Nodules of Lotus japonicus. PLANT & CELL PHYSIOLOGY 2017; 58:298-306. [PMID: 28007966 DOI: 10.1093/pcp/pcw190] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Symbiotic nitrogen fixation in legumes contributes greatly to the global nitrogen cycle on the earth. In nodules, resident rhizobia supply nitrogen nutrient fixed from atmospheric N2 to the host plant; in turn, the plant provides photosynthetic metabolites to bacteroids as a carbon source. In this process, various transporters are involved at different membrane systems; however, little is known at the molecular level about the flow of carbon from the host cells to the symbiotic bacteria. We have been studying transporters functioning in nodules of Lotus japonicus, and found that out of 13 SWEET genes in the L. japonicus genome LjSWEET3, a member of the SWEET transporter family, is highly expressed in nodules. The SWEET family was first identified in Arabidopsis, where members of the family are involved in phloem loading, nectar secretion, pollen nutrition and seed filling. The expression of LjSWEET3 strongly increased during nodule development and reached the highest level in mature nodules. Histochemical analysis using L. japonicus plants transformed with LjSWEET3 promoter:GUS (β-glucuronidase) showed strong expression in the vascular systems of nodules. Analysis of an LjSWEET3-green fluorescent protein (GFP) fusion expressed in Nicotiana banthamiana and Coptis japonica indicates that LjSWEET3 localizes to the plasma membrane. Together these data are consistent with a role for LjSWEET3 in sugar translocation towards nodules and also suggest the possible existence of multiple routes of carbon supply into nodules.
Collapse
Affiliation(s)
- Akifumi Sugiyama
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| | - Yuka Saida
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| | - Mayuko Yoshimizu
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| | - Kojiro Takanashi
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
- Institute of Mountain Science, Shinshu University, Matsumoto, Japan
| | - Davide Sosso
- Department of Plant Biology, Carnegie Institution of Science, Stanford, CA , USA
| | - Wolf B Frommer
- Department of Plant Biology, Carnegie Institution of Science, Stanford, CA , USA
| | - Kazufumi Yazaki
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| |
Collapse
|
36
|
Afkhami ME, Stinchcombe JR. Multiple mutualist effects on genomewide expression in the tripartite association between
Medicago truncatula,
nitrogen‐fixing bacteria and mycorrhizal fungi. Mol Ecol 2016; 25:4946-62. [DOI: 10.1111/mec.13809] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Michelle E. Afkhami
- Department of Biology University of Miami 1301 Memorial Dr. #215 Coral Gables FL 33146 USA
- Department of Ecology and Evolutionary Biology University of Toronto 25 Willcocks St. Toronto ON Canada M5S 3B2
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary Biology University of Toronto 25 Willcocks St. Toronto ON Canada M5S 3B2
| |
Collapse
|
37
|
Watson DM. Fleshing out facilitation - reframing interaction networks beyond top-down versus bottom-up. THE NEW PHYTOLOGIST 2016; 211:803-808. [PMID: 27322844 DOI: 10.1111/nph.14052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/15/2016] [Indexed: 06/06/2023]
Abstract
803 I. 803 II. 804 III. 804 IV. 805 V. 805 VI. 806 References 807 SUMMARY: Rather than direct plant-plant interactions, research on the community-scale influence of mistletoes reveals hitherto unappreciated roles of animals in mediating facilitation. Lacking roots and reliant upon animal vectors, mistletoes represent model systems with which to understand mechanisms underlying interaction networks. In addition to direct effects on nutrient dynamics via enriched litter-fall, mistletoes are visited by pollinators, seed dispersers and natural enemies, complementing increased heterogeneity in nutrient returns reallocated from infected hosts with increased external inputs. These amplified bottom-up effects are coupled with top-down influences of insectivores attracted to infected hosts and stands by increased availability of favoured prey. Simultaneously influencing nutrient dynamics and plant-plant interactions from below and above, visiting animals help explain variation in the context dependence of facilitation.
Collapse
Affiliation(s)
- David M Watson
- Institute for Land, Water and Society, School of Environmental Sciences, Charles Sturt University, Albury, NSW, 2640, Australia
| |
Collapse
|