1
|
Vandermeulen MD, Khaiwal S, Rubio G, Liti G, Cullen PJ. Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals. iScience 2024; 27:110860. [PMID: 39381740 PMCID: PMC11460476 DOI: 10.1016/j.isci.2024.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Understanding how phenotypic diversity is generated is an important question in biology. We explored phenotypic diversity among wild yeast isolates (Saccharomyces cerevisiae) and found variation in the activity of MAPK signaling pathways as a contributing mechanism. To uncover the genetic basis of this mechanism, we identified 1957 SNPs in 62 candidate genes encoding signaling proteins from a MAPK signaling module within a large collection of yeast (>1500 individuals). Follow-up testing identified functionally relevant variants in key signaling proteins. Loss-of-function (LOF) alleles in a PAK kinase impacted protein stability and pathway specificity decreasing filamentous growth and mating phenotypes. In contrast, gain-of-function (GOF) alleles in G-proteins that were hyperactivating induced filamentous growth. Similar amino acid substitutions in G-proteins were identified in metazoans that in some cases were fixed in multicellular lineages including humans, suggesting hyperactivating GOF alleles may play roles in generating phenotypic diversity across eukaryotes. A mucin signaler that regulates MAPK activity was also found to contain a prevalance of presumed GOF alleles amoung individuals based on changes in mucin repeat numbers. Thus, genetic variation in signaling pathways may act as a reservoir for generating phenotypic diversity across eukaryotes.
Collapse
Affiliation(s)
| | - Sakshi Khaiwal
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Gabriel Rubio
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
2
|
Membrane-Tethered Mucin 1 Is Stimulated by Interferon and Virus Infection in Multiple Cell Types and Inhibits Influenza A Virus Infection in Human Airway Epithelium. mBio 2022; 13:e0105522. [PMID: 35699372 PMCID: PMC9426523 DOI: 10.1128/mbio.01055-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality in the human population. Tethered mucin 1 (MUC1) is highly expressed in airway epithelium, the primary site of IAV replication, and also by other cell types that influence IAV infection, including macrophages. MUC1 has the potential to influence infection dynamics through physical interactions and/or signaling activity, yet MUC1 modulation and its impact during viral pathogenesis remain unclear. Thus, we investigated MUC1-IAV interactions in an in vitro model of human airway epithelium (HAE). Our data indicate that a recombinant IAV hemagglutinin (H3) and H3N2 virus can bind endogenous HAE MUC1. Notably, infection of HAE with H1N1 or H3N2 IAV strains does not trigger MUC1 shedding but instead stimulates an increase in cell-associated MUC1 protein. We observed a similar increase after type I or III interferon (IFN) stimulation; however, inhibition of IFN signaling during H1N1 infection only partially abrogated this increase, indicating that multiple soluble factors contribute to MUC1 upregulation during the antiviral response. In addition to HAE, primary human monocyte-derived macrophages also upregulated MUC1 protein in response to IFN treatment and conditioned media from IAV-infected HAE. Then, to determine the impact of MUC1 on IAV pathogenesis, we developed HAE genetically depleted of MUC1 and found that MUC1 knockout cultures exhibited enhanced viral growth compared to control cultures for several IAV strains. Together, our data support a model whereby MUC1 inhibits productive uptake of IAV in HAE. Infection then stimulates MUC1 expression on multiple cell types through IFN-dependent and -independent mechanisms that further impact infection dynamics.
Collapse
|
3
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Abstract
Selective pressures within the human host, including interactions with innate and adaptive immune responses, exposure to medical interventions such as antibiotics, and competition with commensal microbiota all facilitate the evolution of bacterial pathogens. In this chapter, we present examples of pathogen strategies that emerged as a result of selective pressures within the human host niche and discuss the resulting coevolutionary "arms race" between these organisms. In bacterial pathogens, many of the genes responsible for these strategies are encoded on mobile pathogenicity islands or plasmids, underscoring the importance of horizontal gene transfer in the emergence of virulent microbial species.
