1
|
Rouanet M, Lebrin M, Gross F, Bournet B, Cordelier P, Buscail L. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes. Int J Mol Sci 2017; 18:ijms18061231. [PMID: 28594388 PMCID: PMC5486054 DOI: 10.3390/ijms18061231] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
A recent death projection has placed pancreatic ductal adenocarcinoma as the second cause of death by cancer in 2030. The prognosis for pancreatic cancer is very poor and there is a great need for new treatments that can change this poor outcome. Developments of therapeutic innovations in combination with conventional chemotherapy are needed urgently. Among innovative treatments the gene therapy offers a promising avenue. The present review gives an overview of the general strategy of gene therapy as well as the limitations and stakes of the different experimental in vivo models, expression vectors (synthetic and viral), molecular tools (interference RNA, genome editing) and therapeutic genes (tumor suppressor genes, antiangiogenic and pro-apoptotic genes, suicide genes). The latest developments in pancreatic carcinoma gene therapy are described including gene-based tumor cell sensitization to chemotherapy, vaccination and adoptive immunotherapy (chimeric antigen receptor T-cells strategy). Nowadays, there is a specific development of oncolytic virus therapies including oncolytic adenoviruses, herpes virus, parvovirus or reovirus. A summary of all published and on-going phase-1 trials is given. Most of them associate gene therapy and chemotherapy or radiochemotherapy. The first results are encouraging for most of the trials but remain to be confirmed in phase 2 trials.
Collapse
Affiliation(s)
- Marie Rouanet
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
| | - Marine Lebrin
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
| | - Fabian Gross
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
| | - Barbara Bournet
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
- University of Toulouse III, Medical School of Medicine Rangueil, Toulouse 31062, France.
| | - Pierre Cordelier
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
| | - Louis Buscail
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
- University of Toulouse III, Medical School of Medicine Rangueil, Toulouse 31062, France.
| |
Collapse
|
2
|
Morin-Brureau M, Hooper KM, Prosniak M, Sauma S, Harshyne LA, Andrews DW, Hooper DC. Enhancement of glioma-specific immunity in mice by "NOBEL", an insulin-like growth factor 1 receptor antisense oligodeoxynucleotide. Cancer Immunol Immunother 2015; 64:447-57. [PMID: 25579379 PMCID: PMC11028597 DOI: 10.1007/s00262-015-1654-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/03/2015] [Indexed: 10/24/2022]
Abstract
Autologous glioblastoma multiforme tumor cells treated with an antisense oligodeoxynucleotide (AS-ODN) targeting insulin-like growth factor receptor-1 (IGF-1R) are the basis of a vaccine with therapeutic effects on tumor recurrence in a pilot clinical trial. As a preface to continued clinical investigation of this vaccination strategy, we have studied the contribution of an optimized IGF-1R AS-ODN, designated "NOBEL", to the induction of immunity to mouse GL261 glioma cells. The impact of NOBEL on mechanisms contributing to the development of GL261 immunity was first examined in the periphery. GL261 cells are naturally immunogenic when implanted into the flanks of congenic C57BL/6 mice, immunizing rather than forming tumors in around 50 % of these animals but causing tumors in the majority of mice lacking T and B lymphocytes. Overnight treatment with NOBEL in vitro reduces IGF-1R expression by GL261 cells but has minimal effect on cell viability and does not reduce the capacity of the cells to form tumors upon implantation. In contrast, tumors are extremely rare when GL261 cells are mixed with NOBEL at inoculation into the flanks of C57BL/6, and the recipient mice become immune to subcutaneous and intracranial challenge with untreated GL261. Adaptive immune mechanisms contribute to this effect, as immunocompromised mice fail to either fully control tumor formation or develop immunity following flank administration of the GL261/NOBEL mix. NOBEL's structure has known immunostimulatory motifs that likely contribute to the immunogenicity of the mix, but its specificity for IGF-1R mRNA is also important as a similarly structured sense molecule is not effective.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Brain Neoplasms/immunology
- Brain Neoplasms/pathology
- Brain Neoplasms/therapy
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- Glioma/immunology
- Glioma/pathology
- Glioma/therapy
