1
|
Li Y, Gao Y, Yao D, Li Z, Wang J, Zhang X, Zhao X, Zhang Y. Heme Oxygenase-1 Regulates Zearalenone-Induced Oxidative Stress and Apoptosis in Sheep Follicular Granulosa Cells. Int J Mol Sci 2024; 25:2578. [PMID: 38473826 DOI: 10.3390/ijms25052578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Zearalenone (ZEA) is a common non-steroidal estrogenic mycotoxin found in a range of animal feeds and poses a serious threat to the reproductive health of farm animals and humans. However, the mechanism underlying ZEA-induced reproductive toxicity in sheep remains unknown. Granulosa cells are crucial for egg maturation and the fertility of female sheep. In this study, we aimed to examine the impact of different ZEA concentrations on sheep follicular granulosa cells and to elucidate the potential molecular mechanism underlying ZEA-induced toxicity using transcriptome sequencing and molecular biological approaches. Treating primary sheep follicular granulosa cells with different concentrations of ZEA promoted the overproduction of reactive oxygen species (ROS), increased lipid peroxidation products, led to cellular oxidative stress, decreased antioxidant enzyme activities, and induced cell apoptosis. Using transcriptome approaches, 1395 differentially expressed genes were obtained from sheep follicular granulosa cells cultured in vitro after ZEA treatment. Among them, heme oxygenase-1 (HMOX1) was involved in 11 biological processes. The protein interaction network indicated interactions between HMOX1 and oxidative and apoptotic proteins. In addition, N-acetylcysteine pretreatment effectively reduced the ZEA-induced increase in the expression of HMOX1 and Caspase3 by eliminating ROS. Hence, we suggest that HMOX1 is a key differential gene involved in the regulation of ZEA-induced oxidative stress and apoptosis in follicular granulosa cells. These findings provide novel insights into the prevention and control of mycotoxins in livestock.
Collapse
Affiliation(s)
- Yina Li
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yujin Gao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Dan Yao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Zongshuai Li
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jiamian Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xijun Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
2
|
Zhang Q, Bai X, Lin T, Wang X, Zhang B, Dai L, Shi J, Zhang Y, Zhao X. HMOX1 Promotes Ferroptosis in Mammary Epithelial Cells via FTH1 and Is Involved in the Development of Clinical Mastitis in Dairy Cows. Antioxidants (Basel) 2022; 11:2221. [PMID: 36421410 PMCID: PMC9686786 DOI: 10.3390/antiox11112221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 08/26/2023] Open
Abstract
Ferroptosis is associated with inflammatory diseases as a lethal iron-dependent lipid peroxidation; its role in the development of clinical mastitis (CM) in dairy cows is not well understood. The aim of this study was to identify differentially expressed proteins (DEPs) associated with iron homeostasis and apoptosis, and to investigate further their roles in dairy cows with CM. The results suggested that ferroptosis occurs in the mammary glands of Holstein cows with CM. Using data-independent acquisition proteomics, 302 DEPs included in 11 GO terms related to iron homeostasis and apoptosis were identified. In particular, heme oxygenase-1 (HMOX1) was identified and involved in nine pathways. In addition, ferritin heavy chain 1 (FTH1) was identified and involved in the ferroptosis pathway. HMOX1 and FTH1 were located primarily in mammary epithelial cells (MECs), and displayed significantly up-regulated expression patterns compared to the control group (healthy cows). The expression levels of HMOX1 and FTH1 were up-regulated in a dose-dependent manner in LPS induced MAC-T cells with increased iron accumulation. The expression levels of HMOX1 and FTH1 and iron accumulation levels in the MAC-T cells were significantly up-regulated by using LPS, but were lower than the levels seen with Erastin (ERA). Finally, we deduced the mechanism of ferroptosis in the MECs of Holstein cows with CM. These results provide new insights for the prevention and treatment of ferroptosis-mediated clinical mastitis in dairy animals.
Collapse
Affiliation(s)
- Quanwei Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xu Bai
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ting Lin
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xueying Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Bohao Zhang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Lijun Dai
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Jun Shi
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Life Science and Technology, Gansu Agriculture University, Lanzhou 730070, China
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Reproductive Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
3
|
Dhawan S. Therapeutic Potential of Inducible Endogenous Cytoprotective Heme Oxygenase-1 in Mitigating SARS-CoV-2 Infection and Associated Inflammation. Antioxidants (Basel) 2022; 11:662. [PMID: 35453347 PMCID: PMC9028590 DOI: 10.3390/antiox11040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
The inducible cytoprotective enzyme heme oxygenase-1 (HO-1) has gained significant recognition in recent years for mediating strong cellular resistance to a broad range of viral infections, regardless of the type of viruses, viral strains, or mutants. HO-1 is not a typical antiviral agent that targets any particular pathogen. It is a "viral tropism independent" endogenous host defense factor that upon induction provides general cellular protection against pathogens. By virtue of HO-1 being widely distributed intracellular enzyme in virtually every cell, this unique host factor presents a novel class of generic host defense system against a variety of viral infections. This Viewpoint proposes pharmacological evaluation of the HO-1-dependent cellular resistance for its potential in mitigating infections by deadly viruses, including the current severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), its variants, and mutants. HO-1-dependent cellular resistance against SARS-CoV-2 can complement current medical modalities for much effective control of the COVID-19 pandemic, especially with constantly emerging new viral variants and limited therapeutic options to treat SARS-CoV-2 infection and associated severe health consequences.
