1
|
McNichol BH, Russo SE. Plant Species' Capacity for Range Shifts at the Habitat and Geographic Scales: A Trade-Off-Based Framework. PLANTS (BASEL, SWITZERLAND) 2023; 12:1248. [PMID: 36986935 PMCID: PMC10056461 DOI: 10.3390/plants12061248] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Climate change is causing rapid shifts in the abiotic and biotic environmental conditions experienced by plant populations, but we lack generalizable frameworks for predicting the consequences for species. These changes may cause individuals to become poorly matched to their environments, potentially inducing shifts in the distributions of populations and altering species' habitat and geographic ranges. We present a trade-off-based framework for understanding and predicting whether plant species may undergo range shifts, based on ecological strategies defined by functional trait variation. We define a species' capacity for undergoing range shifts as the product of its colonization ability and the ability to express a phenotype well-suited to the environment across life stages (phenotype-environment matching), which are both strongly influenced by a species' ecological strategy and unavoidable trade-offs in function. While numerous strategies may be successful in an environment, severe phenotype-environment mismatches result in habitat filtering: propagules reach a site but cannot establish there. Operating within individuals and populations, these processes will affect species' habitat ranges at small scales, and aggregated across populations, will determine whether species track climatic changes and undergo geographic range shifts. This trade-off-based framework can provide a conceptual basis for species distribution models that are generalizable across plant species, aiding in the prediction of shifts in plant species' ranges in response to climate change.
Collapse
Affiliation(s)
- Bailey H. McNichol
- School of Biological Sciences, University of Nebraska–Lincoln, 1101 T Street, 402 Manter Hall, Lincoln, NE 68588-0118, USA;
| | - Sabrina E. Russo
- School of Biological Sciences, University of Nebraska–Lincoln, 1101 T Street, 402 Manter Hall, Lincoln, NE 68588-0118, USA;
- Center for Plant Science Innovation, University of Nebraska–Lincoln, 1901 Vine Street, N300 Beadle Center, Lincoln, NE 68588-0118, USA
| |
Collapse
|
2
|
The Centre–Periphery Model, a Possible Explanation for the Distribution of Some Pinus spp. in the Sierra Madre Occidental, Mexico. FORESTS 2022. [DOI: 10.3390/f13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic diversity is key to survival of species. In evolutionary ecology, the general centre–periphery theory suggests that populations of species located at the margins of their distribution areas display less genetic diversity and greater genetic differentiation than populations from central areas. The aim of this study was to evaluate the genetic diversity and differentiation in six of the main pine species of the Sierra Madre Occidental (northern Mexico). The species considered were Pinus arizonica, P. cembroides, P. durangensis, Pinus engelmannii, P. herrerae and P. leiophylla, which occur at the margins and centre of the geographic distribution. We sampled needles from 2799 individuals belonging to 80 populations of the six species. We analysed amplified fragment length polymorphisms (AFLPs) to estimate diversity and rarity indexes, applied Principal Coordinate Analysis (PCoA), and used the Kruskal–Wallis test to detect genetic differences. Finally, we calculated Spearman’s correlation for association between variables. The general centre–periphery model only explained the traits in P. herrerae. The elevation gradient was an important factor that influenced genetic diversity. However, for elevation as partitioning criterion, most populations showed a central distribution. This information may be useful for establishing seed collections of priority individuals for maintenance in germplasm banks and their subsequent sustainable use.
Collapse
|
3
|
Shay JE, Pennington LK, Mandussi Montiel-Molina JA, Toews DJ, Hendrickson BT, Sexton JP. Rules of Plant Species Ranges: Applications for Conservation Strategies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.700962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Earth is changing rapidly and so are many plant species’ ranges. Here, we synthesize eco-evolutionary patterns found in plant range studies and how knowledge of species ranges can inform our understanding of species conservation in the face of global change. We discuss whether general biogeographic “rules” are reliable and how they can be used to develop adaptive conservation strategies of native plant species across their ranges. Rules considered include (1) factors that set species range limits and promote range shifts; (2) the impact of biotic interactions on species range limits; (3) patterns of abundance and adaptive properties across species ranges; (4) patterns of gene flow and their implications for genetic rescue, and (5) the relationship between range size and conservation risk. We conclude by summarizing and evaluating potential species range rules to inform future conservation and management decisions. We also outline areas of research to better understand the adaptive capacity of plants under environmental change and the properties that govern species ranges. We advise conservationists to extend their work to specifically consider peripheral and novel populations, with a particular emphasis on small ranges. Finally, we call for a global effort to identify, synthesize, and analyze prevailing patterns or rules in ecology to help speed conservation efforts.