Collapse
|
5
|
Duarte HO, Freitas D, Gomes C, Gomes J, Magalhães A, Reis CA. Mucin-Type O-Glycosylation in Gastric Carcinogenesis. Biomolecules 2016; 6:E33. [PMID: 27409642 PMCID: PMC5039419 DOI: 10.3390/biom6030033] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
Mucin-type O-glycosylation plays a crucial role in several physiological and pathological processes of the gastric tissue. Modifications in enzymes responsible for key glycosylation steps and the consequent abnormal biosynthesis and expression of their glycan products constitute well-established molecular hallmarks of disease state. This review addresses the major role played by mucins and associated O-glycan structures in Helicobacter pylori adhesion to the gastric mucosa and the subsequent establishment of a chronic infection, with concomitant drastic alterations of the gastric epithelium glycophenotype. Furthermore, alterations of mucin expression pattern and glycan signatures occurring in preneoplastic lesions and in gastric carcinoma are also described, as well as their impact throughout the gastric carcinogenesis cascade and in cancer progression. Altogether, mucin-type O-glycosylation alterations may represent promising biomarkers with potential screening and prognostic applications, as well as predictors of cancer patients' response to therapy.
Collapse
Affiliation(s)
- Henrique O Duarte
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
| | - Daniela Freitas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
| | - Catarina Gomes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Joana Gomes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Ana Magalhães
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
| | - Celso A Reis
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Rua Júlio Amaral de Carvalho, 45, Porto 4200-135, Portugal.
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira no. 228, Porto 4050-313, Portugal.
- Medical Faculty, University of Porto, Alameda Prof Hernâni Monteiro, Porto 4200-319, Portugal.
| |
Collapse
|
6
|
Apostolopoulos V, Stojanovska L, Gargosky SE. MUC1 (CD227): a multi-tasked molecule. Cell Mol Life Sci 2015; 72:4475-500. [PMID: 26294353 PMCID: PMC11113675 DOI: 10.1007/s00018-015-2014-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 12/16/2022]
Abstract
Mucin 1 (MUC1 [CD227]) is a high-molecular weight (>400 kDa), type I membrane-tethered glycoprotein that is expressed on epithelial cells and extends far above the glycocalyx. MUC1 is overexpressed and aberrantly glycosylated in adenocarcinomas and in hematological malignancies. As a result, MUC1 has been a target for tumor immunotherapeutic studies in mice and in humans. MUC1 has been shown to have anti-adhesive and immunosuppressive properties, protects against infections, and is involved in the oncogenic process as well as in cell signaling. In addition, MUC1 plays a key role in the reproductive tract, in the immune system (affecting dendritic cells, monocytes, T cells, and B cells), and in chronic inflammatory diseases. Evidence for all of these roles for MUC1 is discussed herein and demonstrates that MUC1 is truly a multitasked molecule.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | | |
Collapse
|
7
|
Wen R, Gao F, Zhou CJ, Jia YB. Polymorphisms in mucin genes in the development of gastric cancer. World J Gastrointest Oncol 2015; 7:328-337. [PMID: 26600932 PMCID: PMC4644855 DOI: 10.4251/wjgo.v7.i11.328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/01/2015] [Accepted: 09/07/2015] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. In areas of high prevalence, such as Japan, South Korea and China, most cases of GC are related to Helicobacter pylori (H. pylori), which involves well-characterized sequential stages, including infection, atrophic gastritis, intestinal metaplasia, dysplasia, and GC. Mucins are the most abundant high-molecular-weight glycoproteins in mucus, which is the first line of defense and plays a major role in blocking pathogenic factors. Normal gastric mucosa shows expression of MUC1, MUC5AC and MUC6 that is specific to cell type. However, the specific pattern of MUC1, MUC5AC and MUC6 expression is changed in gastric carcinogenesis, accompanied by de novo expression of secreted MUC2. Recent studies have provided evidence that variations in these mucin genes affect many steps of GC development, such as H. pylori infection, and gastric precancerous lesions. In this review, we focus on studies of the association between polymorphisms in mucin genes and development of GC. This information should be helpful for the early detection, surveillance, and treatment of GC.