Collapse
Affiliation(s)
- Subhash Dhawan
- Retired Senior FDA Research & Regulatory Scientist, 9890 Washingtonian Blvd., #703, Gaithersburg, MD 20878, USA
| |
Collapse
|
4
|
Luo K, Ogawa M, Ayer A, Britton WJ, Stocker R, Kikuchi K, Oehlers SH. Zebrafish Heme Oxygenase 1a Is Necessary for Normal Development and Macrophage Migration. Zebrafish 2022; 19:7-17. [PMID: 35108124 DOI: 10.1089/zeb.2021.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Heme oxygenase function is highly conserved between vertebrates where it plays important roles in normal embryonic development and controls oxidative stress. Expression of the zebrafish heme oxygenase 1 genes is known to be responsive to oxidative stress suggesting a conserved physiological function. In this study, we generate a knockout allele of zebrafish hmox1a and characterize the effects of hmox1a and hmox1b loss on embryonic development. We find that loss of hmox1a or hmox1b causes developmental defects in only a minority of embryos, in contrast to Hmox1 gene deletions in mice that cause loss of most embryos. Using a tail wound inflammation assay we find a conserved role for hmox1a, but not hmox1b, in normal macrophage migration to the wound site. Together our results indicate that zebrafish hmox1a has clearly a partitioned role from hmox1b that is more consistent with conserved functions of mammalian Heme oxygenase 1.
Collapse
Affiliation(s)
- Kaiming Luo
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Masahito Ogawa
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Anita Ayer
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,The Heart Research Institute, Newtown, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,The Heart Research Institute, Newtown, Australia
| | - Kazu Kikuchi
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,National Cerebral and Cardiovascular Center, Suita, Japan
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Sydney Institute for Infectious Diseases, The University of Sydney, Camperdown, Australia
| |
Collapse
|
5
|
Huang H, Dabrazhynetskaya A, Pluznik J, Zheng J, Wu Y, Chizhikov V, Buehler PW, Yamada KM, Dhawan S. Hemin activation abrogates Mycoplasma hyorhinis replication in chronically infected prostate cancer cells via heme oxygenase-1 induction. FEBS Open Bio 2021; 11:2727-2739. [PMID: 34375508 PMCID: PMC8487054 DOI: 10.1002/2211-5463.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/16/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma hyorhinis (M. hyorhinis) lacks a cell wall and resists multiple antibiotics. We describe here the striking > 90% inhibitory effect of hemin, a natural inducer of the cytoprotective enzyme heme oxygenase‐1 (HO‐1), on M. hyorhinis replication in chronically infected LNCaP prostate cancer cells. The role of HO‐1 in interrupting M. hyorhinis replication was confirmed by HO‐1‐specific siRNA suppression of hemin‐induced HO‐1 protein expression, which increased intracellular M. hyorhinis DNA levels in LNCaP cells. Proteomic analysis and transmission electron microscopy of hemin‐treated cells confirmed the complete absence of M. hyorhinis proteins and intact microorganisms, respectively, strongly supporting these findings. Our study is the first to our knowledge suggesting therapeutic potential for activated HO‐1 in cellular innate responses against mycoplasma infection.
Collapse
Affiliation(s)
- Hanxia Huang
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Alena Dabrazhynetskaya
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Jacob Pluznik
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Jiwen Zheng
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring
| | - Yong Wu
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring
| | - Vladimir Chizhikov
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring
| | - Paul W Buehler
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring.,Department of Pathology, Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland School of Medicine, Baltimore
| | - Kenneth M Yamada
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda
| | - Subhash Dhawan
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring.,Retired Senior FDA Research & Regulatory Scientist, 9890 Washingtonian Blvd., #703, Gaithersburg, 20878
| |
Collapse
|
6
|
Ma Z, Pu F, Zhang X, Yan Y, Zhao L, Zhang A, Li N, Zhou EM, Xiao S. Carbon monoxide and biliverdin suppress bovine viral diarrhoea virus replication. J Gen Virol 2017; 98:2982-2992. [PMID: 29087274 DOI: 10.1099/jgv.0.000955] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bovine viral diarrhoea virus (BVDV) causes significant economic losses to the cattle industry worldwide. Previously, we demonstrated that heme oxygenase-1 (HO-1) can inhibit BVDV replication via an unknown molecular mechanism. To elucidate the mechanism involved, we assess whether the HO-1 downstream metabolites carbon monoxide (CO), biliverdin (BV) and iron affect BVDV replication. We treated Madin-Darby bovine kidney (MDBK) cells with an exogenous CO donor, CORM-2. We found that CORM-2 but not its inactive form (iCORM-2) inhibited BVDV replication in a dose-dependent and time duration-dependent manner, suggesting a CO-specific mediation of the CORM-2 antiviral effect. Direct incubation of BVDV with high-dose CORM-2 reduced virus titres, suggesting that CORM-2 attenuates BVDV growth by both physically inactivating virus particles in the extracellular environment and affecting intracellular BVDV replication, but mainly via an intracellular mechanism. Exogenous BV treatment, both post-infection and co-incubation with BVDV, inhibited BVDV replication in a dose-dependent manner, indicating that BV has potent antiviral activity against BVDV. Direct incubation of BVDV with BV had no significant effect on virus titres, indicating that BV is not virucidal and attenuates BVDV growth by affecting intracellular BVDV replication. Furthermore, BV was found to affect BVDV penetration but not attachment. However, increased iron via addition of FeCl3 did not interfere with BVDV replication. Collectively, the results of the present study demonstrate that the HO-1 metabolites BV and CO, but not iron, inhibit BVDV replication. These findings not only provide new insights into the molecular mechanism of HO-1 inhibition of BVDV replication but also suggest potential new control measures for future BVDV infection.
