1
|
Chiu V, Yee C, Main N, Stevanovski I, Watt M, Wilson T, Angus P, Roberts T, Shackel N, Herath C. Oncogenic plasmid DNA and liver injury agent dictates liver cancer development in a mouse model. Clin Sci (Lond) 2024; 138:1227-1248. [PMID: 39254423 PMCID: PMC11427747 DOI: 10.1042/cs20240560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Primary liver cancer is an increasing problem worldwide and is associated with significant mortality. A popular method of modeling liver cancer in mice is plasmid hydrodynamic tail vein injection (HTVI). However, plasmid-HTVI models rarely recapitulate the chronic liver injury which precedes the development of most human liver cancer. We sought to investigate how liver injury using thioacetamide contributes to the pathogenesis and progression of liver cancer in two oncogenic plasmid-HTVI-induced mouse liver cancer models. Fourteen-week-old male mice received double-oncogene plasmid-HTVI (SB/AKT/c-Met and SB/AKT/NRas) and then twice-weekly intraperitoneal injections of thioacetamide for 6 weeks. Liver tissue was examined for histopathological changes, including fibrosis and steatosis. Further characterization of fibrosis and inflammation was performed with immunostaining and real-time quantitative PCR. RNA sequencing with pathway analysis was used to explore novel pathways altered in the cancer models. Hepatocellular and cholangiocellular tumors were observed in mice injected with double-oncogene plasmid-HTVI models (SB/AKT/c-Met and SB/AKT/NRas). Thioacetamide induced mild fibrosis and increased alpha smooth muscle actin-expressing cells. However, the combination of plasmids and thioacetamide did not significantly increase tumor size, but increased multiplicity of small neoplastic lesions. Cancer and/or liver injury up-regulated profibrotic and proinflammatory genes while metabolic pathway genes were mostly down-regulated. We conclude that the liver injury microenvironment can interact with liver cancer and alter its presentation. However, the effects on cancer development vary depending on the genetic drivers with differing active oncogenic pathways. Therefore, the choice of plasmid-HTVI model and injury agent may influence the extent to which injury promotes liver cancer development.
Collapse
Affiliation(s)
- Vincent Chiu
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Christine Yee
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Nathan Main
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Igor Stevanovski
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Matthew Watt
- School of Biomedical Sciences, University of Melbourne, Victoria, Australia
| | - Trevor Wilson
- Hudson Institute of Medical Research, Monash University, Victoria, Australia
| | - Peter Angus
- Department of Gastroenterology and Hepatology, Austin Health, Heidelberg, Victoria, Australia
| | - Tara Roberts
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Nicholas Shackel
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Chandana Herath
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
- Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:1111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
Affiliation(s)
- Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma 949-7302, Niigata, Japan
| | - Takeshi Yokoo
- Department of Preemptive Medicine for Digestive Diseases and Healthy Active Life, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Tsubame Rosai Hospital, Tsubame 959-1228, Niigata, Japan
| | - Kenya Kamimura
- Department of General Medicine, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Díaz-Rivera A, Meza-Ríos A, Chagoya de Sánchez V, Velasco-Loyden G, García-Benavides L, Jave-Suarez LF, Monroy-Ramirez HC, Santos-García A, Armendáriz-Borunda J, Sandoval-Rodríguez A. Hydrodynamics-based liver transfection achieves gene silencing of CB1 using short hairpin RNA plasmid in cirrhotic rats. PLoS One 2020; 15:e0228729. [PMID: 32053633 PMCID: PMC7018086 DOI: 10.1371/journal.pone.0228729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/22/2020] [Indexed: 12/04/2022] Open
Abstract