Collapse
|
8
|
Zhang B, Hao GY, Gao F, Zhang JZ, Zhou CJ, Zhou LS, Wang Y, Jia YB. Lack of association of common polymorphisms in MUC1 gene with H. pylori infection and non-cardia gastric cancer risk in a Chinese population. Asian Pac J Cancer Prev 2015; 14:7355-8. [PMID: 24460302 DOI: 10.7314/apjcp.2013.14.12.7355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several lines of evidence support the notion that MUC1 is often aberrantly expressed in gastric cancer, and it is a ligand for Helicobacter pylori. Genetic variation in MUC1 gene may confer susceptibility to H. pylori infection and gastric cancer. We assessed the association of common polymorphisms in MUC1 gene with H. pylori infection and non-cardia gastric cancer using an LD-based tag SNP approach in north-western Chinese Han population. A total of four SNPs were successfully genotyped among 288 patients with non-cardia gastric cancer and 281 age- and sex-matched controls. None of the tested SNPs was associated with H. pylori infection. SNP rs9426886 was associated with a decreased risk of non-cardia gastric cancer, but lost significance after adjustment for multiple testing. Overall, our data indicated that common genetic variations in MUC1 gene might not make a major contribution to the risk of H. pylori infection and non-cardia gastric cancer in our studied population.
Collapse
Affiliation(s)
- Bin Zhang
- School of Basic Medicine, Baotou Medical College, Baotou, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Gao J, Jiang ZR, Liu X, Zhao YH, Huang L, Peng HY, Zedan D, Jin SY, Zheng YC. Comparison of MUC1 variable number tandem repeat polymorphisms in three yak breeds/populations. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas2013-186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jie Gao
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, P.R. China
| | - Zhong-Rong Jiang
- Institute of Animal Science and Veterinary Medicine of Ganzi Prefecture, Kangding, Sichuan Province, 626200, P.R. China
| | - Xi Liu
- Institute of Animal Science and Veterinary Medicine of Ganzi Prefecture, Kangding, Sichuan Province, 626200, P.R. China
| | - Yong-Hua Zhao
- Institute of Animal Science and Veterinary Medicine of Ganzi Prefecture, Kangding, Sichuan Province, 626200, P.R. China
| | - Lin Huang
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, P.R. China
| | - Hai-Yun Peng
- Changtai Breeding Farm of Ganzi Prefecture, Baiyu, Sichuan Province, 627100, P.R. China
| | - Duoji Zedan
- Institute of Animal Science and Veterinary Medicine of Ganzi Prefecture, Kangding, Sichuan Province, 626200, P.R. China
| | - Su-Yu Jin
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, P.R. China
| | - Yu-Cai Zheng
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, P.R. China
| |
Collapse
|
10
|
Castaño-Rodríguez N, Kaakoush NO, Mitchell HM. Pattern-recognition receptors and gastric cancer. Front Immunol 2014; 5:336. [PMID: 25101079 PMCID: PMC4105827 DOI: 10.3389/fimmu.2014.00336] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation has been associated with an increased risk of several human malignancies, a classic example being gastric adenocarcinoma (GC). Development of GC is known to result from infection of the gastric mucosa by Helicobacter pylori, which initially induces acute inflammation and, in a subset of patients, progresses over time to chronic inflammation, gastric atrophy, intestinal metaplasia, dysplasia, and finally intestinal-type GC. Germ-line encoded receptors known as pattern-recognition receptors (PRRs) are critical for generating mature pro-inflammatory cytokines that are crucial for both Th1 and Th2 responses. Given that H. pylori is initially targeted by PRRs, it is conceivable that dysfunction within genes of this arm of the immune system could modulate the host response against H. pylori infection, and subsequently influence the emergence of GC. Current evidence suggests that Toll-like receptors (TLRs) (TLR2, TLR3, TLR4, TLR5, and TLR9), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) (NOD1, NOD2, and NLRP3), a C-type lectin receptor (DC-SIGN), and retinoic acid-inducible gene (RIG)-I-like receptors (RIG-I and MDA-5), are involved in both the recognition of H. pylori and gastric carcinogenesis. In addition, polymorphisms in genes involved in the TLR (TLR1, TLR2, TLR4, TLR5, TLR9, and CD14) and NLR (NOD1, NOD2, NLRP3, NLRP12, NLRX1, CASP1, ASC, and CARD8) signaling pathways have been shown to modulate the risk of H. pylori infection, gastric precancerous lesions, and/or GC. Further, the modulation of PRRs has been suggested to suppress H. pylori-induced inflammation and enhance GC cell apoptosis, highlighting their potential relevance in GC therapeutics. In this review, we present current advances in our understanding of the role of the TLR and NLR signaling pathways in the pathogenesis of GC, address the involvement of other recently identified PRRs in GC, and discuss the potential implications of PRRs in GC immunotherapy.