Collapse
Affiliation(s)
- Zhiqian Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Fengxing Pu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Xiaobin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Yunhuan Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Lijuan Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Angke Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Na Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - En-Min Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, Shaanxi, PR China
| |
Collapse
|
7
|
Abstract
Objective: The aim of this study was to summarize the interactions between hepatitis C virus (HCV) infection and iron overload, and to understand the mechanisms of iron overload in chronic hepatitis C (CHC) and the role iron plays in HCV life cycle. Data Sources: This review was based on data in articles published in the PubMed databases up to January 28, 2017, with the keywords “hepatitis C virus”, “iron overload”, “iron metabolism”, “hepcidin”, “translation”, and “replication”. Study Selection: Articles related to iron metabolism, iron overload in patients with CHC, or the effects of iron on HCV life cycle were selected for the review. Results: Iron overload is common in patients with CHC. The mechanisms involve decreased hepcidin levels caused by HCV through signal transducer and activator of transcription 3, mitogen-activated protein kinase, or bone morphogenetic protein/SMAD signaling pathways, and the altered expression of other iron-metabolism-related genes. Some studies found that iron increases HCV replication, while other studies found the opposite result. Most of the studies suggest the positive role of iron on HCV translation, the mechanisms of which involve increased expression levels of factors associated with HCV internal ribosome entry site-dependent translation, such as eukaryotic initiation factor 3 and La protein. Conclusion: The growing literature demonstrates that CHC leads to iron overload, and iron affects the HCV life cycle in turn. Further research should be conducted to clarify the mechanism involved in the complicated interaction between iron and HCV.
Collapse
Affiliation(s)
- Dong-Mei Zou
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wan-Ling Sun
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
8
|
Ivanov AV, Valuev-Elliston VT, Tyurina DA, Ivanova ON, Kochetkov SN, Bartosch B, Isaguliants MG. Oxidative stress, a trigger of hepatitis C and B virus-induced liver carcinogenesis. Oncotarget 2017; 8:3895-3932. [PMID: 27965466 PMCID: PMC5354803 DOI: 10.18632/oncotarget.13904] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Daria A. Tyurina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Birke Bartosch
- Inserm U1052, Cancer Research Center Lyon, University of Lyon, Lyon, France
- DevWeCan Laboratories of Excellence Network, France
| | - Maria G. Isaguliants
- Riga Stradins University, Riga, Latvia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Huang H, Falgout B, Takeda K, Yamada KM, Dhawan S. Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication. Virology 2017; 503:1-5. [PMID: 28068513 DOI: 10.1016/j.virol.2016.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/09/2023]
Abstract
We identified primary human monocyte-derived macrophages (MDM) as vulnerable target cells for Zika virus (ZIKV) infection. We demonstrate dramatic effects of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of ZIKV replication in vitro. Both LLC-MK2 monkey kidney cells and primary MDM exhibited hemin-induced HO-1 expression with major reductions of >90% in ZIKV replication, with little toxicity to infected cells. Silencing expression of HO-1 or its upstream regulatory gene, nuclear factor erythroid-related factor 2 (Nrf2), attenuated hemin-induced suppression of ZIKV infection, suggesting an important role for induction of these intracellular mediators in retarding ZIKV replication. The inverse correlation between hemin-induced HO-1 levels and ZIKV replication provides a potentially useful therapeutic modality based on stimulation of an innate cellular response against Zika virus infection.
Collapse
Affiliation(s)
- Hanxia Huang
- Food and Drug Administration, Silver Spring, MD, United States
| | - Barry Falgout
- Food and Drug Administration, Silver Spring, MD, United States
| | - Kazuyo Takeda
- Food and Drug Administration, Silver Spring, MD, United States
| | | | - Subhash Dhawan
- Food and Drug Administration, Silver Spring, MD, United States.
| |
Collapse
|
10
|
Huang H, Zhou ZH, Adhikari R, Yamada KM, Dhawan S. Defective iron homeostasis in human immunodeficiency virus type-1 latency. CURRENT TRENDS IN IMMUNOLOGY 2016; 17:125-131. [PMID: 28824260 PMCID: PMC5562369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly active antiretroviral therapy has significantly improved the life of HIV-1-infected individuals, yet complete eradication of HIV-1 reservoirs (i.e., latently infected cells) remains a major challenge. We have previously shown that induction of the endogenous cytoprotective enzyme heme oxygenase-1 (HO-1) by its natural substrate hemin reduces susceptibility of T cells and macrophages to HIV-1 infection. In the present study, we demonstrate that hemin treatment stimulated virus production by latently infected ACH-2 cells, followed by cellular toxicity and death when stimulated with TNF-α or co-cultured with monocyte-derived macrophages (MDM). This cytotoxicity was associated with low levels of the iron-binding protein ferritin and the iron transporter ferroportin with lack of hemoglobin catabolic enzyme HO-1, resulting in substantial iron accumulation in the activated ACH-2 cells. Defective iron homeostasis in ACH-2 cells provides a model system for selective targeting of the latent HIV-1 reservoir by hemin-induced iron toxicity.
Collapse
Affiliation(s)
- Hanxia Huang
- Food and Drug Administration, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhao-Hua Zhou
- Food and Drug Administration, National Institutes of Health, Bethesda, Maryland, USA
| | - Rewati Adhikari
- Food and Drug Administration, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth M Yamada
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Subhash Dhawan
- Food and Drug Administration, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Huang H, Konduru K, Solovena V, Zhou ZH, Kumari N, Takeda K, Nekhai S, Bavari S, Kaplan GG, Yamada KM, Dhawan S. Therapeutic potential of the heme oxygenase-1 inducer hemin against Ebola virus infection. CURRENT TRENDS IN IMMUNOLOGY 2016; 17:117-123. [PMID: 28133423 PMCID: PMC5267496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Promising drugs to treat Ebola virus (EBOV) infection are currently being developed, but so far none has shown efficacy in clinical trials. Drugs that can stimulate host innate defense responses may retard the progression of EBOV disease. We report here the dramatic effect of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of EBOV replication. Treatment of primary monocyte-derived macrophages (MDM), Vero E6 cells, HeLa cells, and human foreskin fibroblasts (HFF1) with hemin reduced EBOV infection by >90%, and showed minimal toxicity to infected cells. Inhibition of HO-1 enzymatic activity and silencing HO-1 expression prevented the hemin-mediated suppression of EBOV infection, suggesting an important role for induction of this intracellular mediator in restricting EBOV replication. The inverse correlation between hemin-induced HO-1 and EBOV replication provides a potentially useful therapeutic modality based on the stimulation of an innate cellular response against Ebola infection.
