1
|
Xu J, Guo P, Hao S, Shangguan S, Shi Q, Volpe G, Huang K, Zuo J, An J, Yuan Y, Cheng M, Deng Q, Zhang X, Lai G, Nan H, Wu B, Shentu X, Wu L, Wei X, Jiang Y, Huang X, Pan F, Song Y, Li R, Wang Z, Liu C, Liu S, Li Y, Yang T, Xu Z, Du W, Li L, Ahmed T, You K, Dai Z, Li L, Qin B, Li Y, Lai L, Qin D, Chen J, Fan R, Li Y, Hou J, Ott M, Sharma AD, Cantz T, Schambach A, Kristiansen K, Hutchins AP, Göttgens B, Maxwell PH, Hui L, Xu X, Liu L, Chen A, Lai Y, Esteban MA. A spatiotemporal atlas of mouse liver homeostasis and regeneration. Nat Genet 2024; 56:953-969. [PMID: 38627598 DOI: 10.1038/s41588-024-01709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2024] [Indexed: 05/09/2024]
Abstract
The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/β-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.
Collapse
Affiliation(s)
- Jiangshan Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Pengcheng Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
| | - Shijie Hao
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuncheng Shangguan
- BGI Research, Shenzhen, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
| | - Quan Shi
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Keke Huang
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jing Zuo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Juan An
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Mengnan Cheng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Qiuting Deng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guangyao Lai
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Nan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Shentu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyu Wei
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yujia Jiang
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Xin Huang
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fengyu Pan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yumo Song
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ronghai Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Zhifeng Wang
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Shiping Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | | | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Zhicheng Xu
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Ling Li
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Tanveer Ahmed
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kai You
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhen Dai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Li Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baoming Qin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yinxiong Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liangxue Lai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dajiang Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junling Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Rong Fan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Jinlin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Andrew P Hutchins
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Berthold Göttgens
- Department of Haematology and Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xun Xu
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China.
| | - Longqi Liu
- BGI Research, Hangzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Ao Chen
- BGI Research, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- BGI Research, Chongqing, China.
- JFL-BGI STOmics Center, BGI-Shenzhen, Chongqing, China.
| | - Yiwei Lai
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Miguel A Esteban
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Wu H, Xu Y, Gong YY, Huntriss J, Routledge MN. Effects of aflatoxin and fumonisin on gene expression of growth factors and inflammation-related genes in a human hepatocyte cell line. Mutagenesis 2024; 39:181-195. [PMID: 38468450 DOI: 10.1093/mutage/geae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
Aflatoxin B1 (AFB1) and fumonisin B1 (FB1) are mycotoxins widely distributed in maize and maized-based products, often occurring together. The implications of co-exposure to aflatoxin and fumonsin for human health are numerous, but a particular concern is the potential of FB1 to modulate AFB1 hepatotoxicity. This study evaluated the toxicity of these mycotoxins, alone or combined, in a human non-tumorigenic liver cell line, HHL-16 cells, and assessed the effects of AFB1 and FB1 on expression of genes involved in immune and growth factor pathways. The results demonstrated that in HHL-16 cells, both AFB1 and FB1 had dose-dependent and time-dependent toxicity, and the combination of them showed a synergistic toxicity in the cells. Moreover, AFB1 caused upregulation of IL6, CCL20, and BMP2, and downregulation of NDP. In combination of AFB1 with FB1, gene expression levels of IL6 and BMP2 were significantly higher compared to individual FB1 treatment, and had a tendency to be higher than individual AFB1 treatment. This study shows that FB1 may increase the hepatoxicity of AFB1 through increasing the inflammatory response and disrupting cell growth pathways.
