1
|
Ziemlewska A, Zagórska-Dziok M, Mokrzyńska A, Nizioł-Łukaszewska Z, Szczepanek D, Sowa I, Wójciak M. Comparison of Anti-Inflammatory and Antibacterial Properties of Raphanus sativus L. Leaf and Root Kombucha-Fermented Extracts. Int J Mol Sci 2024; 25:5622. [PMID: 38891811 PMCID: PMC11171837 DOI: 10.3390/ijms25115622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
In the cosmetics industry, the extract from Raphanus sativus L. is fermented using specific starter cultures. These cosmetic ingredients act as preservatives and skin conditioners. Kombucha is traditionally made by fermenting sweetened tea using symbiotic cultures of bacteria and yeast and is used in cosmetic products. The aim of this study was to evaluate the cosmetic properties of radish leaf and root extract fermented with the SCOBY. Both unfermented water extracts and extracts after 7, 14, and 21 days of fermentation were evaluated. The analysis of secondary plant metabolites by UPLC-MS showed higher values for ferments than for extracts. A similar relationship was noted when examining the antioxidant properties using DPPH and ABTS radicals and the protective effect against H2O2-induced oxidative stress in fibroblasts and keratinocytes using the fluorogenic dye H2DCFDA. The results also showed no cytotoxicity to skin cells using Alamar Blue and Neutral Red tests. The ability of the samples to inhibit IL-1β and COX-2 activity in LPS-treated fibroblasts was also demonstrated using ELISA assays. The influence of extracts and ferments on bacterial strains involved in inflammatory processes of skin diseases was also assessed. Additionally, application tests were carried out, which showed a positive effect of extracts and ferments on TEWL and skin hydration using a TEWAmeter and corneometer probe. The results obtained depended on the concentration used and the fermentation time.
Collapse
Affiliation(s)
- Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (M.Z.-D.); (A.M.); (Z.N.-Ł.)
| | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (M.Z.-D.); (A.M.); (Z.N.-Ł.)
| | - Agnieszka Mokrzyńska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (M.Z.-D.); (A.M.); (Z.N.-Ł.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (A.Z.); (M.Z.-D.); (A.M.); (Z.N.-Ł.)
| | - Dariusz Szczepanek
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Aleje Raclawickie 1, 20-059 Lublin, Poland;
| |
Collapse
|
2
|
Gul H, Hussain A, Javaid F, Khan KU, Basit A, Arafat M, Hussain F. Novel insights into the anti-asthmatic effect of Raphanus sativus L. (Raphani Semen): Targeting immune cells, inflammatory pathways and oxidative stress markers. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117851. [PMID: 38336182 DOI: 10.1016/j.jep.2024.117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Raphanus sativus L. is a well-known medicinal plant with traditional therapeutic applications in various common ailments including inflammation and asthma. AIMS OF THE STUDY This study aimed to evaluate the chemical composition and anti-asthmatic potential of the hydro-methanolic extract of the leaves of R. sativus L. (Rs.Cr) using various in vitro and in vivo investigations. MATERIALS AND METHODS The Rs.Cr was subjected to preliminary phytochemical analysis and HPLC profiling. The safety was assessed through oral acute toxicity tests in mice. The antiasthmatic effect of the extract was studied using milk-induced leukocytosis and ovalbumin (OVA)-induced allergic asthma models established in mice. While mast cell degranulation and passive paw anaphylaxis models were established in rats. Moreover, effect of the extract was studied on various oxidative and inflammatory makers. The antioxidant effect of the extract was also studied by in vitro DPPH method. RESULTS The HPLC profiling of Rs.Cr showed the presence of important polyphenols in a considerable quantity. In toxicity evaluation, Rs.Cr showed no sign of morbidity or mortality with LD50 < 2000 mg/kg. The extract revealed significant mast cell disruption in a dose-dependent manner compared to the intoxicated group. Similarly, treatment with Rs.Cr and dexamethasone significantly (p < 0.001) reduced paw edema volume. Subcutaneous injection of milk at a dose of 4 mL/kg, after 24 h of its administration, showed an increase in the leukocyte count in the intoxicated group. Similarly, mice treated with dexamethasone and Rs.Cr respectively showed a significant decrease in leukocytes and eosinophils count in the ovalbumin-induced allergic asthma model. The extract presented a significant (p˂0.001) alleviative effect on the levels of SOD and GSH, MDA, IL-4, IL-5, and IL-13 in a dose-dependent manner as compared to the intoxicated group. Furthermore, the histological evaluation also revealed a notable decrease in inflammatory and goblet cell count with reduced mucus production. CONCLUSION The current study highlights mechanism-based novel insights into the anti-asthmatic potential of R. sativus that also strongly supports its traditional use in asthma.