Collapse
|
4
|
Oldfather MF, Kling MM, Sheth SN, Emery NC, Ackerly DD. Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics. GLOBAL CHANGE BIOLOGY 2020; 26:1055-1067. [PMID: 31674701 DOI: 10.1111/gcb.14897] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/01/2019] [Indexed: 05/04/2023]
Abstract
The impacts of climate change have re-energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes. Because range-limiting processes occur in both geographic and climate space, the relationship between these two spaces plays a critical role in setting range limits. With both conceptual and empirical support, we argue that three factors-climate heterogeneity, collinearity among climate variables, and spatial scale-interact to shape the spatial structure of range edges along climate gradients, and we discuss several ways that these factors influence the stability of species range edges with a changing climate. We demonstrate that geographic and climate edges are often not concordant across species ranges. Furthermore, high climate heterogeneity and low climate collinearity across landscapes increase the spectrum of possible relationships between geographic and climatic space, suggesting that geographic range edges and climatic niche limits correspond less frequently than we may expect. More empirical explorations of how the complexity of real landscapes shapes the ecological and evolutionary processes that determine species range edges will advance the development of range limit theory and its applications to biodiversity conservation in the context of changing climate.
Collapse
Affiliation(s)
- Meagan F Oldfather
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew M Kling
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Seema N Sheth
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Nancy C Emery
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David D Ackerly
- Department of Integrative Biology, Department of Environmental Science, Policy, and Management, Jepson Herbarium, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Cross RL, Eckert CG. Integrated empirical approaches to better understand species' range limits. AMERICAN JOURNAL OF BOTANY 2020; 107:12-16. [PMID: 31828769 DOI: 10.1002/ajb2.1400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Regan L Cross
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | |
Collapse
|
6
|
Dickman EE, Pennington LK, Franks SJ, Sexton JP. Evidence for adaptive responses to historic drought across a native plant species range. Evol Appl 2019; 12:1569-1582. [PMID: 31462915 PMCID: PMC6708426 DOI: 10.1111/eva.12803] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023] Open
Abstract
As climatic conditions change, species will be forced to move or adapt to avoid extinction. Exacerbated by ongoing climate change, California recently experienced a severe and exceptional drought from 2011 to 2017. To investigate whether an adaptive response occurred during this event, we conducted a "resurrection" study of the cutleaf monkeyflower (Mimulus laciniatus), an annual plant, by comparing trait means and variances of ancestral seed collections ("pre-drought") with contemporary descendant collections ("drought"). Plants were grown under common conditions to test whether this geographically restricted species has the capacity to respond evolutionarily to climate stress across its range. We examined if traits shifted in response to the recent, severe drought and included populations across an elevation gradient, including populations at the low- and high-elevation edges of the species range. We found that time to seedling emergence in the drought generation was significantly earlier than in the pre-drought generation, a response consistent with drought adaptation. Additionally, trait variation in days to emergence was reduced in the drought generation, which suggests selection or bottleneck events. Days to first flower increased significantly by elevation, consistent with climate adaptation across the species range. Drought generation plants were larger and had greater reproduction, which was likely a carryover effect of earlier germination. These results demonstrate that rapid shifts in trait means and variances consistent with climate adaptation are occurring within populations, including peripheral populations at warm and cold climate limits, of a plant species with a relatively restricted range that has so far not shifted its elevation distribution during contemporary climate change. Thus, rapid evolution may mitigate, at least temporarily, range shifts under global climate change. This study highlights the need for better understanding rapid adaptation as a means for plant communities to cope with extraordinary climate events.