Collapse
Affiliation(s)
- Hang Wu
- School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun-Yat University, Guangzhou 51006, China
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John Huntriss
- School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michael N Routledge
- Leicester Medical School, George Davies Centre, Lancaster Rd, Leicester LE1 7HA, United Kingdom
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Zhang C, Sun C, Zhao Y, Ye B, Yu G. Signaling pathways of liver regeneration: Biological mechanisms and implications. iScience 2024; 27:108683. [PMID: 38155779 PMCID: PMC10753089 DOI: 10.1016/j.isci.2023.108683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
Abstract
The liver possesses a unique regenerative ability to restore its original mass, in this regard, partial hepatectomy (PHx) and partial liver transplantation (PLTx) can be executed smoothly and safely, which has important implications for the treatment of liver disease. Liver regeneration (LR) can be the very complicated procedure that involves multiple cytokines and transcription factors that interact with each other to activate different signaling pathways. Activation of these pathways can drive the LR process, which can be divided into three stages, namely, the initiation, progression, and termination stages. Therefore, it is important to investigate the pathways involved in LR to elucidate the mechanism of LR. This study reviews the latest research on the key signaling pathways in the different stages of LR.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Caifang Sun
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - GuoYing Yu
- State Key Laboratory Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
4
|
Lin YH, Zeng Q, Jia Y, Wang Z, Li L, Hsieh MH, Cheng Q, Pagani CA, Livingston N, Lee J, Zhang Y, Sharma T, Siegwart DJ, Yimlamai D, Levi B, Zhu H. In vivo screening identifies SPP2, a secreted factor that negatively regulates liver regeneration. Hepatology 2023; 78:1133-1148. [PMID: 37039560 PMCID: PMC10524179 DOI: 10.1097/hep.0000000000000402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND AND AIMS The liver is remarkably regenerative and can completely recover even when 80% of its mass is surgically removed. Identification of secreted factors that regulate liver growth would help us understand how organ size and regeneration are controlled but also provide candidate targets to promote regeneration or impair cancer growth. APPROACH AND RESULTS To enrich for secreted factors that regulate growth control, we induced massive liver overgrowth with either YAP or MYC . Differentially expressed secreted factors were identified in these livers using transcriptomic analysis. To rank candidates by functionality, we performed in vivo CRISPR screening using the Fah knockout model of tyrosinemia. We identified secreted phosphoprotein-2 (SPP2) as a secreted factor that negatively regulates regeneration. Spp2 -deficient mice showed increased survival after acetaminophen poisoning and reduced fibrosis after repeated carbon tetrachloride injections. We examined the impact of SPP2 on bone morphogenetic protein signaling in liver cells and found that SPP2 antagonized bone morphogenetic protein signaling in vitro and in vivo. We also identified cell-surface receptors that interact with SPP2 using a proximity biotinylation assay coupled with mass spectrometry. We showed that SPP2's interactions with integrin family members are in part responsible for some of the regeneration phenotypes. CONCLUSIONS Using an in vivo CRISPR screening system, we identified SPP2 as a secreted factor that negatively regulates liver regeneration. This study provides ways to identify, validate, and characterize secreted factors in vivo.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiyu Zeng
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuemeng Jia
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zixi Wang
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiang Cheng
- Department of Biochemistry, Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chase A. Pagani
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nicholas Livingston
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yu Zhang
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tripti Sharma
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel J. Siegwart
- Department of Biochemistry, Department of Biomedical Engineering, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dean Yimlamai
- Section of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06519
| | - Benjamin Levi
- Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Ma JT, Xia S, Zhang BK, Luo F, Guo L, Yang Y, Gong H, Yan M. The pharmacology and mechanisms of traditional Chinese medicine in promoting liver regeneration: A new therapeutic option. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154893. [PMID: 37236047 DOI: 10.1016/j.phymed.2023.154893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND The liver is renowned for its remarkable regenerative capacity to restore its structure, size and function after various types of liver injury. However, in patients with end-stage liver disease, the regenerative capacity is inhibited and liver transplantation is the only option. Considering the limitations of liver transplantation, promoting liver regeneration is suggested as a new therapeutic strategy for liver disease. Traditional Chinese medicine (TCM) has a long history of preventing and treating various liver diseases, and some of them have been proven to be effective in promoting liver regeneration, suggesting the therapeutic potential in liver diseases. PURPOSE This review aims to summarize the molecular mechanisms of liver regeneration and the pro-regenerative activity and mechanism of TCM formulas, extracts and active ingredients. METHODS We conducted a systematic search in PubMed, Web of Science and the Cochrane Library databases using "TCM", "liver regeneration" or their synonyms as keywords, and classified and summarized the retrieved literature. The PRISMA guidelines were followed. RESULTS Forty-one research articles met the themes of this review and previous critical studies were also reviewed to provide essential background information. Current evidences indicate that various TCM formulas, extracts and active ingredients have the effect on stimulating liver regeneration through modulating JAK/STAT, Hippo, PI3K/Akt and other signaling pathways. Besides, the mechanisms of liver regeneration, the limitation of existing studies and the application prospect of TCM to promote liver regeneration are also outlined and discussed in this review. CONCLUSION This review supports TCM as new potential therapeutic options for promoting liver regeneration and repair of the failing liver, although extensive pharmacokinetic and toxicological studies, as well as elaborate clinical trials, are still needed to demonstrate safety and efficacy.