Background There is a correlation between the endocannabinoid system and hepatic fibrosis based on the activation of CB1 and CB2 receptors; where CB1 has profibrogenic effects. Gene therapy with a plasmid carrying a shRNA for CB1 delivered by hydrodynamic injection has the advantage of hepatic tropism, avoiding possible undesirable effects of CB1 pharmacological inhibition. Objective To evaluate hydrodynamics-based liver transfection in an experimental model of liver cirrhosis of a plasmid with the sequence of a shRNA for CB1 and its antifibrogenic effects Methods Three shRNA (21pb) were designed for blocking CB1 mRNA at positions 877, 1232 and 1501 (pshCB1-A, B, C). Sequences were cloned in the pENTR™/U6. Safety was evaluated monitoring CB1 expression in brain tissue. The silencing effect was determined in rat HSC primary culture and CCl4 cirrhosis model. Hydrodynamic injection in cirrhotic liver was through iliac vein and with a dose of 3mg/kg plasmid. Serum levels of liver enzymes, mRNA levels of TGF-β1, Col IA1 and α-SMA and the percentage of fibrotic tissue were analyzed. Results Hydrodynamic injection allows efficient CB1 silencing in cirrhotic livers and pshCB1-B (position 1232) demonstrated the main CB1-silencing. Using this plasmid, mRNA level of fibrogenic molecules and fibrotic tissue considerably decrease in cirrhotic animals. Brain expression of CB1 remained unaltered. Conclusion Hydrodynamics allows a hepatotropic and secure transfection in cirrhotic animals. The sequence of the shCB1-B carried in a plasmid or any other vector has the potential to be used as therapeutic strategy for liver fibrosis.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Alanine Transaminase/blood
- Alanine Transaminase/metabolism
- Animals
- Aspartate Aminotransferases/blood
- Aspartate Aminotransferases/metabolism
- Brain/metabolism
- Cells, Cultured
- Disease Models, Animal
- Gene Silencing
- Hepatic Stellate Cells/cytology
- Hepatic Stellate Cells/metabolism
- Hydrodynamics
- Liver/metabolism
- Liver Cirrhosis/pathology
- Male
- Plasmids/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/metabolism
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Transfection
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
Collapse
Affiliation(s)
- Adriana Díaz-Rivera
- Institute of Molecular Biology in Medicine, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | | | | | - Leonel García-Benavides
- Biomedical Sciences Department, Centro Universitario de Tonala, Universidad de Guadalajara, Tonala, Mexico
| | - Luis F. Jave-Suarez
- Immunology Division, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social
| | - Hugo Christian Monroy-Ramirez
- Institute of Molecular Biology in Medicine, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Juan Armendáriz-Borunda
- Institute of Molecular Biology in Medicine, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Tecnologico de Monterrey, Campus Guadalajara, Guadalajara, Mexico
- * E-mail: (ASR); (JAB)
| | - Ana Sandoval-Rodríguez
- Institute of Molecular Biology in Medicine, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- * E-mail: (ASR); (JAB)
| |
Collapse
|
4
|
Woodard LE, Welch RC, Williams FM, Luo W, Cheng J, Wilson MH. Hydrodynamic Renal Pelvis Injection for Non-viral Expression of Proteins in the Kidney. J Vis Exp 2018. [PMID: 29364221 DOI: 10.3791/56324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hydrodynamic injection creates a local, high-pressure environment to transfect various tissues with plasmid DNA and other substances. Hydrodynamic tail vein injection, for example, is a well-established method by which the liver can be transfected. This manuscript describes an application of hydrodynamic principles by injection of the mouse kidney directly with plasmid DNA for kidney-specific gene expression. Mice are anesthetized and the kidney is exposed by a flank incision followed by a fast injection of a plasmid DNA-containing solution directly into the renal pelvis. The needle is kept in place for ten seconds and the incision site is sutured. The following day, live animal imaging, Western blot, or immunohistochemistry may be used to assay gene expression, or other assays suited to the transgene of choice are used for detection of the protein of interest. Published methods to prolong gene expression include transposon-mediated transgene integration and cyclophosphamide treatment to inhibit the immune response to the transgene.
