1
|
Ho DH, Kim H, Nam D, Seo MK, Park SW, Kim DK, Son I. Therapeutic Effect of Padina arborescens Extract on a Cell System Model for Parkinson's Disease. NEUROSCI 2024; 5:301-314. [PMID: 39483283 PMCID: PMC11469749 DOI: 10.3390/neurosci5030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 11/03/2024] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) and α-synuclein are involved in the pathogenesis of Parkinson's disease. The activity of LRRK2 in microglial cells is associated with neuroinflammation, and LRRK2 inhibitors are crucial for alleviating this neuroinflammatory response. α-synuclein contributes to oxidative stress in the dopaminergic neuron and neuroinflammation through Toll-like receptors in microglia. In this study, we investigated the effect of the marine alga Padina arborescens on neuroinflammation by examining LRRK2 activation and the aggregation of α-synuclein. P. arborescens extract inhibits LRRK2 activity in vitro and decreases lipopolysaccharide (LPS)-induced LRRK2 upregulation in BV2, a mouse microglial cell line. Treatment with P. arborescens extract decreased tumor necrosis factor-α (TNF-α) gene expression by LPS through LRRK2 inhibition in BV2. It also attenuated TNF-α gene expression, inducible nitric oxide synthase, and the release of TNF-α and cellular nitric oxide in rat primary microglia. Furthermore, P. arborescens extract prevented rotenone (RTN)-induced oxidative stress in primary rat astrocytes and inhibited α-synuclein fibrilization in an in vitro assay using recombinant α-synuclein and in the differentiated human dopaminergic neuronal cell line SH-SY5Y (dSH). The extract increased lysosomal activity in dSH cells. In addition, P. arborescens extract slightly prolonged the lifespan of Caenorhabditis elegans, which was reduced by RTN treatment.
Collapse
Affiliation(s)
- Dong Hwan Ho
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea; (H.K.); (D.N.)
| | - Hyejung Kim
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea; (H.K.); (D.N.)
| | - Daleum Nam
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea; (H.K.); (D.N.)
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan-si 47392, Republic of Korea; (M.K.S.); (S.W.P.)
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan-si 47392, Republic of Korea; (M.K.S.); (S.W.P.)
- Department of Convergence Biomedical Science, Inje University College of Medicine, Busan-si 47392, Republic of Korea
| | - Dong-Kyu Kim
- Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-Ro, Yeongdeungpo-Gu, Seoul 07345, Republic of Korea;
| | - Ilhong Son
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea; (H.K.); (D.N.)
- Sanbon Medical Center, Department of Neurology, College of Medicine, Wonkwang University, 321, Sanbon-ro, Gunpo-si 15865, Republic of Korea
| |
Collapse
|
2
|
Zhang H, Shen Y, Kim IM, Weintraub NL, Tang Y. The Impaired Bioenergetics of Diabetic Cardiac Microvascular Endothelial Cells. Front Endocrinol (Lausanne) 2021; 12:642857. [PMID: 34054724 PMCID: PMC8160466 DOI: 10.3389/fendo.2021.642857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/06/2021] [Indexed: 01/22/2023] Open
Abstract
Diabetes causes hyperglycemia, which can create a stressful environment for cardiac microvascular endothelial cells (CMECs). To investigate the impact of diabetes on the cellular metabolism of CMECs, we assessed glycolysis by quantifying the extracellular acidification rate (ECAR), and mitochondrial oxidative phosphorylation (OXPHOS) by measuring cellular oxygen consumption rate (OCR), in isolated CMECs from wild-type (WT) hearts and diabetic hearts (db/db) using an extracellular flux analyzer. Diabetic CMECs exhibited a higher level of intracellular reactive oxygen species (ROS), and significantly reduced glycolytic reserve and non-glycolytic acidification, as compared to WT CMECs. In addition, OCR assay showed that diabetic CMECs had increased maximal respiration, and significantly reduced non-mitochondrial oxygen consumption and proton leak. Quantitative PCR (qPCR) showed no difference in copy number of mitochondrial DNA (mtDNA) between diabetic and WT CMECs. In addition, gene expression profiling analysis showed an overall decrease in the expression of essential genes related to β-oxidation (Sirt1, Acox1, Acox3, Hadha, and Hadhb), tricarboxylic acid cycle (TCA) (Idh-3a and Ogdh), and electron transport chain (ETC) (Sdhd and Uqcrq) in diabetic CMECs compared to WT CMECs. Western blot confirmed that the protein expression of Hadha, Acox1, and Uqcrq was decreased in diabetic CMECs. Although lectin staining demonstrated no significant difference in capillary density between the hearts of WT mice and db/db mice, diabetic CMECs showed a lower percentage of cell proliferation by Ki67 staining, and a higher percentage of cellular apoptosis by TUNEL staining, compared with WT CMECs. In conclusion, excessive ROS caused by hyperglycemia is associated with impaired glycolysis and mitochondrial function in diabetic CMECs, which in turn may reduce proliferation and promote CMEC apoptosis.