Collapse
Affiliation(s)
- Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, NSW , Australia
| | - Nadeem O Kaakoush
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, NSW , Australia
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
11
|
He C, Chen M, Liu J, Yuan Y. Host genetic factors respond to pathogenic step-specific virulence factors of Helicobacter pylori in gastric carcinogenesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 759:14-26. [PMID: 24076409 DOI: 10.1016/j.mrrev.2013.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/18/2022]
Abstract
The interindividual differences in risk of Helicobacter pylori (H. pylori)-associated gastric cancer involve significant heterogeneities of both host genetics and H. pylori strains. Several recent studies proposed a distinct sequence for H. pylori exerting its virulence in the host stomach: (i) adhering to and colonizing the surface of gastric epithelial cells, (ii) evading and attenuating the host defense, and (iii) invading and damaging the gastric mucosa. This review focuses on several key issues that still need to be clarified, such as which virulence factors of H. pylori are involved in the three pathogenic steps, which host genes respond to the step-specific virulence factors, and whether and/or how the corresponding host genetic variations influence the risk of gastric carcinogenesis. Urease, BabA and SabA in the adhesion-step, PGN and LPS in the immune evasion-step, and CagA, VacA and Tipα in the mucosal damage-step were documented to play an important role in step-specific pathogenicity of H. pylori infection. There is evidence further supporting a role of potentially functional polymorphisms of host genes directly responding to these pathogenic step-specific virulence factors in the susceptibility of gastric carcinogenesis, especially for urease-interacting HLA class II genes, BabA-interacting MUC1, PGN-interacting NOD1, LPS-interacting TLR4, and CagA-interacting PTPN11 and CDH1. With the continuous improvement of understanding the genetic profile of H. pylori-associated gastric carcinogenesis, a person at increased risk for gastric cancer may benefit from several aspects of efforts: (i) prevent H. pylori infection with a vaccine targeting certain step-specific virulence factor; (ii) eradicate H. pylori infection by blocking step-specific psychopathological characteristics of virulence factors; and (iii) adjust host physiological function to resist the carcinogenic role of step-specific virulence factors or interrupt the cellular signal transduction of the interplay between H. pylori and host in each pathogenic step, especially for the subjects with precancerous lesions in the stomach.
Collapse
Affiliation(s)
- Caiyun He
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Moye Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.