Collapse
Affiliation(s)
- Erin E. Dickman
- Department of Life and Environmental SciencesUniversity of CaliforniaMercedCalifornia
- Yosemite National ParkEl PortalCalifornia
| | - Lillie K. Pennington
- Department of Life and Environmental SciencesUniversity of CaliforniaMercedCalifornia
| | - Steven J. Franks
- Department of Biological SciencesFordham UniversityBronxNew York
| | - Jason P. Sexton
- Department of Life and Environmental SciencesUniversity of CaliforniaMercedCalifornia
| |
Collapse
|
7
|
Peterson ML, Doak DF, Morris WF. Incorporating local adaptation into forecasts of species' distribution and abundance under climate change. GLOBAL CHANGE BIOLOGY 2019; 25:775-793. [PMID: 30597712 DOI: 10.1111/gcb.14562] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/06/2018] [Accepted: 12/25/2018] [Indexed: 05/25/2023]
Abstract
Populations of many species are genetically adapted to local historical climate conditions. Yet most forecasts of species' distributions under climate change have ignored local adaptation (LA), which may paint a false picture of how species will respond across their geographic ranges. We review recent studies that have incorporated intraspecific variation, a potential proxy for LA, into distribution forecasts, assess their strengths and weaknesses, and make recommendations for how to improve forecasts in the face of LA. The three methods used so far (species distribution models, response functions, and mechanistic models) reflect a trade-off between data availability and the ability to rigorously demonstrate LA to climate. We identify key considerations for incorporating LA into distribution forecasts that are currently missing from many published studies, including testing the spatial scale and pattern of LA, the confounding effects of LA to nonclimatic or biotic drivers, and the need to incorporate empirically based dispersal or gene flow processes. We suggest approaches to better evaluate these aspects of LA and their effects on species-level forecasts. In particular, we highlight demographic and dynamic evolutionary models as promising approaches to better integrate LA into forecasts, and emphasize the importance of independent model validation. Finally, we urge closer examination of how LA will alter the responses of central vs. marginal populations to allow stronger generalizations about changes in distribution and abundance in the face of LA.
Collapse
Affiliation(s)
- Megan L Peterson
- Environmental Studies Program, University of Colorado Boulder, Boulder, Colorado
| | - Daniel F Doak
- Environmental Studies Program, University of Colorado Boulder, Boulder, Colorado
| | | |
Collapse
|
8
|
Abstract
The reasons why the range size of closely related species often varies significantly have intrigued scientists for many years. Among other hypotheses, species with high trait variation were suggested to occupy more diverse environments, have more continuity in their distributions, and consequently have larger range sizes. Here, using 34 tree species of lowlands tropical rainforest in southern Costa Rica, we explored whether inherent trait variability expressed at the local scale in functional traits is related to the species’ total geographical range size. We formed 17 congeneric pairs of one narrow endemic and one widespread species, sampled 335 individuals and measured eight functional traits: leaf area, leaf thickness, leaf dry matter content, specific leaf area, leaf nitrogen content, leaf phosphorus content, leaf nitrogen to phosphorus ratio, and wood specific gravity. We tested whether there are significant differences in the locally expressed variation of individual traits or in multidimensional trait variance between the species in congeneric pairs and whether species’ range size could hence be predicted from local trait variability. However, we could not find such differences between widely distributed and narrow range species. We discuss the possible reasons for these findings including the fact that higher trait variability of widespread species may result from successive local adaptations during range expansion and may hence often be an effect rather than the cause of larger ranges.
Collapse
|
9
|
Waller LP, Hahn PG, Maron JL, Lekberg Y. Trait differences in responses to arbuscular mycorrhizal fungi are stronger and more consistent than fixed differences among populations of Asclepias speciosa. AMERICAN JOURNAL OF BOTANY 2018; 105:207-214. [PMID: 29573396 DOI: 10.1002/ajb2.1038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/11/2018] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY Arbuscular mycorrhizal (AM) fungi can promote plant growth and reproduction, but other plant physiological traits or traits that provide defense against herbivores can also be affected by AM fungi. However, whether responses of different traits to AM fungi are correlated and whether these relationships vary among plants from different populations are unresolved. METHODS In a common garden experiment, we grew Asclepias speciosa plants from seed collected from populations found along an environmental gradient with and without AM fungi to assess whether the responses of six growth and defense traits to AM fungi are correlated. KEY RESULTS Although there was strong genetic differentiation in mean trait values among populations, AM fungi consistently increased expression of most growth and defense traits across all populations. Responses of biomass and root to shoot ratio to AM fungi were positively correlated, suggesting that plants that are more responsive to AM fungi allocated more biomass belowground. Responses of biomass and trichome density to AM fungi were negatively correlated, indicating a trade-off in responsiveness between a growth and defensive trait. CONCLUSIONS Our results suggest that while there is substantial population differentiation in many traits of A. speciosa, populations respond similarly to AM fungi, and both positive and negative correlations among trait responses occur.