Collapse
Affiliation(s)
- Lauren E Woodard
- Department of Veterans Affairs, Tennessee Valley Healthcare System; Departments of Medicine and Pharmacology, Vanderbilt University Medical Center; Department of Medicine, Baylor University College of Medicine
| | - Richard C Welch
- Departments of Medicine and Pharmacology, Vanderbilt University Medical Center
| | - Felisha M Williams
- Departments of Medicine and Pharmacology, Vanderbilt University Medical Center
| | - Wentian Luo
- Departments of Medicine and Pharmacology, Vanderbilt University Medical Center
| | - Jizhong Cheng
- Department of Medicine, Baylor University College of Medicine
| | - Matthew H Wilson
- Department of Veterans Affairs, Tennessee Valley Healthcare System; Departments of Medicine and Pharmacology, Vanderbilt University Medical Center; Department of Medicine, Baylor University College of Medicine;
| |
Collapse
|
5
|
Wu X, Liu G, Mu M, Peng Y, Li X, Deng L, Zhang Z, Chen M, You S, Kong X. Augmenter of Liver Regeneration Gene Therapy Using a Novel Minicircle DNA Vector Alleviates Liver Fibrosis in Rats. Hum Gene Ther 2016; 27:880-891. [PMID: 27136973 DOI: 10.1089/hum.2016.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Xin Wu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Mao Mu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Yuting Peng
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Xiumei Li
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Lisi Deng
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Zhenwei Zhang
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Meijuan Chen
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Song You
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangping Kong
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| |
Collapse
|
6
|
Kobayashi Y, Kamimura K, Abe H, Yokoo T, Ogawa K, Shinagawa-Kobayashi Y, Goto R, Inoue R, Ohtsuka M, Miura H, Kanefuji T, Suda T, Tsuchida M, Aoyagi Y, Zhang G, Liu D, Terai S. Effects of Fibrotic Tissue on Liver-targeted Hydrodynamic Gene Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e359. [PMID: 27574785 PMCID: PMC5023407 DOI: 10.1038/mtna.2016.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
Hydrodynamic gene delivery is a common method for gene transfer to the liver of small animals, and its clinical applicability in large animals has been demonstrated. Previous studies focused on functional analyses of therapeutic genes in animals with normal livers and little, however, is known regarding its effectiveness and safety in animals with liver fibrosis. Therefore, this study aimed to examine the effects of liver fibrosis on hydrodynamic gene delivery efficiency using a rat liver fibrosis model. We demonstrated for the first time, using pCMV-Luc plasmid, that this procedure is safe and that the amount of fibrotic tissue in the liver decreases gene delivery efficiency, resulting in decrease in luciferase activity depending on the volume of fibrotic tissue in the liver and the number of hepatocytes that are immunohistochemically stained positive for transgene product. We further demonstrate that antifibrotic gene therapy with matrix metalloproteinase-13 gene reduces liver fibrosis and improves efficiency of hydrodynamic gene delivery. These results demonstrate the negative effects of fibrotic tissue on hydrodynamic gene delivery and its recovery by appropriate antifibrotic therapy.
