1
|
Túrós D, Vasiljevic J, Hahn K, Rottenberg S, Valdeolivas A. Chrysalis: decoding tissue compartments in spatial transcriptomics with archetypal analysis. Commun Biol 2024; 7:1520. [PMID: 39550461 PMCID: PMC11569261 DOI: 10.1038/s42003-024-07165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024] Open
Abstract
Dissecting tissue compartments in spatial transcriptomics (ST) remains challenging due to limited spatial resolution and dependence on single-cell reference data. We present Chrysalis, a computational method that rapidly uncovers tissue compartments through spatially variable gene (SVG) detection and archetypal analysis without requiring external reference data. Additionally, it offers a unique visualisation approach for swift tissue characterisation and provides access to the underlying gene expression signatures, enabling the identification of spatially and functionally distinct cellular niches. Chrysalis was evaluated through various benchmarks and validated against deconvolution, independently obtained cell type abundance data, and histopathological annotations, demonstrating superior performance compared to other algorithms on both in silico and real-world test examples. Furthermore, we showcased its versatility across different technologies, such as Visium, Visium HD, Slide-seq, and Stereo-seq.
Collapse
Affiliation(s)
- Demeter Túrós
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Jelica Vasiljevic
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kerstin Hahn
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland.
| | - Alberto Valdeolivas
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
2
|
Zhao L, Zhao M, Wang X, Jia C. Proteomic Analysis of Caco-2 Cells Disrupted by EcN 1917-Derived OMVs Reveals Molecular Information on Bacteria-Mediated Cancer Cell Migration. J Proteome Res 2024; 23:2505-2517. [PMID: 38845157 DOI: 10.1021/acs.jproteome.4c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Escherichia coli Nissle 1917 (EcN 1917) exhibits distinct tumor-targeting activity, and early studies demonstrated that outer membrane vesicles (OMVs) mediate bacteria-host interactions. To decipher the molecular mechanism underlying the interaction between EcN 1917 and host cells via OMV-mediated communication, we investigated the phenotypic changes in Caco-2 cells perturbed by EcN 1917-derived OMVs and constructed proteomic maps of the EcN 1917-derived OMV components and OMV-perturbed host cells. Our findings revealed that the size of the EcN 1917-derived OMV proteome increased 4-fold. Treatment with EcN 1917-derived OMVs altered the proteomic and phosphoproteomic profiles of host cells. Importantly, for the first time, we found that treatment with EcN 1917-derived OMVs inhibited cancer cell migration by suppressing the expression of ANXA9. In addition, phosphoproteomic data suggested that the ErbB pathway may be involved in OMV-mediated cell migration. Taken together, our study provides valuable data for further investigations of OMV-mediated bacteria-host interactions and offers great insights into the underlying mechanism of probiotic-assisted colorectal cancer therapy.
Collapse
Affiliation(s)
- Ling Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
- National Center for Protein Sciences - Beijing, Beijing Proteome Research Center, State Key Laboratory of Medical Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Mingxin Zhao
- National Center for Protein Sciences - Beijing, Beijing Proteome Research Center, State Key Laboratory of Medical Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiankun Wang
- National Center for Protein Sciences - Beijing, Beijing Proteome Research Center, State Key Laboratory of Medical Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chenxi Jia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
- National Center for Protein Sciences - Beijing, Beijing Proteome Research Center, State Key Laboratory of Medical Proteomics, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
3
|
Nie X, Gao L, Zheng M, Wang S, Wang C, Li X, Liu O, Gou R, Liu J, Lin B. ST14 interacts with TMEFF1 and is a predictor of poor prognosis in ovarian cancer. BMC Cancer 2024; 24:330. [PMID: 38468232 DOI: 10.1186/s12885-024-11958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
TMEFF1 is a new protein involved in the physiological functions of the central nervous system, and we previously reported TMEFF1 can promote ovarian cancer. ST14 was determined to be involved in the processes of epidermal differentiation, epithelial cell integrity, and vascular endothelial cell migration, etc. The relationship between ST14 and TMEFF1 in the ovary remains unknown. In this study, we detected the expression of ST14 and TMEFF1 in 130 different ovarian cancer tissues through immunohistochemistry. We determined ST14 and TMEFF1 were highly expressed in ovarian cancer, indicating a higher degree of tumor malignancy and a worse prognosis. Tissues significantly expressing ST14 also highly expressed TMEFF1, and the expression of the two proteins was positively correlated. Consistently, immunofluorescence double staining demonstrated the co-localization of ST14 and TMEFF1 in the same region, and immunoprecipitation confirmed the interaction between ST14 and TMEFF1. TMEFF1 expression was also reduced after knocking down ST14 through Western blot. MTT, wound healing and Transwell assays results determined that knockdown of ST14 inhibited proliferation, migration and invasion of ovarian cancer cells in vitro, but the inhibitory effect was restored after adding TMEFF1 exogenous protein. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways analysis showed that ST14 and its related genes were enriched in the processes of epithelial formation, intercellular adhesion, protein localization, and mitosis regulation. We also clarified the kinase, microRNA, and transcription factor target networks and the impact of genetic mutations on prognosis. Overall, high expression of ST14 and TMEFF1 in ovarian cancer predicts higher tumor malignancy and a worse prognosis. ST14 and TMEFF1 co-localize and interact with each other in ovarian cancer. ST14 can regulate TMEFF1 expression to promote proliferation, migration and invasion of ovarian cancer cells. We speculate that the relationship between ST14 and TMEFF1 in ovarian cancer could become a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Xin Nie
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Lingling Gao
- Union Hospital, Tongji Medical College, Department of Obstetrics and Gynecology, Huazhong University of Science and Technology, Wuhan, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Shuang Wang
- Department of Gynecology and Obstetrics, Tianjin Central Gynecology and Obstetrics Hospital Affiliated to Nankai University, Tianjin, China
| | - Caixia Wang
- West China Second University Hospital, Department of Obstetrics and Gynecology, Sichuan University, Sichuan, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Heping District, 110004, Shenyang, China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.
| |
Collapse
|
4
|
Hammerschmidt SJ, Maus H, Weldert AC, Gütschow M, Kersten C. Improving binding entropy by higher ligand symmetry? - A case study with human matriptase. RSC Med Chem 2023; 14:969-982. [PMID: 37252099 PMCID: PMC10211324 DOI: 10.1039/d3md00125c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Understanding different contributions to the binding entropy of ligands is of utmost interest to better predict affinity and the thermodynamic binding profiles of protein-ligand interactions and to develop new strategies for ligand optimization. To these means, the largely neglected effects of introducing higher ligand symmetry, thereby reducing the number of energetically distinguishable binding modes on binding entropy using the human matriptase as a model system, were investigated. A set of new trivalent phloroglucinol-based inhibitors that address the roughly symmetric binding site of the enzyme was designed, synthesized, and subjected to isothermal titration calorimetry. These highly symmetric ligands that can adopt multiple indistinguishable binding modes exhibited high entropy-driven affinity in line with affinity-change predictions.
Collapse
Affiliation(s)
- Stefan J Hammerschmidt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Hannah Maus
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Annabelle C Weldert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|
5
|
Yao J, Xue X, Qu D, Westphalen CB, Ge Y, Zhang L, Li M, Gao T, Chandrakesan P, Vega KJ, Peng J, An G, Weygant N. Reverse engineering a predictive signature characterized by proliferation, DNA damage, and immune escape from stage I lung adenocarcinoma recurrence. Acta Biochim Biophys Sin (Shanghai) 2020; 52:638-653. [PMID: 32395755 DOI: 10.1093/abbs/gmaa036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/14/2020] [Indexed: 12/24/2022] Open
Abstract
Identifying early-stage cancer patients at risk for progression is a major goal of biomarker research. This report describes a novel 19-gene signature (19-GCS) that predicts stage I lung adenocarcinoma (LAC) recurrence and response to therapy and performs comparably in pancreatic adenocarcinoma (PAC), which shares LAC molecular traits. Kaplan-Meier, Cox regression, and cross-validation analyses were used to build the signature from training, test, and validation sets comprising 831 stage I LAC transcriptomes from multiple independent data sets. A statistical analysis was performed using the R language. Pathway and gene set enrichment were used to identify underlying mechanisms. 19-GCS strongly predicts overall survival and recurrence-free survival in stage I LAC (P=0.002 and P<0.001, respectively) and in stage I-II PAC (P<0.0001 and P<0.0005, respectively). A multivariate cox regression analysis demonstrated the independence of 19-GCS from significant clinical factors. Pathway analyses revealed that 19-GCS high-risk LAC and PAC tumors are characterized by increased proliferation, enhanced stemness, DNA repair deficiency, and compromised MHC class I and II antigen presentation along with decreased immune infiltration. Importantly, high-risk LAC patients do not appear to benefit from adjuvant cisplatin while PAC patients derive additional benefit from FOLFIRINOX compared with gemcitabine-based regimens. When validated prospectively, this proof-of-concept biomarker may contribute to tailoring treatment, recurrence reduction, and survival improvements in early-stage lung and pancreatic cancers.