- Immunity, Cellular/immunology
- Immunotherapy
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oligodeoxyribonucleotides, Antisense/administration & dosage
- Oligodeoxyribonucleotides, Antisense/genetics
- Oligodeoxyribonucleotides, Antisense/immunology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- beta 2-Microglobulin/physiology
Collapse
Affiliation(s)
- Mélanie Morin-Brureau
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Kirsten M. Hooper
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Present Address: Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA USA
| | - Michael Prosniak
- Department of Cancer Biology, Thomas Jefferson University, 1020 Locust Street, JAH Rm 452, Philadelphia, PA 19107-6731 USA
| | - Sami Sauma
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Larry A. Harshyne
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - David W. Andrews
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - D. Craig Hooper
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Department of Cancer Biology, Thomas Jefferson University, 1020 Locust Street, JAH Rm 452, Philadelphia, PA 19107-6731 USA
| |
Collapse
|
3
|
Wang XJ, Zheng YL, Fan QX, Zhang XD. RNAi-induced K-Ras gene silencing suppresses growth of EC9706 cells and enhances chemotherapy sensitivity of esophageal cancer. Asian Pac J Cancer Prev 2014; 13:6517-21. [PMID: 23464485 DOI: 10.7314/apjcp.2012.13.12.6517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To analyze the growth, proliferation, apoptosis, invasiveness and chemotherapy sensitivity of EC9706 cells after K-Ras gene silencing, an expression carrier pSilencer-siK-Ras was constructed, and the EC9706 cell line was transfected using a liposome technique. Six groups were established: Control, siRNA NC (transfected with empty vector pSilencer2.1); Ras siRNA (transfected with pSilencer-siK-Ras2); Paclitaxel; Paclitaxel + siRNA NC; and Ras siRNA +Paclitaxel. After the treatment, RT-PCR, Western blotting, MTT assay, flow cytometry and the Transwell technique were used to assess expression of K-Ras mRNA and protein in EC9706 cells, as well as cell growth, proliferation, apoptosis and invasiveness. The effect of Paclitaxel chemotherapy was also tested. pSilencer-siK-Ras2 effectively down-regulated expression of K-Ras mRNA and protein in EC9706 cells, growth being significantly inhibited. Flow cytometry indicated obvious apoptosis of cells in the experimental group, with arrest in the G1 phase; cell migration ability was also reduced. After pSilencer-siK-Ras2 transfection or the addition of Paclitaxel, EC9706 cells were suppressed to different extents; the suppressive effect was strengthened by combined treatment. The results suggested that RNAi-induced K-Ras gene silencing could enhance chemotherapy sensitivity of esophageal cancer.
Collapse
Affiliation(s)
- Xin-Jie Wang
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | | | | | | |
Collapse
|
4
|
Liu SX, Xia ZS, Zhong YQ. Gene therapy in pancreatic cancer. World J Gastroenterol 2014; 20:13343-68. [PMID: 25309069 PMCID: PMC4188890 DOI: 10.3748/wjg.v20.i37.13343] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/29/2013] [Accepted: 06/12/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal disease and notoriously difficult to treat. Only a small proportion of PC patients are eligible for surgical resection, whilst conventional chemoradiotherapy only has a modest effect with substantial toxicity. Gene therapy has become a new widely investigated therapeutic approach for PC. This article reviews the basic rationale, gene delivery methods, therapeutic targets and developments of laboratory research and clinical trials in gene therapy of PC by searching the literature published in English using the PubMed database and analyzing clinical trials registered on the Gene Therapy Clinical Trials Worldwide website (http://www. wiley.co.uk/genmed/ clinical). Viral vectors are main gene delivery tools in gene therapy of cancer, and especially, oncolytic virus shows brighter prospect due to its tumor-targeting property. Efficient therapeutic targets for gene therapy include tumor suppressor gene p53, mutant oncogene K-ras, anti-angiogenesis gene VEGFR, suicide gene HSK-TK, cytosine deaminase and cytochrome p450, multiple cytokine genes and so on. Combining different targets or combination strategies with traditional chemoradiotherapy may be a more effective approach to improve the efficacy of cancer gene therapy. Cancer gene therapy is not yet applied in clinical practice, but basic and clinical studies have demonstrated its safety and clinical benefits. Gene therapy will be a new and promising field for the treatment of PC.