Collapse
Affiliation(s)
- Yuji Kobayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Kohei Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Yoko Shinagawa-Kobayashi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Ryo Goto
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Ryosuke Inoue
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa Japan
| | - Hiromi Miura
- Department of Regenerative Medicine, Basic Medical Science, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| | - Tsutomu Kanefuji
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Takeshi Suda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Masanori Tsuchida
- Division of Thoracic and Cardiovascular Surgery, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Yutaka Aoyagi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata, Japan
| |
Collapse
|
7
|
Rong Guo X, Li Wang X, Chen Y, Hong Yuan Y, Mei Chen Y, Ding Y, Fang J, Jiao Bian L, Sheng Li D. ANGPTL8/betatrophin alleviates insulin resistance via the Akt-GSK3β or Akt-FoxO1 pathway in HepG2 cells. Exp Cell Res 2016; 345:158-67. [PMID: 26387753 DOI: 10.1016/j.yexcr.2015.09.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/17/2015] [Accepted: 09/16/2015] [Indexed: 11/28/2022]
Abstract
Angiopoietin-like protein 8 (ANGPTL8)/betatrophin, a newly identified protein, is primarily expressed in the liver and regulates the glucose metabolic transition during fasting and re-feeding in mice with or without insulin resistance. These findings strongly suggest that ANGPTL8/betatrophin could be a novel glucose-lowering candidate medicine for type 2 diabetes. However, the molecular mechanisms by which ANGPTL8/betatrophin regulates glucose metabolism are poorly understood in human. Two sub-clones of HepG2 cells, ANGPTL8/betatrophin knockouts and ANGPTL8/betatrophin over-expressors, were established using TALENs (transcription activator-like effector nucleases) and through stable transfection, respectively. Over-expression of ANGPTL8/betatrophin enhanced the insulin-stimulated activation of the Akt-GSK3β or Akt-FoxO1 pathway, no matter whether the cells were present with insulin resistance or not. In contrast, knockout of ANGPTL8/betatrophin did not affect the Akt-GSK3β or Akt-FoxO1 pathway unless the HepG2 cells were preset with insulin resistance. Our results suggest that ANGPTL8/betatrophin might play an important role in glucose metabolism in the context of insulin resistance.
Collapse
Affiliation(s)
- Xing Rong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xiao Li Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yun Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ya Hong Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yong Mei Chen
- Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Juan Fang
- Department of Pathology, Academic College, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Liu Jiao Bian
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China.
| | - Dong Sheng Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
8
|
Abstract
Hydrodynamic delivery (HD) is a broadly used procedure for DNA and RNA delivery in rodents, serving as a powerful tool for gene/protein drug discovery, gene function analysis, target validation, and identification of elements in regulating gene expression in vivo. HD involves a pressurized injection of a large volume of solution into a vasculature. New procedures are being developed to satisfy the need for a safe and efficient gene delivery in clinic. Here, we summarize the fundamentals of HD, its applications, and future perspectives for clinical use.
Collapse
Affiliation(s)
- Takeshi Suda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, School of Pharmacy, Athens, GA, USA
| |
Collapse
|
9
|
Kanefuji T, Yokoo T, Suda T, Abe H, Kamimura K, Liu D. Hemodynamics of a hydrodynamic injection. Mol Ther Methods Clin Dev 2014; 1:14029. [PMID: 26015971 PMCID: PMC4362352 DOI: 10.1038/mtm.2014.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 06/02/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
Abstract
The hemodynamics during a hydrodynamic injection were evaluated using cone beam computed tomography (CBCT) and fluoroscopic imaging. The impacts of hydrodynamic (5 seconds) and slow (60 seconds) injections into the tail veins of mice were compared using 9% body weight of a phase-contrast medium. Hydrodynamically injected solution traveled to the heart and drew back to the hepatic veins (HV), which led to liver expansion and a trace amount of spillover into the portal vein (PV). The liver volumes peaked at 165.6 ± 13.3% and 165.5 ± 11.9% of the original liver volumes in the hydrodynamic and slow injections, respectively. Judging by the intensity of the CBCT images at the PV, HV, right atrium, liver parenchyma (LP), and the inferior vena cava (IVC) distal to the HV conjunction, the slow injection resulted in the higher intensity at PV than at LP. In contrast, a significantly higher intensity was observed in LP after hydrodynamic injection in comparison with that of PV, suggesting that the liver took up the iodine from the blood flow. These results suggest that the enlargement speed of the liver, rather than the expanded volume, primarily determines the efficiency of hydrodynamic delivery to the liver.