Collapse
Affiliation(s)
- Hanxia Huang
- Food and Drug Administration, Silver Spring, Maryland
| | | | - Veronica Solovena
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | - Zhao-Hua Zhou
- Food and Drug Administration, Silver Spring, Maryland
| | - Namita Kumari
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington DC
| | - Kazuyo Takeda
- Food and Drug Administration, Silver Spring, Maryland
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington DC
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland
| | | | - Kenneth M. Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
12
|
Abstract
The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a major regulator of oxidative stress defence in the human body. As Nrf2 regulates the expression of a large battery of cytoprotective genes, it plays a crucial role in the prevention of degenerative disease in multiple organs. Thus it has been the focus of research as a pharmacological target that could be used for prevention and treatment of chronic diseases such as multiple sclerosis, chronic kidney disease or cardiovascular diseases. The present review summarizes promising findings from basic research and shows which Nrf2-targeting therapies are currently being investigated in clinical trials and which agents have already entered clinical practice.
Collapse
|
13
|
Darwish SF, El-Bakly WM, El-Naga RN, Awad AS, El-Demerdash E. Antifibrotic mechanism of deferoxamine in concanavalin A induced-liver fibrosis: Impact on interferon therapy. Biochem Pharmacol 2015; 98:231-242. [PMID: 26358138 DOI: 10.1016/j.bcp.2015.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/02/2015] [Indexed: 02/07/2023]
Abstract
Iron-overload is a well-known factor of hepatotoxicity and liver fibrosis, which found to be a common finding among hepatitis C virus patients and related to interferon resistance. We aimed to elucidate the potential antifibrotic effect of deferoxamine; the main iron chelator, and its additional usefulness to interferon-based therapy in concanavalin A-induced immunological model of liver fibrosis. Rats were treated with deferoxamine and/or pegylated interferon-α for 6 weeks. Hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. Concanavalin A induced a significant increase in hepatotoxicity indices and lipid peroxidation accompanied with a significant depletion of total antioxidant capacity, glutathione level and superoxide dismutase activity. Besides, it increased CD4(+) T-cells content and the downstream inflammatory cascades, including NF-κB, TNF-α, iNOS, COX-2, IL-6 and IFN-γ. Furthermore, α-SMA, TGF-β1 and hydroxyproline were increased markedly, which confirmed by histopathology. Treatment with either deferoxamine or pegylated interferon-α alone reduced liver fibrosis markers significantly and improved liver histology. However, some of the hepatotoxicity indices and oxidative stress markers did not improve upon pegylated interferon-α treatment alone, besides the remarkable increase in IL-6. Combination therapy of deferoxamine with pegylated interferon-α further improved all previous markers, ameliorated IL-6 elevation, as well as increased hepcidin expression. In conclusion, our study provides evidences for the potent antifibrotic effects of deferoxamine and the underlying mechanisms that involved attenuating oxidative stress and subsequent inflammatory cascade, as well as the production of profibrogenic factors. Addition of deferoxamine to interferon regimen for HCV patients may offer a promising adjuvant modality to enhance therapeutic response.
Collapse
Affiliation(s)
- Samar F Darwish
- Central Administration of Pharmaceutical Affairs, Cairo, Egypt
| | - Wesam M El-Bakly
- Pharmacology & Therapeutic Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reem N El-Naga
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Azza S Awad
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
14
|
Meseda CA, Srinivasan K, Wise J, Catalano J, Yamada KM, Dhawan S. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection. Biochem Biophys Res Commun 2014; 454:84-8. [PMID: 25450361 DOI: 10.1016/j.bbrc.2014.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Abstract
Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.
Collapse
Affiliation(s)
- Clement A Meseda
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, United States
| | - Kumar Srinivasan
- Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, United States
| | | | - Jennifer Catalano
- Center for Tobacco Products, Food and Drug Administration, Bethesda, MD, United States
| | - Kenneth M Yamada
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Subhash Dhawan
- Division of Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, United States.