Collapse
|
5
|
Kothari V, Wei I, Shankar S, Kalyana-Sundaram S, Wang L, Ma LW, Vats P, Grasso CS, Robinson DR, Wu YM, Cao X, Simeone DM, Chinnaiyan AM, Kumar-Sinha C. Outlier kinase expression by RNA sequencing as targets for precision therapy. Cancer Discov 2013; 3:280-93. [PMID: 23384775 DOI: 10.1158/2159-8290.cd-12-0336] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein kinases represent the most effective class of therapeutic targets in cancer; therefore, determination of kinase aberrations is a major focus of cancer genomic studies. Here, we analyzed transcriptome sequencing data from a compendium of 482 cancer and benign samples from 25 different tissue types, and defined distinct "outlier kinases" in individual breast and pancreatic cancer samples, based on highest levels of absolute and differential expression. Frequent outlier kinases in breast cancer included therapeutic targets like ERBB2 and FGFR4, distinct from MET, AKT2, and PLK2 in pancreatic cancer. Outlier kinases imparted sample-specific dependencies in various cell lines, as tested by siRNA knockdown and/or pharmacologic inhibition. Outlier expression of polo-like kinases was observed in a subset of KRAS-dependent pancreatic cancer cell lines, and conferred increased sensitivity to the pan-PLK inhibitor BI-6727. Our results suggest that outlier kinases represent effective precision therapeutic targets that are readily identifiable through RNA sequencing of tumors.
Collapse
Affiliation(s)
- Vishal Kothari
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Barar J, Omidi Y. Translational Approaches towards Cancer Gene Therapy: Hurdles and Hopes. BIOIMPACTS : BI 2012; 2:127-43. [PMID: 23678451 DOI: 10.5681/bi.2012.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 09/02/2012] [Accepted: 09/11/2012] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Of the cancer gene therapy approaches, gene silencing, suicide/apoptosis inducing gene therapy, immunogene therapy and targeted gene therapy are deemed to sub-stantially control the biological consequences of genomic changes in cancerous cells. Thus, a large number of clinical trials have been conducted against various malignancies. In this review, we will discuss recent translational progresses of gene and cell therapy of cancer. METHODS Essential information on gene therapy of cancer were reviewed and discussed towards their clinical translations. RESULTS Gene transfer has been rigorously studied in vitro and in vivo, in which some of these gene therapy endeavours have been carried on towards translational investigations and clinical applications. About 65% of gene therapy trials are related to cancer therapy. Some of these trials have been combined with cell therapy to produce personalized medicines such as Sipuleucel-T (Provenge®, marketed by Dendreon, USA) for the treatment of asymptomatic/minimally symptomatic metastatic hormone-refractory prostate cancer. CONCLUSION Translational approach links two diverse boundaries of basic and clinical researches. For successful translation of geno-medicines into clinical applications, it is essential 1) to have the guidelines and standard operating procedures for development and application of the genomedicines specific to clinically relevant biomarker(s); 2) to conduct necessary animal experimental studies to show the "proof of concept" for the proposed genomedicines; 3) to perform an initial clinical investigation; and 4) to initiate extensive clinical trials to address all necessary requirements. In short, translational researches need to be refined to accelerate the geno-medicine development and clinical applications.
Collapse
Affiliation(s)
- Jaleh Barar
- Ovarian Cancer Research Center, Translational Research Center, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Iovanna J, Mallmann MC, Gonçalves A, Turrini O, Dagorn JC. Current knowledge on pancreatic cancer. Front Oncol 2012; 2:6. [PMID: 22655256 PMCID: PMC3356035 DOI: 10.3389/fonc.2012.00006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/11/2012] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer death with a median survival of 6 months and a dismal 5-year survival rate of 3-5%. The development and progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes, and the deregulation of many signaling pathways. Therefore, the strategies targeting these molecules as well as their downstream signaling could be promising for the prevention and treatment of pancreatic cancer. However, although targeted therapies for pancreatic cancer have yielded encouraging results in vitro and in animal models, these findings have not been translated into improved outcomes in clinical trials. This failure is due to an incomplete understanding of the biology of pancreatic cancer and to the selection of poorly efficient or imperfectly targeted agents. In this review, we will critically present the current knowledge regarding the molecular, biochemical, clinical, and therapeutic aspects of pancreatic cancer.