Collapse
Affiliation(s)
- Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Yokoo
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takeshi Suda
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Abe
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenya Kamimura
- Department of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
10
|
Hemodynamics of a hydrodynamic injection. Mol Ther Methods Clin Dev 2014. [PMID: 26015971 DOI: 10.1038/mtm.2014.29.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hemodynamics during a hydrodynamic injection were evaluated using cone beam computed tomography (CBCT) and fluoroscopic imaging. The impacts of hydrodynamic (5 seconds) and slow (60 seconds) injections into the tail veins of mice were compared using 9% body weight of a phase-contrast medium. Hydrodynamically injected solution traveled to the heart and drew back to the hepatic veins (HV), which led to liver expansion and a trace amount of spillover into the portal vein (PV). The liver volumes peaked at 165.6 ± 13.3% and 165.5 ± 11.9% of the original liver volumes in the hydrodynamic and slow injections, respectively. Judging by the intensity of the CBCT images at the PV, HV, right atrium, liver parenchyma (LP), and the inferior vena cava (IVC) distal to the HV conjunction, the slow injection resulted in the higher intensity at PV than at LP. In contrast, a significantly higher intensity was observed in LP after hydrodynamic injection in comparison with that of PV, suggesting that the liver took up the iodine from the blood flow. These results suggest that the enlargement speed of the liver, rather than the expanded volume, primarily determines the efficiency of hydrodynamic delivery to the liver.
Collapse
|
11
|
Takahashi Y, Ando M, Nishikawa M, Hiraga N, Imamura M, Chayama K, Takakura Y. Long-term elimination of hepatitis C virus from human hepatocyte chimeric mice after interferon-γ gene transfer. HUM GENE THER CL DEV 2013; 25:28-39. [PMID: 24279674 DOI: 10.1089/humc.2013.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a leading cause of cirrhosis, liver failure, and hepatocellular carcinoma. Although the combination therapy employing pegylated interferon (IFN)-α and ribavirin is effective, this treatment is effective in only approximately 50% patients with genotype 1 HCV infection. IFN-γ is a potent anti-HCV agent that exhibits its antiviral action through a receptor distinct from that for IFN-α. Therefore, IFN-γ application might provide an alternative approach to IFN-α-based therapies. However, recombinant IFN-γ protein exhibits a poor pharmacokinetic property, that is, a very short half-life. It is our hypothesis that sustained IFN-γ serum concentrations produced by gene transfer could effectively eliminate HCV in vivo. We examined the in vivo antiviral activity in human hepatocyte chimeric mice infected with genotype 1b HCV at high HCV RNA titers (10(5)-10(7) copies/ml). The human IFN-γ-expressing plasmid vector pCpG-huIFNγ exhibited prolonged transgene expression in mice compared with the plasmid vector pCMV-huIFNγ. Moreover, the gene transfer of pCpG-huIFNγ eliminated HCV from the liver of the chimeric mice for a sustained period. On the contrary, administration of pCMV-huIFNγ could not eliminate HCV. In conclusion, we found that a single pCpG-huIFNγ injection resulted in long-term elimination of HCV RNA in chimeric mice, providing, for the first time, direct evidence that chronic infection with high titer HCV in vivo can be treated by sustained IFN-γ treatment.
Collapse
Affiliation(s)
- Yuki Takahashi
- 1 Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University , Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Imajo K, Fujita K, Yoneda M, Nozaki Y, Ogawa Y, Shinohara Y, Kato S, Mawatari H, Shibata W, Kitani H, Ikejima K, Kirikoshi H, Nakajima N, Saito S, Maeyama S, Watanabe S, Wada K, Nakajima A. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab 2012; 16:44-54. [PMID: 22768838 DOI: 10.1016/j.cmet.2012.05.012] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/22/2012] [Accepted: 05/23/2012] [Indexed: 02/07/2023]
Abstract
Although bacterial endotoxin, such as lipopolysaccharide (LPS), plays a key role in the pathogenesis of nonalcoholic steatohepatitis (NASH), detailed mechanisms of this pathogenesis remain unclear. Here, we demonstrate that upregulation of CD14 by leptin-mediated signaling is critical to hyperreactivity against endotoxin during NASH progression. Upregulation of CD14 in Kupffer cells and hyperreactivity against low-dose LPS were observed in high-fat diet (HFD)-induced steatosis mice, but not chow-fed-control mice. Hyperresponsivity against low-dose LPS led to accelerated NASH progression, including liver inflammation and fibrosis. Administering leptin in chow-fed mice caused increased hepatic expression of CD14 via STAT3 signaling, resulting in hyperreactivity against low-dose LPS without steatosis. In contrast, a marked decrease in hepatic CD14 expression was observed in leptin-deficient ob/ob mice, despite severe steatosis. Our results indicate that obesity-induced leptin plays a crucial role in NASH progression via enhanced responsivity to endotoxin, and we propose a mechanism of bacteria-mediated progression of NASH.