Collapse
Affiliation(s)
- Lauren P Waller
- Lincoln University, P.O. Box 85084 Lincoln, 7647, Canterbury, New Zealand
- MPG Ranch, 1001 South Higgins Avenue #A3, Missoula, MT, 59801, USA
| | - Philip G Hahn
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - John L Maron
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Ylva Lekberg
- MPG Ranch, 1001 South Higgins Avenue #A3, Missoula, MT, 59801, USA
| |
Collapse
|
10
|
Dixon AL, Busch JW. Common garden test of range limits as predicted by a species distribution model in the annual plant Mimulus bicolor. AMERICAN JOURNAL OF BOTANY 2017; 104:817-827. [PMID: 28645920 DOI: 10.3732/ajb.1600414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/10/2017] [Indexed: 05/25/2023]
Abstract
PREMISE OF THE STUDY Direct tests of a species distribution model (SDM) were used to evaluate the hypothesis that the northern and southern edges of Mimulus bicolor's geographical range are limited by temperature and precipitation. METHODS Climatic suitability was predicted using an SDM informed only by temperature and precipitation variables. These predictions were tested by growing plants in growth chambers with temperature and watering treatments informed by weather stations characteristic of environments at the geographic center, edges, and outside the range. An Aster analysis was used to assess whether treatments significantly affected lifetime flower production and to test for local adaptation. The relationship between climatic suitability and lifetime flower number in the growth chambers was also evaluated. KEY RESULTS The temperature and watering treatments significantly affected lifetime flower number, although local adaptation was not detected. Flower production was significantly lower under the two edge treatments compared to the central treatment. While no flowers were produced under the beyond-south treatments, flower production was greatest under the beyond-north treatment. These results suggest a hard abiotic limit at the southern edge, and suitable temperature and precipitation conditions beyond the northern edge. While predicted climatic suitability was significantly lower at the range edges, there was no correlation between the climatic suitability of the weather stations' locations and flower production. CONCLUSIONS These results suggest that temperature and precipitation play a significant role in defining the distribution of M. bicolor, but also indicate that dispersal limitation or metapopulation dynamics are likely important factors restricting access to habitable sites beyond the northern range limit.
Collapse
Affiliation(s)
- Andrea L Dixon
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, Washington 99164
| | - Jeremiah W Busch
- School of Biological Sciences, Washington State University, P.O. Box 644236, Pullman, Washington 99164
| |
Collapse
|
11
|
Schierenbeck KA. Population-level genetic variation and climate change in a biodiversity hotspot. ANNALS OF BOTANY 2017; 119:215-228. [PMID: 28069633 PMCID: PMC5321061 DOI: 10.1093/aob/mcw214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/19/2016] [Accepted: 09/19/2016] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Estimated future climate scenarios can be used to predict where hotspots of endemism may occur over the next century, but life history, ecological and genetic traits will be important in informing the varying responses within myriad taxa. Essential to predicting the consequences of climate change to individual species will be an understanding of the factors that drive genetic structure within and among populations. Here, I review the factors that influence the genetic structure of plant species in California, but are applicable elsewhere; existing levels of genetic variation, life history and ecological characteristics will affect the ability of an individual taxon to persist in the presence of anthropogenic change. FACTORS INFLUENCING THE DISTRIBUTION OF GENETIC VARIATION Persistence in the face of climate change is likely determined by life history characteristics: dispersal ability, generation time, reproductive ability, degree of habitat specialization, plant-insect interactions, existing genetic diversity and availability of habitat or migration corridors. Existing levels of genetic diversity in plant populations vary based on a number of evolutionary scenarios that include endemism, expansion since the last glacial maximum, breeding system and current range sizes. REGIONAL PRIORITIES AND EXAMPLES A number of well-documented examples are provided from the California Floristic Province. Some predictions can be made for the responses of plant taxa to rapid environmental changes based on geographic position, evolutionary history, existing genetic variation, and ecological amplitude. CONCLUSIONS, SOLUTIONS AND RECOMMENDATIONS The prediction of how species will respond to climate change will require a synthesis drawing from population genetics, geography, palaeontology and ecology. The important integration of the historical factors that have shaped the distribution and existing genetic structure of California's plant taxa will enable us to predict and prioritize the conservation of species and areas most likely to be impacted by rapid climate change, human disturbance and invasive species.