| |
Collapse
|
12
|
Lillehoj EP, Kato K, Lu W, Kim KC. Cellular and molecular biology of airway mucins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:139-202. [PMID: 23445810 PMCID: PMC5593132 DOI: 10.1016/b978-0-12-407697-6.00004-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kosuke Kato
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Wenju Lu
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Kwang C. Kim
- Center for Inflammation, Translational and Clinical Lung Research and Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
13
|
Lillehoj EP, Hyun SW, Feng C, Zhang L, Liu A, Guang W, Nguyen C, Luzina IG, Atamas SP, Passaniti A, Twaddell WS, Puché AC, Wang LX, Cross AS, Goldblum SE. NEU1 sialidase expressed in human airway epithelia regulates epidermal growth factor receptor (EGFR) and MUC1 protein signaling. J Biol Chem 2012; 287:8214-31. [PMID: 22247545 DOI: 10.1074/jbc.m111.292888] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epithelial cells (ECs) lining the airways provide a protective barrier between the external environment and the internal host milieu. These same airway epithelia express receptors that respond to danger signals and initiate repair programs. Because the sialylation state of a receptor can influence its function and is dictated in part by sialidase activity, we asked whether airway epithelia express catalytically active sialidase(s). Human primary small airway and A549 ECs expressed NEU1 sialidase at the mRNA and protein levels, and NEU1 accounted for >70% of EC sialidase activity. Blotting with Maackia amurensis and peanut agglutinin lectins established epidermal growth factor receptor (EGFR) and MUC1 as in vivo substrates for NEU1. NEU1 associated with EGFR and MUC1, and NEU1-EGFR association was regulated by EGF stimulation. NEU1 overexpression diminished EGF-stimulated EGFR Tyr-1068 autophosphorylation by up to 44% but enhanced MUC1-dependent Pseudomonas aeruginosa adhesion by 1.6-1.7-fold and flagellin-stimulated ERK1/2 activation by 1.7-1.9-fold. In contrast, NEU1 depletion increased EGFR activation (1.5-fold) and diminished MUC1-mediated bacterial adhesion (38-56%) and signaling (73%). These data indicate for the first time that human airway epithelia express catalytically active NEU1 sialidase that regulates EGFR- and MUC1-dependent signaling and bacterial adhesion. NEU1 catalytic activity may offer an additional level of regulation over the airway epithelial response to ligands, pathogens, and injurious stimuli.
Collapse
Affiliation(s)
- Erik P Lillehoj
- Departments of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Szabó K, Kemény L. Studying the genetic predisposing factors in the pathogenesis of acne vulgaris. Hum Immunol 2011; 72:766-73. [PMID: 21669244 DOI: 10.1016/j.humimm.2011.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/28/2011] [Accepted: 05/13/2011] [Indexed: 02/04/2023]
Abstract
Acne is one of the most common dermatologic diseases in the developed regions of the world, affecting a large percentage of the population. Despite the great improvement in the number and quality of studies of the molecular etiology of this disease in the past 3 decades, the detailed molecular pathogenesis and the cause of the large individual variations in severity of skin symptoms remain unknown. The roles of genetic inheritance and special genetic susceptibility and protective factors have been suggested for over 100 years, but their identification and determination started only in the 1990s. To date, only a small number of genetic polymorphisms affecting the expression and/or function of a handful of genes have been investigated. This review surveys the major findings of the classic and molecular genetic studies that have been conducted in this field, draws conclusions, and indicates how the available data help our current understanding of the pathogenesis of this common skin disease.
Collapse
Affiliation(s)
- Kornélia Szabó
- Dermatological Research Group of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | |
Collapse
|
15
|
Chang CYY, Chang HW, Chen CM, Lin CY, Chen CP, Lai CH, Lin WY, Liu HP, Sheu JJC, Tsai FJ. MUC4 gene polymorphisms associate with endometriosis development and endometriosis-related infertility. BMC Med 2011; 9:19. [PMID: 21349170 PMCID: PMC3052195 DOI: 10.1186/1741-7015-9-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 02/24/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mucin 4 (MUC4) plays an important role in protecting and lubricating the epithelial surface of reproductive tracts, but its role in the pathogenesis of endometriosis is largely unknown. METHODS To correlate MUC4 polymorphism with the risk of endometriosis and endometriosis-related infertility, we performed a case-control study of 140 patients and 150 healthy women. Six unique single-nucleotide polymorphisms (SNPs) (rs882605, rs1104760, rs2688513, rs2246901, rs2258447 and rs2291652) were selected for this study. DNA fragments containing the target SNP sites were amplified by polymerase chain reaction using the TaqMan SNP Genotyping Assay System to evaluate allele frequency and distribution of genotype in MUC4 polymorphisms. RESULTS Both the T/G genotype of rs882605 and the frequency of haplotype T-T (rs882605 and rs1104760) were higher in patients than in controls and were statistically significant. The frequency of the C allele at rs1104760, the C allele at rs2688513, the G allele at rs2246901 and the A allele at rs2258447 were associated with advanced stage of endometriosis. Moreover, the G allele at rs882605 was verified as a key genetic factor for infertility in patients. Protein sequence analysis indicated that amino acid substitutions by genetic variations at rs882605, rs2688513 and rs2246901 occur in the putative functional loops and the type D von Willebrand factor (VWFD) domain in the MUC4 sequence. CONCLUSIONS MUC4 polymorphisms are associated with endometriosis development and endometriosis-related infertility in the Taiwanese population.