Collapse
Affiliation(s)
- Humaira Gul
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad-38000 Pakistan.
| | - Abida Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad-38000 Pakistan
| | - Faraza Javaid
- Quaid-e-Azam College of Pharmacy, Sahiwal-57000, Punjab-Pakistan
| | | | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Fiza Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Govt. College University, Faisalabad-38000 Pakistan
| |
Collapse
|
3
|
Alaba TE, Holman JM, Ishaq SL, Li Y. Current Knowledge on the Preparation and Benefits of Cruciferous Vegetables as Relates to In Vitro, In Vivo, and Clinical Models of Inflammatory Bowel Disease. Curr Dev Nutr 2024; 8:102160. [PMID: 38779039 PMCID: PMC11108850 DOI: 10.1016/j.cdnut.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Inflammatory bowel disease is a chronic condition with a significant economic and social burden. The disease is complex and challenging to treat because it involves several pathologies, such as inflammation, oxidative stress, dysbiosis, and intestinal damage. The search for an effective treatment has identified cruciferous vegetables and their phytochemicals as potential management options for inflammatory bowel disease because they contain prebiotics, probiotics, and anti-inflammatory and antioxidant metabolites essential for a healthy gut. This critical narrative style review provides a robust insight into the pharmacological effects and benefits of crucifers and their documented bioactive compounds in in vitro and in vivo models, as well as clinical inflammatory bowel disease. The review highlights the significant impact of crucifer preparation and the presence of glucosinolates, isothiocyanates, flavonoids, and polyphenolic compounds, which are essential for the anti-inflammatory and antioxidative benefits of cruciferous vegetables, as well as their ability to promote the healthy microbial community and maintain the intestinal barrier. This review may serve as a viable nutritional guide for future research on methods and features essential to developing experiments, preventions, and treatments for inflammatory bowel disease. There is limited clinical information and future research may utilize current innovative tools, such as metabolomics, for adequate knowledge and effective translation into clinical therapy.
Collapse
Affiliation(s)
- Tolu E Alaba
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, United States
| | - Johanna M Holman
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Suzanne L Ishaq
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Yanyan Li
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- School of Pharmacy and Pharmaceutical Sciences, SUNY Binghamton University, Johnson City, NY, United States
| |
Collapse
|
4
|
Sarkar T, Salauddin M, Roy S, Chakraborty R, Rebezov M, Shariati MA, Thiruvengadam M, Rengasamy KRR. Underutilized green leafy vegetables: frontier in fortified food development and nutrition. Crit Rev Food Sci Nutr 2023; 63:11679-11733. [PMID: 35816152 DOI: 10.1080/10408398.2022.2095555] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
From the ancient period, Green leafy vegetables (GLV) are part of the daily diet and were believed to have several health beneficial properties. Later it has been proved that GLV has outstanding nutritional value and can be used for medicinal benefits. GLV is particularly rich in minerals like iron, calcium, and zinc. These are also rich in vitamins like beta carotene, vitamin E, K, B and vitamin C. In addition, some anti-nutritional elements in GLV can be reduced if it is grown properly and processed properly before consumption. Tropical countries have a wide variety of these green plants such as Red Spinach, Amaranth, Malabar Spinach, Taro Leaf, Fenugreek leaf, Bengal Gram Leaves, Radish Leaves, Mustard Leaves, and many more. This review focuses on listing this wide range of GLVs (in total 54 underutilized GLVs) and their compositions in a comparative manner. GLV also possesses medicinal activities due to its rich bioactive and nutritional potential. Different processing techniques may alter the nutritional and bioactive potential of the GLVs significantly. The GLVs have been considered a food fortification agent, though not explored widely. All of these findings suggest that increasing GLV consumption could provide nutritional requirements necessary for proper growth as well as adequate protection against diseases caused by malnutrition.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, West Bengal, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Government Polytechnic, West Bengal State Council of Technical Education, West Bengal, India
| | - Sarita Roy
- Department of Food Processing and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Runu Chakraborty
- Department of Food Processing and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of technologies and management, The First Cossack University, Moscow, Russia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, South Korea
| | - Kannan R R Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Lee YR, Lee HB, Kim Y, Shin KS, Park HY. Prebiotic and Anti-Adipogenic Effects of Radish Green Polysaccharide. Microorganisms 2023; 11:1862. [PMID: 37513035 PMCID: PMC10385334 DOI: 10.3390/microorganisms11071862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Radish (Raphanus sativus L.) greens are consumed as a source of nutrition, and their polysaccharides such as rhamnogalacturonan-I possess certain beneficial properties. This study investigated the prebiotic effects of a radish green polysaccharide (RGP) on gut health and obesity. The prebiotic activity of RGP was evaluated based on the pH changes and short-chain fatty acids (SCFAs) concentration. The results showed that 0.5% RGP had a higher prebiotic activity score than inulin and increased SCFAs production in all five prebiotic strains. Moreover, RGP inhibited fat accumulation in 3T3-L1 adipocytes, indicating its potential to reduce obesity. Overall, these findings suggested that the polysaccharide of radish greens has prebiotic effects and may serve as a beneficial prebiotic for gut health and obesity.