| |
Collapse
|
15
|
Sikorska K, Bernat A. Iron homeostasis and its regulators over the course of chronic hepatitis C. Future Virol 2014. [DOI: 10.2217/fvl.14.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Chronic infection with HCV has been diagnosed in approximately 170 million people worldwide. It is an important cause of chronic, progressive liver fibrosis. Late consequences of chronic HCV infection, including liver cirrhosis and hepatocellular carcinoma, have become the major indications for liver transplantation in developed countries. Particular attention is being paid to iron accumulation in chronic hepatitis C and its relation to the current antiviral therapy's efficacy and safety, risk of exacerbation of oxidative stress, development of metabolic disorders and hepatocarcinogenesis. HCV infection disrupts the synthesis of hepcidin, which regulates extracellular iron content. This article discusses the impact of iron on HCV multiplication and the involvement of impaired iron homeostasis in chronic hepatitis C in terms of the pathogenesis of insulin resistance, fatty liver and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Katarzyna Sikorska
- Department of Infectious Diseases, Medical University of Gdansk. 80-214 Gdansk, Smoluchowskiego 18, Poland
| | - Agnieszka Bernat
- Intercollegiate Faculty of Biotechnology, University of Gdansk & Medical University of Gdansk. 80-822 Gdansk, Kladki 24, Poland
| |
Collapse
|
16
|
Ghio AJ, Soukup JM, Dailey LA, Richards JH, Duncan KE, Lehmann J. Iron decreases biological effects of ozone exposure. Inhal Toxicol 2014; 26:391-9. [DOI: 10.3109/08958378.2014.908330] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Sun L, Zhao Y, Gu S, Mao Y, Ji C, Xin X. Regulation of the HMOX1 gene by the transcription factor AP-2δ with unique DNA binding site. Mol Med Rep 2014; 10:423-8. [PMID: 24789576 DOI: 10.3892/mmr.2014.2196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/18/2014] [Indexed: 11/06/2022] Open
Abstract
AP-2 transcription factors are important sequence-specific DNA-binding regulators that are expressed in the neural crest and other tissues during mammalian development. The human AP-2 family of transcription factors consists of five members, AP-2α, -β, -γ, -δ and -ε, which have an important role in the regulation of gene expression during development and in the differentiation of multiple organs and tissues. The present study aimed to investigate the mechanism by which AP-2δ mediates heme oxygenase-1 (HMOX1) gene expression. It was identified that the human AP-2δ protein exhibited weak binding to a suboptimal AP-2 sequence, 5'-GCCN3GGC-3', to which all other AP-2 proteins bind in vitro, providing the first example of DNA target specificity amongst the AP-2 family. AP-2δ protein bound to an optimized AP-2 consensus DNA sequence, 5'-GCCTGAGGC-3', in vitro and transactivated gene expression in eukaryotic cells. The transactivation domain of Ap-2δ differs notably from those in the other AP-2 proteins as it lacks the PY motif (XPPXY) and several other conserved residues that are important for the transcriptional activity of AP-2 proteins, yet it functions as an equally strong activator.
Collapse
Affiliation(s)
- Liyun Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yuxia Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Shaohua Gu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Yumin Mao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Chaoneng Ji
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Xiujuan Xin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
18
|
Jabłonowska E, Wójcik K, Szymańska B, Omulecka A, Cwiklińska H, Piekarska A. Hepatic HMOX1 expression positively correlates with Bach-1 and miR-122 in patients with HCV mono and HIV/HCV coinfection. PLoS One 2014; 9:e95564. [PMID: 24752012 PMCID: PMC3994072 DOI: 10.1371/journal.pone.0095564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/28/2014] [Indexed: 12/23/2022] Open
Abstract
Aim To analyze the expression of HMOX1 and miR-122 in liver biopsy samples obtained from HCV mono-and HIV/HCV co-infected patients in relation to selected clinical parameters, histological examination and IL-28B polymorphism as well as to determine whether HMOX1 expression is dependent on Bach-1. Materials and Methods The study group consisted of 90 patients with CHC: 69 with HCV mono and 21 with HIV/HCV co-infection. RT-PCR was used in the analysis of HMOX1, Bach-1 and miR-122 expression in liver biopsy samples and in the assessment of IL-28B single-nucleotide polymorphism C/T (rs12979860) in the blood. Moreover in liver biopsy samples an analysis of HO-1 and Bach-1 protein level by Western Blot was performed. Results HCV mono-infected patients, with lower grading score (G<2) and higher HCV viral load (>600000 IU/mL) demonstrated higher expression of HMOX1. In patients with HIV/HCV co-infection, the expression of HMOX1 was lower in patients with lower lymphocyte CD4 count and higher HIV viral load. IL28B polymorphism did not affect the expression of either HMOX1 or miR-122. Higher HMOX1 expression correlated with higher expression of Bach-1 (Spearman’s ρ = 0.586, p = 0.000001) and miR-122 (Spearman’s ρ = 0.270, p = 0.014059). Conclusions HMOX1 and miR-122 play an important role in the pathogenesis of CHC in HCV mono-and HIV/HCV co-infected patients. Reduced expression of HMOX1 in patients with HIV/HCV co-infection may indicate a worse prognosis in this group. Our results do not support the importance of Bach-1 in repression of HMOX1 in patients with chronic hepatitis C.
Collapse
Affiliation(s)
- Elżbieta Jabłonowska
- Department of Infectious Diseases and Hepatology, Medical University of Lodz, Łódź, Poland
| | - Kamila Wójcik
- Department of Infectious Diseases and Hepatology, Medical University of Lodz, Łódź, Poland
| | | | - Aleksandra Omulecka
- Department of Pathology, Biegański Provincial Specialistic Hospital, Łódź, Poland
| | - Hanna Cwiklińska
- Laboratory of Neuroimmunology, Department of Neurology, Medical University of Łódź, Poland
| | - Anna Piekarska
- Department of Infectious Diseases and Hepatology, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
19
|
Inhibition of replication of porcine reproductive and respiratory syndrome virus by hemin is highly dependent on heme oxygenase-1, but independent of iron in MARC-145 cells. Antiviral Res 2014; 105:39-46. [PMID: 24583029 DOI: 10.1016/j.antiviral.2014.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/19/2014] [Accepted: 02/13/2014] [Indexed: 11/22/2022]
Abstract
Current vaccines against porcine reproductive and respiratory syndrome virus (PRRSV) have failed to provide sustainable disease control, and development of new antiviral strategies is of great importance. The present study investigated the mechanism of the antiviral effect of hemin during PRRSV infection in MARC-145 cells. Hemin, a commercial preparation of heme, is used as an iron donor or heme oxygenase 1 (HO-1) inducer, and has been shown to provide antiviral activity in many studies. In the current study, the anti-PRRSV activity of hemin was identified through suppressing PRRSV propagation. The 50% inhibitory concentration (IC50) of hemin antiviral activity was estimated to be 32μM, and the 50% cytotoxic concentration (CC50) of hemin was found to be higher than 125μM. Further study showed that the antiviral activity of hemin is independent of iron. In addition, after treatment with Protoporphyrin IX zinc (II) (ZnPP) or Sn (IV) Protoporphyrin IX dichloride (SnPP), inhibitors of HO-1, the inhibition of viral replication by hemin was partially reversed. Additionally, it was confirmed that hemin and N-acetyl cysteine were able to significantly reduce reactive oxygen species (ROS) in MARC-145 cells infected with virus. N-acetyl-L-cysteine (NAC), however, did not produce a reduction in viral load or promote expression of HO-1. Taken together, these data indicate that the effect of hemin on the inhibition of PRRSV propagation via HO-1 induction, as well as the antiviral mechanism of HO-1, is not dependent on decreased levels of ROS. In conclusion, these data demonstrate that hemin had antiviral activity against PRRSV and may serve as a useful antiviral agent inhibiting PRRSV replication.