Collapse
Affiliation(s)
- Jia-Ting Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Fen Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China.
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China; Institute of Clinical Pharmacy, Central South University, Changsha, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China.
| |
Collapse
|
6
|
SOX9 promotes nasopharyngeal carcinoma cell proliferation, migration and invasion through BMP2 and mTOR signaling. Gene 2019; 715:144017. [PMID: 31357026 DOI: 10.1016/j.gene.2019.144017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
SRY-related high-mobility-group box 9 (SOX9) is a member of the SOX family of transcription factors. Accumulating evidence has shown that SOX9 plays a significant role in various malignancies. However, the role of SOX9 in nasopharyngeal carcinoma (NPC) remains unknown. In the present study, up-regulation of SOX9 was observed in both NPC tissues and different NPC cells. Overexpression of SOX9 promoted NPC cell proliferation, migration and invasion. Conversely, knock down of SOX9 inhibited NPC proliferation, colony formation, migration and invasion. Mechanistically, SOX9 bound directly to the promoter region of BMP2 and increased BMP2 expression. In addition, overexpression of SOX9 activated the mTOR pathway partly through BMP2. Collectively, these results identify a novel role for SOX9 as a potential therapeutic marker for the prevention and treatment of NPC.
Collapse
|
7
|
Jones AK, Hoffman ML, Pillai SM, McFadden KK, Govoni KE, Zinn SA, Reed SA. Gestational restricted- and over-feeding promote maternal and offspring inflammatory responses that are distinct and dependent on diet in sheep. Biol Reprod 2019; 98:184-196. [PMID: 29272350 DOI: 10.1093/biolre/iox174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammation may be a mechanism of maternal programming because it has the capacity to alter the maternal environment and can persist postnatally in offspring tissues. This study evaluated the effects of restricted- and over-feeding on maternal and offspring inflammatory gene expression using reverse transcription (RT)-PCR arrays. Pregnant ewes were fed 60% (Restricted), 100% (Control), or 140% (Over) of National Research Council requirements beginning on day 30.2 ± 0.2 of gestation. Maternal (n = 8-9 ewes per diet) circulating nonesterified fatty acid (NEFA) and expression of 84 inflammatory genes were evaluated at five stages during gestation. Offspring (n = 6 per diet per age) inflammatory gene expression was evaluated in the circulation and liver at day 135 of gestation and birth. Throughout gestation, circulating NEFA increased in Restricted mothers but not Over. Expression of different proinflammatory mediators increased in Over and Restricted mothers, but was diet-dependent. Maternal diet altered offspring systemic and hepatic expression of genes involved in chemotaxis at late gestation and cytokine production at birth, but the offspring response was distinct from the maternal. In the perinatal offspring, maternal nutrient restriction increased hepatic chemokine (CC motif) ligand 16 and tumor necrosis factor expression. Alternately, maternal overnutrition increased offspring systemic expression of factors induced by hypoxia, whereas expression of factors regulating hepatocyte proliferation and differentiation were altered in the liver. Maternal nutrient restriction and overnutrition may differentially predispose offspring to liver dysfunction through an altered hepatic inflammatory microenvironment that contributes to immune and metabolic disturbances postnatally.