Collapse
Affiliation(s)
- Haitao Zhang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yan Shen
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Il-man Kim
- Anatomy, Cell Biology & Physiology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Neal L. Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- *Correspondence: Yaoliang Tang,
| |
Collapse
|
3
|
Liao Y, Gou L, Chen L, Zhong X, Zhang D, Zhu H, Lu X, Zeng T, Deng X, Li Y. NADPH oxidase 4 and endothelial nitric oxide synthase contribute to endothelial dysfunction mediated by histone methylations in metabolic memory. Free Radic Biol Med 2018; 115:383-394. [PMID: 29269309 DOI: 10.1016/j.freeradbiomed.2017.12.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 01/17/2023]
Abstract
"Metabolic memory" is identified as a phenomenon that transient hyperglycemia can be remembered by vasculature for quite a long term even after reestablishment of normoglycemia. NADPH oxidases (Noxs) and endothelial nitric oxide synthase (eNOS) are important enzymatic sources of reactive oxygen species (ROS) in diabetic vasculature. The aim of this study is to explore the roles of epigenetics and ROS derived from Noxs and eNOS in the metabolic memory. In this study, we demonstrated that vascular ROS was continuously activated in endothelium induced by transient high glucose, as well as sustained vascular endothelial dysfunction. The Nox4 and uncoupled eNOS are the major sources of ROS, while inhibition of Nox4 and eNOS significantly attenuated oxidative stress and almost recovered the endothelial function in metabolic memory. Furthermore, the aberrant histone methylation (H3K4me1, H3K9me2, and H3K9me3) at promoters of Nox4 and eNOS are the main causes for the persistent up-regulation of these two genes. Modifying the histone methylation could reduce the expression levels of Nox4 and eNOS, thus obviously attenuating endothelial dysfunction. These results indicate that histone methylation of Nox4 and eNOS play a key role in metabolic memory and may be the potential intervention targets for metabolic memory.
Collapse
Affiliation(s)
- Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Luoning Gou
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lulu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xueyu Zhong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dongxue Zhang
- Department of Endocrinology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Hangang Zhu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodan Lu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiuling Deng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuming Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Zhang S, Ntasis E, Kabtni S, van den Born J, Navis G, Bakker SJL, Krämer BK, Yard BA, Hauske SJ. Hyperglycemia Does Not Affect Iron Mediated Toxicity of Cultured Endothelial and Renal Tubular Epithelial Cells: Influence of L-Carnosine. J Diabetes Res 2016; 2016:8710432. [PMID: 26788523 PMCID: PMC4691606 DOI: 10.1155/2016/8710432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/28/2015] [Accepted: 08/10/2015] [Indexed: 12/22/2022] Open
Abstract
Iron has been suggested to affect the clinical course of type 2 diabetes (T2DM) as accompanying increased intracellular iron accumulation may provide an alternative source for reactive oxygen species (ROS). Although carnosine has proven its therapeutic efficacy in rodent models of T2DM, little is known about its efficacy to protect cells from iron toxicity. We sought to assess if high glucose (HG) exposure makes cultured human umbilical vein endothelial cells (HUVECs) and renal proximal tubular epithelial cells (PTECs) more susceptible to metal induced toxicity and if this is ameliorated by L-carnosine. HUVECs and PTECs, cultured under normal glucose (5 mM, NG) or HG (30 mM), were challenged for 24 h with FeCl3. Cell viability was not impaired under HG conditions nor did HG increase susceptibility to FeCl3. HG did not change the expression of divalent metal transporter 1 (DMT1), ferroportin (IREG), and transferrin receptor protein 1 (TFRC). Irrespective of glucose concentrations L-carnosine prevented toxicity in a dose-dependent manner, only if it was present during the FeCl3 challenge. Hence our study indicates that iron induced cytotoxicity is not enhanced under HG conditions. L-Carnosine displayed a strong protective effect, most likely by chelation of iron mediated toxicity.
Collapse
Affiliation(s)
- Shiqi Zhang
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Emmanouil Ntasis
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Cardiology, Pulmonology, Intensive Care and Vascular Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Sarah Kabtni
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jaap van den Born
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Gerjan Navis
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Stephan J. L. Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, Netherlands
| | - Bernhard K. Krämer
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Benito A. Yard
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- *Benito A. Yard:
| | - Sibylle J. Hauske
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
5
|
Park MH, Han JS. Padina arborescens extract protects high glucose-induced apoptosis in pancreatic β cells by reducing oxidative stress. Nutr Res Pract 2014; 8:494-500. [PMID: 25324927 PMCID: PMC4198960 DOI: 10.4162/nrp.2014.8.5.494] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/27/2014] [Accepted: 04/25/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/OBJECTIVES This study investigated whether Padina arborescens extract (PAE) protects INS-1 pancreatic β cells against glucotoxicity-induced apoptosis. MATERIALS/METHODS Assays, including cell viability, lipid peroxidation, generation of intracellular ROS, NO production, antioxidant enzyme activity and insulin secretion, were conducted. The expressions of Bax, Bcl-2, and caspase-3 proteins in INS-1 cells were evaluated by western blot analysis, and apoptosis/necrosis induced by high glucose was determined by analysis of FITC-Annexin V/PI staining. RESULTS Treatment with high concentrations of glucose induced INS-1 cell death, but PAE at concentrations of 25, 50 or 100 µg/ml significantly increased cell viability. The treatment with PAE dose dependently reduced the lipid peroxidation and increased the activities of antioxidant enzymes reduced by 30 mM glucose, while intracellular ROS levels increased under conditions of 30 mM glucose. PAE treatment improved the secretory responsiveness following stimulation with glucose. The results also demonstrated that glucotoxicity-induced apoptosis is associated with modulation of the Bax/Bcl-2 ratio. When INS-1 cells were stained with Annexin V/PI, we found that PAE reduced apoptosis by glucotoxicity. CONCLUSIONS In conclusion, the present study indicates that PAE protects against high glucose-induced apoptosis in pancreatic β cells by reducing oxidative stress.
Collapse
Affiliation(s)
- Mi Hwa Park
- Department of Food and Nutrition, College of Medical and Life Science, Silla University, Busan 617-736, Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Korea
| |
Collapse
|