Collapse
Affiliation(s)
- Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xinying Xue
- Department of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Dongfeng Qu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, 73103, OK, USA
- Stephenson Cancer Center, Oklahoma City, 73104, OK, USA
| | - C Benedikt Westphalen
- Comprehensive Cancer Center Munich & Department of Medicine III, Ludwig Maximilian University of Munich, 81377, Munich, Germany
| | - Yang Ge
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Liyang Zhang
- Xiangya Hospital, Central South University, Changsha 410008, China
| | - Manyu Li
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Tianbo Gao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Parthasarathy Chandrakesan
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, 73103, OK, USA
- Stephenson Cancer Center, Oklahoma City, 73104, OK, USA
| | - Kenneth J Vega
- Division of Gastroenterology and Hepatology, Augusta University, Augusta, 30912, GA, USA
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou 350122, China
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fuzhou 350122, China
| |
Collapse
|
6
|
Qi PF, Fang L, Li H, Li SK, Yang YS, Qi JL, Xu C, Zhu HL. Discovery of novel pyrazoline derivatives containing methyl-1H-indole moiety as potential inhibitors for blocking APC-Asef interactions. Bioorg Chem 2020; 99:103838. [PMID: 32334194 DOI: 10.1016/j.bioorg.2020.103838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/01/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022]
Abstract
A series of novel pyrazoline derivatives containing methyl-1H-indole moiety were discovered as potential inhibitors for blocking APC-Asef interactions. The top hit Q19 suggested potency of inhibiting APC-Asef interactions and attractive preference for human-sourced colorectal cells. It was already comparable with the previous representative and the positive control Regorafenib before further pharmacokinetic optimization. The introduction of methyl-1H-indole moiety realized the Mitochondrial affection thus might connect the impact on the protein-interaction level with the apoptosis events. The molecular docking simulation inferred that bringing trifluoromethyl groups seemed a promising approach for causing more key interactions such as H-bonds. This work raised referable information for further discovery of inhibitors for blocking APC-Asef interactions.
Collapse
Affiliation(s)
- Peng-Fei Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Li Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Shu-Kai Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Yan XQ, Wang ZC, Qi PF, Li G, Zhu HL. Design, synthesis and biological evaluation of 2-H pyrazole derivatives containing morpholine moieties as highly potent small molecule inhibitors of APC-Asef interaction. Eur J Med Chem 2019; 177:425-447. [PMID: 31158755 DOI: 10.1016/j.ejmech.2019.05.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/02/2019] [Accepted: 05/19/2019] [Indexed: 11/15/2022]
Abstract
Mutated adenomatous polyposis coli (APC) selectively combining with Asef has been reported to be implicated in promoting colon cancer proliferation, invasion and metastasis in several cancer biotherapy studies. However, there were universally resistance and harsh terms in disrupting APC-Asef interaction in biotherapy. Under the circumstances small-molecule inhibitors as the new APC interface could resolve the problems. In this research, a series of novel dihydropyrazole derivatives containing morpholine as high potent interaction inhibitors between APC and Asef were first synthesized after selection by means of docking simulation and virtual screening. Afterwards they were evaluated interaction inhibition of APC-Asef and pharmacological efficiency both in vitro and in vivo utilizing orthotopic transplantation model with multi-angle of view. Among them, compound 7g exhibited most excellent anti-proliferation activities against HCT116 cells with IC50 of 0.10 ± 0.01 μM than Regorafenib (IC50 = 0.16 ± 0.04 μM). The results favored our rational design intention and provides a new class of small-molecule inhibitors available for the development of colon tumor therapeutics targeting APC-Asef interaction inhibitions.