Collapse
Affiliation(s)
- Juan Iovanna
- INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de LuminyMarseille, France
| | | | - Anthony Gonçalves
- Département d’Oncologie Médicale, Institut Paoli-CalmettesMarseille, France
| | - Olivier Turrini
- Département de Chirurgie Oncologique, Institut Paoli-CalmettesMarseille, France
| | - Jean-Charles Dagorn
- INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de LuminyMarseille, France
| |
Collapse
|
8
|
NAKAGAWA MAKOTO, URAMOTO HIDETAKA, SHIMOKAWA HIDEHIKO, ONITSUKA TAKAMITSU, HANAGIRI TAKESHI, TANAKA FUMIHIRO. Insulin-like growth factor receptor-1 expression predicts postoperative recurrence in adenocarcinoma of the lung. Exp Ther Med 2011; 2:585-590. [PMID: 22977544 PMCID: PMC3440752 DOI: 10.3892/etm.2011.258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/15/2011] [Indexed: 02/05/2023] Open
Abstract
Not all patients with lung cancer require postoperative adjuvant chemotherapy after a complete resection. However, no useful markers exist for either selecting appropriate candidates or for predicting clinical recurrence. The purpose of the present study was to clarify the clinical role of insulin-like growth factor receptor-1 (IGFR1) in lung adenocarcinoma. Tumor specimens were collected from 182 patients who underwent a complete resection for adenocarcinoma of the lung. The expression of IGFR1 was evaluated by immunohistochemistry. The genetic status of the epidermal growth factor receptor (EGFR) and K-ras genes was also investigated by PCR-based analyses. Immunohistochemistry and real-time PCR assays were used to evaluate the MET gene association with tyrosine phosphorylation and hepatocyte growth factor (HGF) status, and amplification, respectively. Positive expression of IGFR1 was detected in 43 (23.6%) of the 182 cases. A positive IGFR1 expression was also identified in 12 (42.9%) and 31 (20.1%) of the patients with and without recurrence, respectively (p=0.009). Logistic regression models indicated that positive staining for IGFR1 expression was an independent factor associated with tumor recurrence. IGFR1 expression was associated with a poorer disease-free survival (DFS). Multivariate analysis demonstrated positive IGFR1 expression to be independently associated with an increased risk for poor DFS. The tumors appearing positive for IGFR1 were more frequent among those with K-ras mutations when compared with the wild-type group. IGFR1 expression was associated with reduced DFS correlating with postoperative recurrence. Therefore, the expression status of IGFR1 can be a candidate surrogate marker to select patients who may benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- MAKOTO NAKAGAWA
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu,
Japan
| | - HIDETAKA URAMOTO
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu,
Japan
| | - HIDEHIKO SHIMOKAWA
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu,
Japan
| | - TAKAMITSU ONITSUKA
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu,
Japan
| | - TAKESHI HANAGIRI
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu,
Japan
| | - FUMIHIRO TANAKA
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu,
Japan
| |
Collapse
|
9
|
Tomizawa M, Shinozaki F, Sugiyama T, Yamamoto S, Sueishi M, Yoshida T. Insulin-like growth factor-I receptor in proliferation and motility of pancreatic cancer. World J Gastroenterol 2010; 16:1854-1858. [PMID: 20397262 PMCID: PMC2856825 DOI: 10.3748/wjg.v16.i15.1854] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/18/2010] [Accepted: 01/25/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To develop a molecular therapy for pancreatic cancer, the insulin-like growth factor-I (IGF-I) signaling pathway was analyzed. METHODS Pancreatic cancer cell lines (MIA-Paca2, NOR-P1, PANC-1, PK-45H, PK-1, PK-59 and KP-4) were cultured in media with 10 mL/L fetal