Collapse
|
16
|
Abstract
Mucins (MUCs), the main components of the gastric mucus gel, are a family of high-molecular-weight glycoproteins expressed by specialized epithelial cells lining the luminal surface of different organs. Numerous studies have indicated that Helicobacter pylori (H. pylori) colonizes the gastric mucosa by utilizing adhesins or non-adhesins that bind the MUCs expressed on gastric epithelial cells. During the infection process, H. pylori causes alterations of mucin expression. On the other hand, MUCs can exert protective effects against H. pylori infection owning to its unique structure. In this review, we give an overview of the protective role of MUCs against H. pylori infection.
Collapse
|
17
|
Lindén SK, Sheng YH, Every AL, Miles KM, Skoog EC, Florin THJ, Sutton P, McGuckin MA. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog 2009. [PMID: 19816567 DOI: 10.1371/journal.pp-at.1000617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The bacterium Helicobacter pylori can cause peptic ulcer disease, gastric adenocarcinoma and MALT lymphoma. The cell-surface mucin MUC1 is a large glycoprotein which is highly expressed on the mucosal surface and limits the density of H. pylori in a murine infection model. We now demonstrate that by using the BabA and SabA adhesins, H. pylori bind MUC1 isolated from human gastric cells and MUC1 shed into gastric juice. Both H. pylori carrying these adhesins, and beads coated with MUC1 antibodies, induced shedding of MUC1 from MKN7 human gastric epithelial cells, and shed MUC1 was found bound to H. pylori. Shedding of MUC1 from non-infected cells was not mediated by the known MUC1 sheddases ADAM17 and MMP-14. However, knockdown of MMP-14 partially affected MUC1 release early in infection, whereas ADAM17 had no effect. Thus, it is likely that shedding is mediated both by proteases and by disassociation of the non-covalent interaction between the alpha- and beta-subunits. H. pylori bound more readily to MUC1 depleted cells even when the bacteria lacked the BabA and SabA adhesins, showing that MUC1 inhibits attachment even when bacteria cannot bind to the mucin. Bacteria lacking both the BabA and SabA adhesins caused less apoptosis in MKN7 cells than wild-type bacteria, having a greater effect than deletion of the CagA pathogenicity gene. Deficiency of MUC1/Muc1 resulted in increased epithelial cell apoptosis, both in MKN7 cells in vitro, and in H. pylori infected mice. Thus, MUC1 protects the epithelium from non-MUC1 binding bacteria by inhibiting adhesion to the cell surface by steric hindrance, and from MUC1-binding bacteria by acting as a releasable decoy.