Collapse
Affiliation(s)
- Kristina A Schierenbeck
- California State University, Chico Department of Biological Sciences, Chico, CA 95929-0515, USA
| |
Collapse
|
12
|
Pironon S, Papuga G, Villellas J, Angert AL, García MB, Thompson JD. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol Rev Camb Philos Soc 2016; 92:1877-1909. [DOI: 10.1111/brv.12313] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel Pironon
- Instituto Pirenaico de Ecología (IPE-CSIC); Box 1005 avenida Montañana 50059 Zaragoza, Spain
| | - Guillaume Papuga
- UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS; Box 1019 route de Mende 34090 Montpellier France
- Dipartimento di Scienze della Natura e del Territorio; Università degli Studi di Sassari; Box 21 Piazza Universitá 07100 Sassari Italy
| | - Jesús Villellas
- Department of Biology; Duke University; Box 90338 Durham NC 27708-0338 U.S.A
| | - Amy L. Angert
- Departments of Botany and Zoology; University of British Columbia; Box 4200-6270 University Boulevard, Vancouver V6T 1Z4 Canada
| | - María B. García
- Instituto Pirenaico de Ecología (IPE-CSIC); Box 1005 avenida Montañana 50059 Zaragoza, Spain
| | - John D. Thompson
- UMR 5175 Centre d'Ecologie Fonctionnelle et Evolutive, CNRS; Box 1019 route de Mende 34090 Montpellier France
| |
Collapse
|
13
|
Sexton JP, Hufford MB, C.Bateman A, Lowry DB, Meimberg H, Strauss SY, Rice KJ. Climate structures genetic variation across a species' elevation range: a test of range limits hypotheses. Mol Ecol 2016; 25:911-28. [DOI: 10.1111/mec.13528] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/30/2015] [Accepted: 12/21/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Jason P. Sexton
- School of Natural Sciences University of California 5200 North Lake Rd. Merced CA 95343 USA
| | - Matthew B. Hufford
- Department of Ecology, Evolution and Organismal Biology Iowa State University 339A Bessey Hall Ames IA 50011 USA
| | - Ashley C.Bateman
- Department of Biology Institute of Ecology and Evolution University of Oregon 77 Klamath Hall 1210 Eugene OR 97403 USA
| | - David B. Lowry
- Department of Plant Biology Michigan State University 612 Wilson Road East Lansing MI 48824 USA
| | - Harald Meimberg
- Institute of Integrative Nature Conservation Research University of Natural Resources and Life Sciences (Boku) Gregor Mendel‐Str. 33 1180 Vienna Austria
| | - Sharon Y. Strauss
- Department of Evolution and Ecology University of California One Shields Ave. Davis CA 95616 USA
| | - Kevin J. Rice
- Department of Plant Sciences University of California One Shields Ave. Davis CA 95616 USA
| |
Collapse
|
14
|
Etterson JR, Schneider HE, Gorden NLS, Weber JJ. Evolutionary insights from studies of geographic variation: Contemporary variation and looking to the future. AMERICAN JOURNAL OF BOTANY 2016; 103:5-9. [PMID: 26772310 DOI: 10.3732/ajb.1500515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
In an age of rapid global change, it is imperative that we continue to improve our understanding of factors that govern genetic differentiation in plants to inform biologically reasonable predictions for the future and enlighten conservation and restoration practices. In this special issue, we have assembled a set of original research and reviews that employ diverse approaches, both classic and contemporary, to illuminate patterns of phenotypic and genetic variation, probe the underlying evolutionary processes that have contributed to these patterns, build predictive models, and test evolutionary hypotheses. Our goal was to underscore the unique insights that can be obtained through the complementary and distinct studies of plant populations across species' geographic ranges.
Collapse
Affiliation(s)
- Julie R Etterson
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, Duluth, Minnesota 55812 USA
| | - Heather E Schneider
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, Santa Barbara, California 93106 USA
| | - Nicole L Soper Gorden
- Department of Biology, University of Minnesota Duluth, 207A Swenson Science Building, Duluth, Minnesota 55812 USA
| | - Jennifer J Weber
- Department of Biology, Fordham University, Bronx, New York 10458; current address: Southern Illinois University, Carbondale, Illinois 62901 USA
| |
Collapse
|