Collapse
Affiliation(s)
- Xiao-Qiang Yan
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China; Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China.
| | - Peng-Fei Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Guigen Li
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
8
|
Peptidomimetic inhibitors of APC-Asef interaction block colorectal cancer migration. Nat Chem Biol 2017; 13:994-1001. [PMID: 28759015 DOI: 10.1038/nchembio.2442] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 06/20/2017] [Indexed: 01/16/2023]
Abstract
The binding of adenomatous polyposis coli (APC) to its receptor Asef relieves the negative intramolecular regulation of Asef and leads to aberrant cell migration in human colorectal cancer. Because of its crucial role in metastatic dissemination, the interaction between APC and Asef is an attractive target for anti-colorectal-cancer therapy. We rationally designed a series of peptidomimetics that act as potent inhibitors of the APC interface. Crystal structures and biochemical and cellular assays showed that the peptidomimetics in the APC pocket inhibited the migration of colorectal cells by disrupting APC-Asef interaction. By using the peptidomimetic inhibitor as a chemical probe, we found that CDC42 was the downstream GTPase involved in APC-stimulated Asef activation in colorectal cancer cells. Our work demonstrates the feasibility of exploiting APC-Asef interaction to regulate the migration of colorectal cancer cells, and provides what to our knowledge is the first class of protein-protein interaction inhibitors available for the development of cancer therapeutics targeting APC-Asef signaling.
Collapse
|
9
|
Kitajima D, Kasamatsu A, Nakashima D, Miyamoto I, Kimura Y, Saito T, Suzuki T, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K. Tie2 Regulates Tumor Metastasis of Oral Squamous Cell Carcinomas. J Cancer 2016; 7:600-7. [PMID: 27053959 PMCID: PMC4820737 DOI: 10.7150/jca.13820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/22/2016] [Indexed: 01/12/2023] Open
Abstract
The endothelial-specific receptor, tyrosine kinase with immunoglobulin-like loops and epidermal growth factor homology domains-2 (Tie2) is a member of the tyrosine kinase family and is ubiquitous in normal tissues; however, little is known about the mechanisms and roles of Tie2 in oral squamous cell carcinomas (OSCCs). In the current study, we investigated the expression status of Tie2 in OSCCs by quantitative reverse transcriptase-polymerase chain reaction, immunoblotting, and immunohistochemistry and the functional mechanisms of Tie2 using its overexpressed OSCC (oeTie2) cells and Tie2 blocking by its antibody. We found that Tie2 expression was down-regulated significantly (p < 0.05) in OSCCs compared with normal counterparts in vitro and in vivo. Interestingly, oeTie2 cells showed higher cellular adhesion (p < 0.05) and lower cellular invasion (p < 0.05) compared with control cells; whereas there was similar cellular proliferation in both transfectants. Furthermore, cellular adhesion was inhibited and invasion was activated by Tie2 function-blocking antibody (p < 0.05), indicating that Tie2 directly regulates cellular adhesion and invasion. As expected, among the clinical variables analyzed, Tie2-positivity in patients with OSCC was correlated closely with negative lymph node metastasis. These results suggested for the first time that Tie2 plays an important role in tumor metastasis and may be a potential biomarker for OSCC metastasis.
Collapse
Affiliation(s)
- Daisuke Kitajima
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Kasamatsu
- 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Dai Nakashima
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Isao Miyamoto
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yasushi Kimura
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoaki Saito
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | - Yosuke Endo-Sakamoto
- 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masashi Shiiba
- 4. Department of Clinical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hideki Tanzawa
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;; 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Katsuhiro Uzawa
- 1. Department of Oral Science Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan;; 2. Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
10
|
Overexpression of matriptase correlates with poor prognosis in esophageal squamous cell carcinoma. Virchows Arch 2013; 464:19-27. [PMID: 24248283 DOI: 10.1007/s00428-013-1504-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 09/23/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
Matriptase is one of the type II transmembrane serine proteases and is known to be involved in cancer progression. Increased matriptase expression has been reported in a variety of human cancers, and its association with poor prognosis has been highlighted in some cancer types. However, its exact role in cancer progression and its effect on patient survival in esophageal squamous cell carcinoma (ESCC) are still unclear. We performed immunohistochemical staining of matriptase in 171 ESCC samples after antibody validation and evaluated the association of its expression with clinicopathological parameters and prognosis. High matriptase expression was observed in 38.6 % (66/171) of ESCC samples and more frequently in N3 stage and in poorly differentiated tumors. Both overall survival (OS) and disease-free survival (DFS) were significantly lower for patients with high expression of matriptase than for patients with low expression (5-year OS rate, 38.6 vs 55.3 %; p=0.034 and 5-year DFS rate, 30.5 vs 49.4 %; p=0.007). High matriptase expression was an independent prognostic factor for OS [hazard ratio (HR), 1.65 (95 % confidence interval (CI), 1.01-2.68); p=0.045] and for DFS [HR, 1.79 (95 % CI, 1.14-2.81); p=0.012]. In conclusion, higher expression of matriptase is an independent prognostic factor involved in the progression of ESCC, which suggests that matriptase is a factor in ESCC tumor progression and also a potential molecular therapeutic target.