Collapse
|
20
|
Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages. Biochem Biophys Res Commun 2013; 435:373-7. [PMID: 23665328 PMCID: PMC3992914 DOI: 10.1016/j.bbrc.2013.04.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/29/2013] [Indexed: 12/29/2022]
Abstract
We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.
Collapse
|
21
|
Ivanov AV, Bartosch B, Smirnova OA, Isaguliants MG, Kochetkov SN. HCV and oxidative stress in the liver. Viruses 2013; 5:439-469. [PMID: 23358390 PMCID: PMC3640510 DOI: 10.3390/v5020439] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 12/26/2012] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) is the etiological agent accounting for chronic liver disease in approximately 2-3% of the population worldwide. HCV infection often leads to liver fibrosis and cirrhosis, various metabolic alterations including steatosis, insulin and interferon resistance or iron overload, and development of hepatocellular carcinoma or non-Hodgkin lymphoma. Multiple molecular mechanisms that trigger the emergence and development of each of these pathogenic processes have been identified so far. One of these involves marked induction of a reactive oxygen species (ROS) in infected cells leading to oxidative stress. To date, markers of oxidative stress were observed both in chronic hepatitis C patients and in various in vitro systems, including replicons or stable cell lines expressing viral proteins. The search for ROS sources in HCV-infected cells revealed several mechanisms of ROS production and thus a number of cellular proteins have become targets for future studies. Furthermore, during last several years it has been shown that HCV modifies antioxidant defense mechanisms. The aim of this review is to summarize the present state of art in the field and to try to predict directions for future studies.
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| | - Birke Bartosch
- CRCL, INSERM U1052, CNRS 5286, Université de Lyon, 151, Cours A Thomas 69424 Lyon Cedex France; E-Mail:
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| | - Maria G. Isaguliants
- Department of Molecular Biology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg 16 17177 Stockholm, Sweden; E-Mail:
- D.I. Ivanovsky Institute of Virology, Gamaleya Str. 16, 123098 Moscow, Russia; E-Mail:
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, Moscow 119991, Russia; E-Mails: (A.I.); (O.S.); (S.K.)
| |
Collapse
|
22
|
Schmidt WN, Mathahs MM, Zhu Z. Heme and HO-1 Inhibition of HCV, HBV, and HIV. Front Pharmacol 2012; 3:129. [PMID: 23060790 PMCID: PMC3463857 DOI: 10.3389/fphar.2012.00129] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/18/2012] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus, human immunodeficiency virus, and hepatitis B virus are chronic viral infections that cause considerable morbidity and mortality throughout the world. In the decades following the identification and sequencing of these viruses, in vitro experiments demonstrated that heme oxygenase-1, its oxidative products, and related compounds of the heme oxygenase system inhibit replication of all 3 viruses. The purpose of this review is to critically evaluate and summarize the seminal studies that described and characterized this remarkable behavior. It will also discuss more recent work that discovered the antiviral mechanisms and target sites of these unique antiviral agents. In spite of the fact that these viruses are diverse pathogens with quite profound differences in structure and life cycle, it is significant that heme and related compounds show striking similarity for viral target sites across all three species. Collectively, these findings strongly indicate that we should move forward and develop heme and related tetrapyrroles into versatile antiviral agents that could be used therapeutically in patients with single or multiple viral infections.
Collapse
Affiliation(s)
- Warren N Schmidt
- Department of Internal Medicine and Research Service, Veterans Affairs Medical Center, University of Iowa Iowa City, IA, USA ; Department of Internal Medicine, Roy G. and Lucille A. Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | | | | |
Collapse
|
23
|
|
24
|
Hou W, Tian Q, Steuerwald NM, Schrum LW, Bonkovsky HL. The let-7 microRNA enhances heme oxygenase-1 by suppressing Bach1 and attenuates oxidant injury in human hepatocytes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1113-22. [PMID: 22698995 DOI: 10.1016/j.bbagrm.2012.06.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/15/2012] [Accepted: 06/04/2012] [Indexed: 12/29/2022]
Abstract
The let-7 microRNA (miRNA) plays important roles in human liver development and diseases such as hepatocellular carcinoma, liver fibrosis and hepatitis wherein oxidative stress accelerates the progression of these diseases. To date, the role of the let-7 miRNA family in modulation of heme oxygenase 1 (HMOX1), a key cytoprotective enzyme, remains unknown. Our aims were to determine whether let-7 miRNA directly regulates Bach1, a transcriptional repressor of the HMOX1 gene, and whether indirect up-regulation of HMOX1 by let-7 miRNA attenuates oxidant injury in human hepatocytes. The effects of let-7 miRNA on Bach1 and HMOX1 gene expression in Huh-7 and HepG2 cells were determined by real-time qRT-PCR, Western blot, and luciferase reporter assays. Dual luciferase reporter assays revealed that let-7b, let-7c, or miR-98 significantly decreased Bach1 3'-untranslated region (3'-UTR)-dependent luciferase activity but not mutant Bach1 3'-UTR-dependent luciferase activity, whereas mutant let-7 miRNA containing base complementarity with mutant Bach1 3'-UTR restored its effect on mutant reporter activity. let-7b, let-7c, or miR-98 down-regulated Bach1 protein levels by 50-70%, and subsequently up-regulated HMOX1 gene expression by 3-4 fold, compared with non-specific controls. Furthermore, Huh-7 cells transfected with let-7b, let-7c or miR-98 mimic showed increased resistance against oxidant injury induced by tert-butyl-hydroperoxide (tBuOOH), whereas the protection was abrogated by over-expression of Bach1. In conclusion, let-7 miRNA directly acts on the 3'-UTR of Bach1 and negatively regulates expression of this protein, and thereby up-regulates HMOX1 gene expression. Over-expression of the let-7 miRNA family members may represent a novel approach to protecting human hepatocytes from oxidant injury.