Collapse
Affiliation(s)
- Kento Imajo
- Department of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fuku-ura, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Overexpression of HGF transgene attenuates renal inflammatory mediators, Na(+)-ATPase activity and hypertension in spontaneously hypertensive rats. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1590-9. [PMID: 22713485 DOI: 10.1016/j.bbadis.2012.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 12/24/2022]
Abstract
Renal inflammation and oxidative stress are constantly present in experimental hypertension. Since the spontaneously hypertensive rat (SHR) has reduced levels of hepatocyte growth factor (HGF), which suppresses the activation of the proinflammatory nuclear transcription factor kappa B (NF-κB), we speculated that HGF deficiency could play a key role in the pathogenesis of hypertension in the SHR. To test this hypothesis we increased HGF in the SHR by HGF gene delivery. We found that kidneys of 15-week-old SHR had an important reduction in HGF mRNA and protein expression. Adult SHRs were randomly assigned to receive weekly hydrodynamic injection (1mg/kg) of a naked plasmid containing human HGF (hHGF) gene associated with a cytomegalovirus promoter (pCMV-HGF) or empty vector (pcDNA3.1) during 6weeks. WKY rats treated with pcDNA3.1 and pCMV-HGF served as controls. The kidneys in the hypertensive SHR untreated and treated with the empty vector had increased NF-κB activation, elevated mRNA and protein expression of RANTES, MCP-1 and IL-6 and increased oxidative stress. Activity of Na(+)-ATPase was increased while activity of Na(+), K(+)-ATPase was normal. hHGF gene therapy normalized renal NF-κB activity, proinflammatory cytokines, antioxidant status (GSH, SOD and CAT), Na(+)-ATPase activity, reduced renal injury and ameliorated hypertension. Our results suggest that reduction in HGF production plays a major role in the pathogenesis of hypertension in the SHR and increasing HGF is a potential therapeutic target in the treatment of hypertension.
Collapse
|
14
|
Fu AL, Wu SP. Single intravenous injection of plasmid DNA encoding human paraoxonase-1 inhibits hyperlipidemia in rats. Biochem Biophys Res Commun 2010; 397:257-62. [PMID: 20580687 DOI: 10.1016/j.bbrc.2010.05.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 05/18/2010] [Indexed: 02/03/2023]
Abstract
Paraoxonase-1 (PON1, EC 3.1.8.1) is a high-density lipoprotein (HDL)-associated antioxidant enzyme, and its activity correlates negatively with the level of plasma low-density lipoprotein cholesterol (LDL-C) and triglyceridemia (TG). In this study, we examined the therapeutic effect of plasmid DNA containing the human PON1 gene (pcDNA/PON1) in hyperlipidemic model rats. The rats were fed a high-fat and high-cholesterol diet for 25 days to produce a hyperlipidemic animal model. Single intravenous injection of pcDNA/PON1 into model rats prevented dyslipidemia and hepatic lipid accumulation. The mechanisms of pcDNA/PON1 in treating hyperlipidemia were associated with increases of serum antioxidant PON1 and SOD activities, and with reduction of the levels of total cholesterol (TC), LDL-C and TG. The results suggest the potential therapeutic effect of pcDNA/PON1 on hyperlipidemia.