bovine serum. Western blotting analysis was performed to clarify the expression of IGF-I receptor (IGF-IR). Picropodophyllin (PPP), a specific inhibitor of IGF-IR, LY294002, a specific inhibitor of phosphatidylinositol 3 kinase (PI3K), and PD98059, a specific inhibitor of mitogen-activated protein kinase, were added to the media. After 72 h, a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay was performed to analyze cell proliferation. A wound assay was performed to analyze cell motility with hematoxylin and eosin (HE) staining 48 h after addition of each inhibitor. RESULTS All cell lines clearly expressed not only IGF-IR but also phosphorylated IGF-IR. PPP significantly suppressed proliferation of MIA-Paca2, NOR-P1, PANC-1, PK-45H, PK-1, PK-59 and KP-4 cells to 36.9% +/- 2.4% (mean +/- SD), 30.9% +/- 5.5%, 23.8% +/- 3.9%, 37.1% +/- 5.3%, 10.4% +/- 4.5%, 52.5% +/- 4.5% and 22.6% +/- 0.4%, at 2 micromol/L, respectively (P < 0.05). LY294002 significantly suppressed proliferation of MIA-Paca2, NOR-P1, PANC-1, PK-45H, PK-1, PK-59 and KP-4 cells to 44.4% +/- 7.6%, 32.9% +/- 8.2%, 53.9% +/- 8.0%, 52.8% +/- 4.0%, 32.3% +/- 4.2%, 51.8% +/- 4.5%, and 30.6% +/- 9.4%, at 50 micromol/L, respectively (P < 0.05). PD98059 did not significantly suppress cell proliferation. PPP at 2 micromol/L suppressed motility of MIA-Paca2, NOR-P1, PANC-1, PK-45H, PK-1, PK-59 and KP-4 cells to 3.0% +/- 0.2%, 0%, 0%, 2.0% +/- 0.1%, 5.0% +/- 0.2%, 3.0% +/- 0.1%, and 5.0% +/- 0.2%, respectively (P < 0.05). LY294002 at 50 micromol/L suppressed motility of MIA-Paca2, NOR-P1, PANC-1, PK-45H, PK-1, PK-59 and KP-4 to 3.0% +/- 0.2%, 0%, 3.0% +/- 0.2%, 0%, 0%, 0% and 3% +/- 0.1%, respectively (P < 0.05). PD980509 at 20 micromol/L did not suppress motility. Cells were observed by microscopy to analyze the morphological changes induced by the inhibitors. Cells in medium treated with 2 micromol/L PPP or 50 micromol/L LY294002 had pyknotic nuclei, whereas those in medium with 20 micromol/L PD98059 did not show apoptosis. CONCLUSION IGF-IR and PI3K are good candidates for molecular therapy of pancreatic cancer.
Collapse
|
10
|
Abstract
Patients with pancreatic cancer normally present with advanced disease that is lethal and notoriously difficult to treat. Survival has not improved dramatically despite routine use of chemotherapy and radiotherapy; this situation signifies an urgent need for novel therapeutic approaches. Over the past decade, a large number of studies have been published that aimed to target the molecular abnormalities implicated in pancreatic tumor growth, invasion, metastasis, angiogenesis and resistance to apoptosis. This research is of particular importance, as data suggest that a large number of genetic alterations affect only a few major signaling pathways and processes involved in pancreatic tumorigenesis. Although laboratory results of targeted therapies have been impressive, until now only erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, has demonstrated modest survival benefit in combination with gemcitabine in a phase III clinical trial. Whilst the failures of targeted therapies in the clinical setting are discouraging, lessons have been learnt and new therapeutic targets that hold promise for the future management of the disease are continuously emerging. This Review describes some of the important developments and targeted agents for pancreatic cancer that have been tested in clinical trials.
Collapse
Affiliation(s)
- Han H Wong
- Centre for Molecular Oncology and Imaging, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | |
Collapse
|
11
|
Li DB, Zheng ZG, Xu XM, Guo H, Zhao XL, Huang LF, Cai JH. Effect of short hairpin RNA on K-ras expression in human pancreatic cancer cell line. Shijie Huaren Xiaohua Zazhi 2008; 16:3941. [DOI: 10.11569/wcjd.v16.i35.3941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|