Collapse
Affiliation(s)
- Weihong Hou
- The Liver-Biliary-Pancreatic Center, Carolinas Medical Center, Charlotte, NC, USA.
| | | | | | | | | |
Collapse
|
25
|
Choi J. Oxidative stress, endogenous antioxidants, alcohol, and hepatitis C: pathogenic interactions and therapeutic considerations. Free Radic Biol Med 2012; 52:1135-50. [PMID: 22306508 DOI: 10.1016/j.freeradbiomed.2012.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/04/2012] [Accepted: 01/12/2012] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen that was identified as an etiologic agent of non-A, non-B hepatitis in 1989. HCV is estimated to have infected at least 170 million people worldwide. The majority of patients infected with HCV do not clear the virus and become chronically infected, and chronic HCV infection increases the risk for hepatic steatosis, cirrhosis, and hepatocellular carcinoma. HCV induces oxidative/nitrosative stress from multiple sources, including inducible nitric oxide synthase, the mitochondrial electron transport chain, hepatocyte NAD(P)H oxidases, and inflammation, while decreasing glutathione. The cumulative oxidative burden is likely to promote both hepatic and extrahepatic conditions precipitated by HCV through a combination of local and more distal effects of reactive species, and clinical, animal, and in vitro studies strongly point to a role of oxidative/nitrosative stress in HCV-induced pathogenesis. Oxidative stress and hepatopathogenesis induced by HCV are exacerbated by even low doses of alcohol. Alcohol and reactive species may have other effects on hepatitis C patients such as modulation of the host immune system, viral replication, and positive selection of HCV sequence variants that contribute to antiviral resistance. This review summarizes the current understanding of redox interactions of HCV, outlining key experimental findings, directions for future research, and potential applications to therapy.
Collapse
Affiliation(s)
- Jinah Choi
- Department of Molecular Cell Biology, School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA.
| |
Collapse
|
26
|
Santangelo R, Mancuso C, Marchetti S, Di Stasio E, Pani G, Fadda G. Bilirubin: An Endogenous Molecule with Antiviral Activity in vitro. Front Pharmacol 2012; 3:36. [PMID: 22408623 PMCID: PMC3297833 DOI: 10.3389/fphar.2012.00036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/20/2012] [Indexed: 12/16/2022] Open
Abstract
Bilirubin-IX-alpha (BR) is the final product of heme metabolism through the heme oxygenase/biliverdin reductase (HO/BVR) system. Previous papers reported on the microbicidal effects of the HO by-products biliverdin-IX-alpha, carbon monoxide and iron, through either direct or indirect mechanisms. In this paper the evidence of a virucidal effect of BR against human herpes simplex virus type 1 (HSV-1) and the enterovirus EV71 was provided. Bilirubin-IX-alpha, at concentrations 1–10 μM, close to those found in blood and tissues, significantly reduced HSV-1 and EV71 replication in Hep-2 and Vero cell lines, respectively. Bilirubin-IX-alpha inhibited viral infection of Hep-2 and Vero cells when given 2 h before, concomitantly and 2 h after viral infection. Furthermore, BR retained its antiviral activity even complexed with a saturating concentration of human serum-albumin. Moreover, 10 μM BR increased the formation of nitric oxide and the phosphorylation of c-Jun N-terminal kinase in Vero and Hep-2 cell lines, respectively, thus implying a role of these two pathways in the mechanism of antiviral activity of the bile pigment. In conclusion, these results support the antiviral effect of BR against HSV-1 and enterovirus in vitro, and put the basis for further basic and clinical studies to understand the real role of BR as an endogenous antiviral molecule.
Collapse
Affiliation(s)
- Rosaria Santangelo
- Institute of Microbiology, Catholic University School of Medicine Roma, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Tian Q, Li T, Hou W, Zheng J, Schrum LW, Bonkovsky HL. Lon peptidase 1 (LONP1)-dependent breakdown of mitochondrial 5-aminolevulinic acid synthase protein by heme in human liver cells. J Biol Chem 2011; 286:26424-30. [PMID: 21659532 DOI: 10.1074/jbc.m110.215772] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
5-Aminolevulinic acid synthase (ALAS-1) is the first rate controlling enzyme that controls cellular heme biosynthesis. Negative feedback regulation of ALAS-1 by the end product heme is well documented and provides the foundation for heme treatment of acute porphyrias, a group of diseases caused by genetic defects in the heme biosynthesis pathway and exacerbated by controlled up-regulation of ALAS-1. Heme is known to affect ALAS-1 activity by repressing gene transcription, accelerating mRNA degradation, and impeding pre-ALAS-1 mitochondrial translocation. In the current study, we examined the effect of heme on the rate of mature ALAS-1 protein turnover in human cells and tissues and explored the mediator involved in this new regulatory mechanism. We found that heme and other metalloporphyrins such as CoPP and CrPP decreased mitochondrial ALAS-1 protein through proteolysis. This degradative effect cannot be emulated by iron or free protoporphyrin, two major chemical components of the heme ring, and is independent of oxidative stress. Down-regulating the activity of mitochondrial LONP1, an ATP-dependent protease that controls the selective turnover of mitochondrial matrix proteins, with potent inhibitors and specific siRNA diminished the negative effect of heme on mitochondrial ALAS-1. Therefore, our data support the existence of a conserved heme feedback regulatory mechanism that functions on the mature form of ALAS-1 protein through the activity of a mitochondrial proteolytic system.