Collapse
Affiliation(s)
- Ai Ling Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | | |
Collapse
|
15
|
Jacobs F, Wisse E, De Geest B. The role of liver sinusoidal cells in hepatocyte-directed gene transfer. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:14-21. [PMID: 19948827 DOI: 10.2353/ajpath.2010.090136] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocytes are a key target for gene therapy of inborn errors of metabolism as well as of acquired diseases such as liver cancer and hepatitis. Gene transfer efficiency into hepatocytes is significantly determined by histological and functional aspects of liver sinusoidal cells. On the one hand, uptake of vectors by Kupffer cells and liver sinusoidal endothelial cells may limit hepatocyte transduction. On the other hand, the presence of fenestrae in liver sinusoidal endothelial cells provides direct access to the space of Disse and allows vectors to bind to receptors on the microvillous surface of hepatocytes. Nevertheless, the diameter of fenestrae may restrict the passage of vectors according to their size. On the basis of lege artis measurements of the diameter of fenestrae in different species, we show that the diameter of fenestrae affects the distribution of transgene DNA between sinusoidal and parenchymal liver cells after adenoviral transfer. The small diameter of fenestrae in humans may underlie low efficiency of adenoviral transfer into hepatocytes in men. The disappearance of the unique morphological features of liver sinusoidal endothelial cells in pathological conditions like liver cirrhosis and liver cancer may further affect gene transfer efficiency. Preclinical gene transfer studies should consider species differences in the structure and function of liver sinusoidal cells as important determinants of gene transfer efficiency into hepatocytes.
Collapse
Affiliation(s)
- Frank Jacobs
- Center for Molecular and Vascular Biology, Department of Molecular and Cellular Medicine, University of Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | | | | |
Collapse
|
16
|
Effect of nuclear localization and hydrodynamic delivery-induced cell division on phiC31 integrase activity. Gene Ther 2009; 17:217-26. [PMID: 19847205 PMCID: PMC2820593 DOI: 10.1038/gt.2009.136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phage φC31 integrase is a recombinase that can be expressed in mammalian cells to integrate plasmids carrying an attB sequence into the genome at specific pseudo attP locations. We demonstrate by immunofluoresence that wild-type φC31 integrase is cytoplasmic and that addition of a SV40 nuclear localization signal (NLS) localizes φC31 integrase to the nucleus. Unexpectedly, the NLS depressed integration efficiency in HeLa cells and provided no benefit when used to integrate the human Factor IX (hFIX) gene into mouse liver. Since breakdown of the nuclear membrane during mitosis could allow cytoplasmic integrase access to the chromosomes, we analyzed whether cell division was required for integration into liver cells in vivo. Hepatocytes were labeled with iododeoxyuridine to mark cells that underwent DNA replication during the week following hydrodynamic injection. Hydrodynamic delivery led to DNA replication in one-third of hepatocytes. Approximately 3 out of 4 cells having φC31 integrase-mediated stable hFIX expression did not undergo replication, indicating that cell division was not required for integrase function in liver. Therefore, although the bulk of φC31 integrase protein appears to be cytoplasmic in mammalian cells, integration can still occur in the nucleus, even without cell division.
Collapse
|
17
|
Braet F, Riches J, Geerts W, Jahn KA, Wisse E, Frederik P. Three-dimensional organization of fenestrae labyrinths in liver sinusoidal endothelial cells. Liver Int 2009; 29:603-13. [PMID: 18662275 DOI: 10.1111/j.1478-3231.2008.01836.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND/AIMS Liver sinusoidal endothelial cell (LSEC) fenestrae are membrane-bound pores that are grouped in sieve plates and act as a bidirectional guardian in regulating transendothelial liver transport. The high permeability of the endothelial lining is explained by the presence of fenestrae and by various membrane-bound transport vesicles. The question as to whether fenestrae relate to other transport compartments remains unclear and has been debated since their discovery almost 40 years ago. METHODS In this study, novel insights concerning the three-dimensional (3D) organization of the fenestrated cytoplasm were built on transmission electron tomographical observations on isolated and cultured whole-mount LSECs. Classical transmission electron microscopy and atomic force microscopy imaging was performed to accumulate cross-correlative structural evidence. RESULTS AND CONCLUSIONS The data presented here indicate that different arrangements of fenestrae have to be considered: i.e. open fenestrae that lack any structural obstruction mainly located in the thin peripheral cytoplasm and complexes of multifolded fenestrae organized as labyrinth-like structures that are found in the proximity of the perinuclear area. Fenestrae in labyrinths constitute about one-third of the total LSEC porosity. The 3D reconstructions also revealed that coated pits and small membrane-bound vesicles are exclusively interspersed in the non-fenestrated cytoplasmic arms.