Collapse
Affiliation(s)
- Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Hye-Bin Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Yoonsook Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
6
|
Na J, Hwang HJ, Shin MS, Kang M, Lee J, Bang G, Kim YJ, Hwang YJ, Hwang KA, Park YH. Extract of radish (R. Sativus Linn) promotes anti-atherosclerotic effect using urine metabolomics in ApoE−/− mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
7
|
Jeon H, Yang D, Lee NH, Ahn M, Kim G. Inhibitory Effect of Black Radish ( Raphanus sativus L. var. niger) Extracts on Lipopolysaccharide-Induced Inflammatory Response in the Mouse Monocyte/Macrophage-Like Cell Line RAW 264.7. Prev Nutr Food Sci 2020; 25:408-421. [PMID: 33505935 PMCID: PMC7813598 DOI: 10.3746/pnf.2020.25.4.408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Black radish (Raphanus sativus L. var. niger), which is cultivated worldwide, is used in traditional medicine as it aids liver function, gastric secretion, gallbladder function, and gallstone mitigation. In this study, we examined the anti-inflammatory effects of black radish extract (BRE) on the lipopolysaccharide (LPS)- and interleukin (IL)-6-mediated inflammatory responses in the RAW 264.7 cell lines. Our findings show that BRE significantly ameliorated LPS-induced nitric oxide (NO) release and production of pro-inflammatory cytokines, such as IL-1β, IL-6, tumor necrosis factor (TNF)-α, and prostaglandin E2. The levels of cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in LPS-stimulated RAW 264.7 cells were found to be suppressed by BRE. Further, BRE significantly suppressed the LPS-induced expression of mRNAs encoding COX-2, iNOS, IL-1β, IL-6, and TNF-α in a concentration-dependent manner. BRE treatment significantly inhibited Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) phosphorylation in IL-6- and LPS-treated RAW 264.7 cells. In addition, BRE decreased the levels of phosphorylated extracellular signal-regulated protein kinases and c-Jun N-terminal kinase under the same conditions. Moreover, BRE induced high nuclear factor erythroid 2-related factor 2 (NRF2) levels and its target gene heme oxygenase 1 (HO-1) in the absence of LPS. These data demonstrate that BRE may be beneficial for treating inflammation through selective immunomodulatory effects, which may be mediated by inhibition of the STAT3/JAK2 and activation of the NRF2/HO-1 signal transduction pathways.
Collapse
Affiliation(s)
- Hyungsik Jeon
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Korea
| | - Dawun Yang
- Research Team, Creation & Innovation Research Institute, IT'S HANBUL Co., Ltd., Seoul 06101, Korea
| | - Nam Ho Lee
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Gangwon 26339, Korea
| | - Giok Kim
- Biodiversity Research Institute, Jeju Technopark, Jeju 63608, Korea
| |
Collapse
|
8
|
Do MH, Lee HB, Oh MJ, Jhun H, Choi SY, Park HY. Polysaccharide fraction from greens of Raphanus sativus alleviates high fat diet-induced obesity. Food Chem 2020; 343:128395. [PMID: 33268179 DOI: 10.1016/j.foodchem.2020.128395] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Accepted: 10/11/2020] [Indexed: 01/07/2023]
Abstract
Radish (Raphanus sativus) greens are commonly used as a vegetable in Korea; however, their anti-obesity effect has not been reported yet. We prepared the polysaccharide fraction of radish greens (PRG) and assessed its anti-obesity activity in high fat diet (HFD)-induced obese C57BL/6J mice. Supplementation with 4 mg/kg PRG reduced weight gain and body fat percentage, and regulated serum biomarkers against HFD-induced obesity. Moreover, PRG treatment improved gut permeability by increasing tight junction protein expression and colon length shortening. HFD intake increased the proportion of Firmicutes and decreased the proportion of Bacteroidetes and Verrucomicrobia; however, PRG supplementation maintained gut microbial composition to normal diet condition. Moreover, PRG reduced HFD-induced increase of lipid metabolism-related protein expression, along with adipocyte size in white adipose tissue. These results indicated that PRG as a potential prebiotic, has anti-obesity properties by improving gut barrier function, modulating gut microbiota and regulating lipid metabolism.