Collapse
Affiliation(s)
- Qing Tian
- Liver, Digestive, and Metabolic Disorders Laboratory, Carolinas Medical Center, Charlotte, North Carolina 28203, USA
| | | | | | | | | | | |
Collapse
|
28
|
Bartolomei G, Cevik RE, Marcello A. Modulation of hepatitis C virus replication by iron and hepcidin in Huh7 hepatocytes. J Gen Virol 2011; 92:2072-2081. [PMID: 21593278 DOI: 10.1099/vir.0.032706-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several clinical observations point to an intricate crosstalk between iron (Fe) metabolism and chronic hepatitis C virus (HCV) infection. In this study, we wanted to investigate the molecular control that Fe levels exert on HCV replication at the hepatocyte level. In keeping with previous observations we confirmed that supra-physiological intracellular Fe induced by haemin treatment down-modulated HCV replication from subgenomic replicons. We also found that RNAi-mediated knockdown of the key Fe modulator hepcidin increased intracellular ferritin and inhibited HCV replication. Conversely, HCV replication did not modulate ferritin content in hepatocytes. Finally, we demonstrated that hepcidin is modulated at the mRNA level by alpha interferon through STAT3. We propose that in Huh7 cells hepcidin modulation leads to an unfavourable intracellular environment for HCV replication. These data may therefore contribute to a better understanding of the complex interplay between HCV and cellular physiology during infection.
Collapse
Affiliation(s)
- Giody Bartolomei
- Laboratory of Molecular Virology of the International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Recep Emrah Cevik
- Laboratory of Molecular Virology of the International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology of the International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
29
|
Simmons SO, Fan CY, Yeoman K, Wakefield J, Ramabhadran R. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent. CURRENT CHEMICAL GENOMICS 2011; 5:1-12. [PMID: 21643505 PMCID: PMC3106370 DOI: 10.2174/1875397301105010001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 02/05/2023]
Abstract
Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this study, we describe the development of an Nrf2-specific reporter gene assay that can be used to study the oxidative stress response in multiple cell types. Using five different cell lines, the Nrf2-activating potency of twenty metals was assessed across a range of concentrations. While ten of the metals tested (cadmium, cobalt, copper, gold, iron, lead, mercury, silver, sodium arsenite and zinc) stimulated Nrf2-dependent transcriptional activity in at least three of the engineered cell lines, only three (cadmium, copper and sodium arsenite) were active in all five cell lines. A comparison of metal-induced Nrf2 transcriptional activation revealed significant differences in the absolute magnitude of activation as well as the relative potencies between the cell lines tested. However, there was no direct correlation between activity and potency. Taken together, these results show that the capacity to stimulate Nrf2 activity and relative potencies of these test compounds are highly dependent on the cell type tested. Since oxidative stress is thought to be involved in the mode of action of many toxicological studies, this observation may inform the design of paradigms for toxicity testing for toxicant prioritization and characterization.
Collapse
Affiliation(s)
- Steven O Simmons
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US EPA, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|
30
|
Steuerwald NM, Parsons JC, Bennett K, Bates TC, Bonkovsky HL. Parallel microRNA and mRNA expression profiling of (genotype 1b) human hepatoma cells expressing hepatitis C virus. Liver Int 2010; 30:1490-504. [PMID: 20825557 DOI: 10.1111/j.1478-3231.2010.02321.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND & AIMS MicroRNAs (miRNAs) are members of a class of small noncoding functional RNAs that modulate gene regulation at the post-transcriptional level in a sequence specific manner. miRNA dysfunction has been linked to the pathophysiology of human diseases including those resulting from viral infections. The objective of this study was to investigate changes in miRNA profiles that occur in hepatoma cells expressing hepatitis C virus (HCV) and identify anticorrelated mRNAs, which may be their regulatory targets. METHODS Microarrays were used to perform global miRNA and mRNA expression analysis. Fold changes and pairwise statistics were computed for the resulting datasets. Hierarchical cluster and pathway analyses were performed to assess the degree of differential expression and identify regulatory networks. Bioinformatics tools were used to integrate mRNA profiling results with miRNA target predictions. RESULTS Replication of the Con1 strain of HCV virus in hepatoma cells elicited extensive differential expression of both miRNAs and mRNAs. Forty-three differentially expressed miRNAs (P≤0.001) were identified by microarray analysis in HCV expressing cells. Six thousand eight hundred and fifteen differentially expressed mRNAs (P≤0.05) were identified. Computational analyses revealed anticorrelated miRNA:mRNA pairs for each target prediction algorithm used. Pathway analysis generated a filtered pathway with 120 entities, including seven major regulators and nine major targets potentially under the control of at least 11 miRNAs. CONCLUSIONS The expression of a number of anticorrelated miRNAs:mRNA pairs are affected by the presence of HCV. These miRNAs and their putative targets are attractive candidates for being involved in the pathogenesis and/or progression of HCV-induced chronic hepatitis.
Collapse
Affiliation(s)
- Nury M Steuerwald
- The Laboratory for Liver Digestive and Metabolic Disorders, Liver Biliary and Pancreatic Center, Carolinas Medical Center, Cannon Research Center, Charlotte, NC 28203, USA.
| | | | | | | | | |
Collapse
|
31
|
|