Collapse
Affiliation(s)
- Filip Braet
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Ohayon O, Mawasi N, Pevzner A, Tryvitz A, Gildor T, Pines M, Rojkind M, Paizi M, Spira G. Halofuginone upregulates the expression of heparanase in thioacetamide-induced liver fibrosis in rats. J Transl Med 2008; 88:627-33. [PMID: 18458672 DOI: 10.1038/labinvest.2008.30] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Advanced hepatic fibrosis is characterized by excessive extracellular matrix deposition, where collagen and proteoglycans are the main constituents of scar tissue. In previous studies, we showed that heparanase, a heparan sulfate-degrading enzyme, and vascular endothelial growth factor (VEGF) play an important role during liver development and remodeling. In this communication, we investigated the relationship between heparanase and VEGF in thioacetamide-induced liver fibrosis in rats. Our study shows that heparanase mRNA expression levels correlate with those of VEGF during the induction and recovery stages of liver fibrosis. We further demonstrated that treating fibrotic rat livers with halofuginone (HF), a multipotent antifibrogenic drug, and subsequently subjecting them to hydrodynamics-based transfection with human VEGF-165 resulted in elevated expression of heparanase mRNA. Moreover, these rats demonstrated an improved capacity to regenerate following 70% partial hepatectomy. In vitro, HF stimulated heparanase and VEGF mRNA expression in hepatic stellate cells. Taken together, our results suggest that in addition to the known multiple functions of HF, it also enhances heparanase and VEGF expression and promotes liver regeneration. Accordingly, HF seems to possess ideal properties required to become an excellent antifibrogenic agent in humans.
Collapse
Affiliation(s)
- Olga Ohayon
- Department of Anatomy and Cell Biology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
AIM: To investigate whether the major kavalactone kavain imposes adverse effects on the liver ultrastructure and function by affecting vascular and microvascular architecture and altering hepatocellular morphology.
METHODS: Kavain solution (10 &mgr;g/mL or 43.5 &mgr;mol/L) was perfused for 2 h in isolated rat livers. After standard fixation and tissue preparation, the samples were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and light microscopy (LM).
RESULTS: LM, SEM, and TEM examinations indicated kavain-treated rat livers (n = 4) displayed severe vascular and endothelial damage compared to control livers (n = 4).
CONCLUSION: The data so far support the hypothesis that kavain induces adverse effects on liver; additional investigations with other kavalactones and their effects on liver are urgently needed.
Collapse
|
20
|
Abstract
Efficient and safe methods for delivering genetic materials into cells must be developed before the clinical potential of gene therapy can be fully realized. Recently, hydrodynamic gene delivery using a rapid injection of a relatively large volume of DNA solution has opened up a new avenue for gene therapy studies in vivo. This method is superior to the existing delivery systems because of its simplicity, efficiency, and versatility. Wide success in applying hydrodynamic principles to delivery of DNA, RNA, proteins, and synthetic compounds, into the cells in various tissues of small animals, has inspired the recent attempts at establishing a hydrodynamic procedure for clinical use. In this review, we provide an overview of the theory and practice of hydrodynamic gene delivery so as to aid researchers for the use of this method in their pre-clinical and translational gene therapy studies.
Collapse
Affiliation(s)
- Takeshi Suda
- 1Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|