Collapse
Affiliation(s)
- Moon Ho Do
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Hye-Bin Lee
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Science and Technology, Jeonbuk National University, Jeollabuk-do, 54896, Republic of Korea.
| | - Mi-Jin Oh
- Technical Assistance Center, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Hyunjhung Jhun
- Technical Assistance Center, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Sang Yoon Choi
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Ho-Young Park
- Research Group of Functional Food Materials, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
9
|
Ebrahimabadi MH, Lamardi SNS, Shirbeigi L. Immunomodulatory Effects of Medicinal Plants used for Vitiligo in Traditional Persian Medicine. Curr Drug Discov Technol 2020; 18:160-178. [PMID: 32416680 DOI: 10.2174/1570163817666200517115438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/14/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vitiligo is a hypopigmentation disorder that affects 1% of the world's population. Vitiligo causes white spots on the skin, mucous membranes, or white hair by destroying skin melanocytes. The pathogenesis of vitiligo is unknown but autoimmune, autocytotoxic, and neural mechanisms are suggested. According to the autoimmune theory, in people with vitiligo, immune cells invade and damage melanocytes. T cells are more commonly present in vitiligo patients' skin and remain in the lesion site, which is composed of CD8 and CD4 T cells. Many studies have been conducted on the presence and role of cytokines such as interleukins and interferongamma (IFN-γ) in the vitiligo process. AIM This study aimed to introduce herbs effective against vitiligo from the perspective of Persian medicine and to investigate their possible therapeutic mechanisms with the possible effects of herbs on autoimmune mechanisms. METHODS For this purpose, keywords were used to extract data from Persian medicine textbooks, and then relevant scientific databases, including Google Scholar, PubMed, Web of Science, and Scopus were examined. RESULTS It was found that Persian medicine scholars used 50 different medicinal plants to treat and reduce the complications of vitiligo, and recent scientific studies have proven immune-regulating properties and reducing the effect of many of them on cytokines. CONCLUSION According to scientific evidence on immunomodulatory effects, new research into the effects of these plants on vitiligo can lead to the discovery of new drugs and approaches for treating this disease.
Collapse
Affiliation(s)
- Mohsen Haghir Ebrahimabadi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Laila Shirbeigi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Anti-Neuroinflammatory Effect of Alantolactone through the Suppression of the NF-κB and MAPK Signaling Pathways. Cells 2019; 8:cells8070739. [PMID: 31323885 PMCID: PMC6678480 DOI: 10.3390/cells8070739] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/06/2023] Open
Abstract
Neuroinflammation is a major cause of central nervous system (CNS) damage and can result in long-term disability and mortality. Therefore, the development of effective anti-neuroinflammatory agents for neuroprotection is vital. To our surprise, the naturally occurring molecule alantolactone (Ala) was reported to significantly inhibit tumor growth and metastasis as a result of its excellent anti-inflammatory effects. Thus, we proposed that it could also act as an anti-neuroinflammatory agent. Thus, in this study, a coculture system of BV2 cells and PC12 cells were used as an in vitro neuroinflammatory model to investigate the anti-neuroinflammatory mechanism of Ala. The results indicated that Ala downregulated the expression of proinflammatory factors by suppressing the nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Further evaluation using a middle cerebral artery occlusion and reperfusion (MCAO/R) rat model supported the conclusion that Ala could (1) alleviate cerebral ischemia-reperfusion injury; (2) reduce neurological deficits, cerebral infarct volume, and brain edema; and (3) attenuate the apoptosis and necrosis of neurons. In sum, Ala demonstrates anti-neuroinflammatory properties that contribute to the amelioration of CNS damage, and it could be a promising candidate for future applications in CNS injury treatment.
Collapse
|
11
|
Chen H, Fu W, Chen H, You S, Liu X, Yang Y, Wei Y, Huang J, Rui W. Magnolol attenuates the inflammation and enhances phagocytosis through the activation of MAPK, NF-κB signal pathways in vitro and in vivo. Mol Immunol 2019; 105:96-106. [DOI: 10.1016/j.molimm.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/22/2018] [Accepted: 11/11/2018] [Indexed: 12/25/2022]
|