Collapse
|
11
|
Susuki D, Kimura S, Naganuma S, Tsuchiyama K, Tanaka T, Kitamura N, Fujieda S, Itoh H. Regulation of microRNA expression by hepatocyte growth factor in human head and neck squamous cell carcinoma. Cancer Sci 2011; 102:2164-71. [PMID: 21899661 DOI: 10.1111/j.1349-7006.2011.02096.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a multifunctional molecule that acts as mitogen, motogen, and/or morphogen in a variety of cells. MET, a specific receptor tyrosine kinase for HGF, is upregulated in various tumors including squamous cell carcinoma of the human head and neck (HNSCC), but how HGF affects the expression of downstream functional genes has not yet been elucidated in detail. In the present study, we examined the expression of microRNA (miRNA), non-coding small RNA that regulate cell proliferation and functions by interfering with the translation of target mRNA, with or without HGF stimulation in HNSCC cell line HSC3. Among several miRNAs, in which the expression was altered after HGF stimulation, we focused on miR-200c and miR-27b, both of which were drastically downregulated after HGF stimulation. Expression of ZEB1, a target mRNA for miR-200c, was upregulated 3 and 6 h after HGF stimulation, and that of E-cadherin, a downstream molecule of ZEB1, was downregulated 12 h after HGF stimulation. Expression of ST14/matriptase, an enzyme for extracellular matrix (ECM) degradation and HGF activation and a target mRNA for miR-27b, was drastically upregulated in the protein level after HGF stimulation, although it was not statistically altered in the mRNA level. These results suggest that miR-200c and miR-27b downregulated by HGF might play an important role in epithelial-mesenchymal transition mediated by ZEB1/E-cadherin and ECM degradation and HGF autoactivation mediated by ST14/matriptase, respectively. Altered expression of miRNA directly regulated by HGF might contribute enhanced progressive and invasive characteristics of HNSCC by regulating the translation of HGF-induced functional molecules.
Collapse
Affiliation(s)
- Dai Susuki
- Division of Tumor Pathology, Department of Pathological Sciences, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yamatoji M, Kasamatsu A, Kouzu Y, Koike H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa K. Dermatopontin: A potential predictor for metastasis of human oral cancer. Int J Cancer 2011; 130:2903-11. [DOI: 10.1002/ijc.26328] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/14/2011] [Indexed: 11/10/2022]
|
13
|
Hwang ES, Kim GH. Allyl isothiocyanate influences cell adhesion, migration and metalloproteinase gene expression in SK-Hep1 cells. Exp Biol Med (Maywood) 2008; 234:105-11. [PMID: 18997101 DOI: 10.3181/0806-rm-190] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Allyl isothiocyanate (AITC) has been reported to exhibit antimetastatic activity, but the mechanism remains unclear. The objective of this study was to determine the effect of AITC on cell adhesion, migration, and metalloproteinase gene expression in SK-Hep1 human hepatoma cells. The gene expression profiles of SK-Hep1 cells were obtained by using the HG-U133A Affymetrix GeneChip human genome array containing 14,500 human genes. Twenty antimetastatic genes including COL4A3, ADAMDEC1, CAPN10, CD14, and ITGB1BP3 were over expressed, while the expression of 35 genes such as COL8A1, MYBPC1, ST14, and SOS2 were down-regulated. Semiquantitative RT-PCR confirmed these results in mRNA levels. Based on these in vitro results, it can be concluded that AITC might be potentially useful in suppressing tumor cell migration and MMP expression.
Collapse
Affiliation(s)
- Eun-Sun Hwang
- Center for Agricultural Biomaterials, College of Agriculture and Life Sciences, Seoul National University, Shillim-dong, Gwanak-gu, Korea.
| | | |
Collapse
|