Collapse
Affiliation(s)
- Sara K Lindén
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lindén SK, Sheng YH, Every AL, Miles KM, Skoog EC, Florin THJ, Sutton P, McGuckin MA. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLoS Pathog 2009; 5:e1000617. [PMID: 19816567 PMCID: PMC2752161 DOI: 10.1371/journal.ppat.1000617] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 09/11/2009] [Indexed: 12/14/2022] Open
Abstract
The bacterium Helicobacter pylori can cause peptic ulcer disease, gastric adenocarcinoma and MALT lymphoma. The cell-surface mucin MUC1 is a large glycoprotein which is highly expressed on the mucosal surface and limits the density of H. pylori in a murine infection model. We now demonstrate that by using the BabA and SabA adhesins, H. pylori bind MUC1 isolated from human gastric cells and MUC1 shed into gastric juice. Both H. pylori carrying these adhesins, and beads coated with MUC1 antibodies, induced shedding of MUC1 from MKN7 human gastric epithelial cells, and shed MUC1 was found bound to H. pylori. Shedding of MUC1 from non-infected cells was not mediated by the known MUC1 sheddases ADAM17 and MMP-14. However, knockdown of MMP-14 partially affected MUC1 release early in infection, whereas ADAM17 had no effect. Thus, it is likely that shedding is mediated both by proteases and by disassociation of the non-covalent interaction between the alpha- and beta-subunits. H. pylori bound more readily to MUC1 depleted cells even when the bacteria lacked the BabA and SabA adhesins, showing that MUC1 inhibits attachment even when bacteria cannot bind to the mucin. Bacteria lacking both the BabA and SabA adhesins caused less apoptosis in MKN7 cells than wild-type bacteria, having a greater effect than deletion of the CagA pathogenicity gene. Deficiency of MUC1/Muc1 resulted in increased epithelial cell apoptosis, both in MKN7 cells in vitro, and in H. pylori infected mice. Thus, MUC1 protects the epithelium from non-MUC1 binding bacteria by inhibiting adhesion to the cell surface by steric hindrance, and from MUC1-binding bacteria by acting as a releasable decoy.
Collapse
Affiliation(s)
- Sara K. Lindén
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
- Mucosal Immunobiology and Vaccine Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- * E-mail: (SKL); (MAM)
| | - Yong H. Sheng
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
| | - Alison L. Every
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Kim M. Miles
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
| | - Emma C. Skoog
- Mucosal Immunobiology and Vaccine Center, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Timothy H. J. Florin
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
- Department of Medicine, University of Queensland, Queensland, Australia
| | - Philip Sutton
- Centre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael A. McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Queensland, Australia
- * E-mail: (SKL); (MAM)
| |
Collapse
|
19
|
Cell surface O-glycans limit Staphylococcus aureus adherence to corneal epithelial cells. Infect Immun 2008; 76:5215-20. [PMID: 18794288 DOI: 10.1128/iai.00708-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mucin-rich environment of the intact corneal epithelium is thought to contribute to the prevention of Staphylococcus aureus infection. This study examined whether O-glycans, which constitute the majority of the mucin mass of epithelial cell glycocalyces, prevented bacterial adhesion and growth. Abrogation of mucin O glycosylation using the chemical primer benzyl-alpha-GalNAc resulted in increased adherence of parental strain RN6390 to apical human corneal-limbal epithelial (HCLE) cells and to biotinylated cell surface protein in static and liquid phase adhesion assays, consistent with a role of mucin O-glycans in preventing bacterial adhesion. Comparable results were found with ALC135, an isogenic mutant strain defective in the accessory gene regulators agr and sar, indicating that the agr- and/or sar-regulated virulence factors did not play a major role in mediating adhesion to the corneal cell surface after mucin O-glycan truncation. In exoglycosidase digestion studies, treatment with sialidase from Arthrobacter ureafaciens--which hydrolyzed mucin-associated O-acetyl sialic acid--but not from Clostridium perfringens resulted in an increase in RN6390 and ALC135 adhesion. Abrogation of mucin O glycosylation in HCLE cell cultures did not affect bacterial growth. Overall, these data indicate that mucin O-glycans contribute to the prevention of bacterial adherence to the apical surface of corneal epithelial cells and suggest that alteration of cell surface glycosylation from disease or trauma, including that stemming from contact lens wear, could contribute to a higher risk of infection.
Collapse
|