Collapse
Affiliation(s)
- Amanda K Jones
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Maria L Hoffman
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Sambhu M Pillai
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Katelyn K McFadden
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Kristen E Govoni
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Steven A Zinn
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah A Reed
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
8
|
Chung YH, Huang YH, Chu TH, Chen CL, Lin PR, Huang SC, Wu DC, Huang CC, Hu TH, Kao YH, Tai MH. BMP-2 restoration aids in recovery from liver fibrosis by attenuating TGF-β1 signaling. J Transl Med 2018; 98:999-1013. [PMID: 29789683 DOI: 10.1038/s41374-018-0069-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor-β (TGF-β) plays a central role in hepatic fibrogenesis. This study investigated the function and mechanism of bone morphogenetic protein-2 (BMP-2) in regulation of hepatic fibrogenesis. BMP-2 expression in fibrotic liver was measured in human tissue microarray and mouse models of liver fibrosis induced by bile duct ligation surgery or carbon tetrachloride administration. Adenovirus-mediated BMP-2 gene delivery was used to test the prophylactic effect on liver fibrosis. Primary hepatic stellate cells (HSC), HSC-T6 and clone-9 cell lines were used to study the interplay between BMP-2 and TGF-β1. Hepatic BMP-2 was localized in parenchymal hepatocytes and activated HSCs and significantly decreased in human and mouse fibrotic livers, showing an opposite pattern of hepatic TGF-β1 contents. BMP-2 gene delivery alleviated the elevations of serum hepatic enzymes, cholangiocyte marker CK19, HSC activation markers, and liver fibrosis in both models. Mechanistically, exogenous TGF-β1 dose dependently reduced BMP-2 expression, whereas BMP-2 significantly suppressed expression of TGF-β and its cognate type I and II receptor peptides, as well as the induced Smad3 phosphorylation levels in primary mouse HSCs. Aside from its suppressive effects on cell proliferation and migration, BMP-2 treatment prominently attenuated the TGF-β1-stimulated α-SMA and fibronectin expression, and reversed the TGF-β1-modulated epithelial-to-mesenchymal transition marker expression in mouse HSCs. The mutual regulation between BMP-2 and TGF-β1 signaling axes may constitute the anti-fibrogenic mechanism of BMP-2 in the pathogenesis of liver fibrosis. BMP-2 may potentially serve as a novel therapeutic target for treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yueh-Hua Chung
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ying-Hsien Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chiayi Chang Gung Memorial Hospital, Puzi City, Taiwan
| | - Tien-Huei Chu
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Pey-Ru Lin
- Division of Hepato-Gastroenterology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shih-Chung Huang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chao-Cheng Huang
- Biobank and Tissue Bank and Department of Pathology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.
| | - Ming-Hong Tai
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
9
|
Herrera B, Addante A, Sánchez A. BMP Signalling at the Crossroad of Liver Fibrosis and Regeneration. Int J Mol Sci 2017; 19:ijms19010039. [PMID: 29295498 PMCID: PMC5795989 DOI: 10.3390/ijms19010039] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) belong to the Transforming Growth Factor-β (TGF-β) family. Initially identified due to their ability to induce bone formation, they are now known to have multiple functions in a variety of tissues, being critical not only during development for tissue morphogenesis and organogenesis but also during adult tissue homeostasis. This review focus on the liver as a target tissue for BMPs actions, devoting most efforts to summarize our knowledge on their recently recognized and/or emerging roles on regulation of the liver regenerative response to various insults, either acute or chronic and their effects on development and progression of liver fibrosis in different pathological conditions. In an attempt to provide the basis for guiding research efforts in this field both the more solid and more controversial areas of research were highlighted.
Collapse
Affiliation(s)
- Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
10
|
Choi TY, Khaliq M, Tsurusaki S, Ninov N, Stainier DY, Tanaka M, Shin D. Bone morphogenetic protein signaling governs biliary-driven liver regeneration in zebrafish through tbx2b and id2a. Hepatology 2017; 66:1616-1630. [PMID: 28599080 PMCID: PMC5650528 DOI: 10.1002/hep.29309] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/04/2017] [Accepted: 06/06/2017] [Indexed: 01/10/2023]
Abstract
UNLABELLED Upon mild liver injury, new hepatocytes originate from preexisting hepatocytes. However, if hepatocyte proliferation is impaired, a manifestation of severe liver injury, biliary epithelial cells (BECs) contribute to new hepatocytes through BEC dedifferentiation into liver progenitor cells (LPCs), also termed oval cells or hepatoblast-like cells (HB-LCs), and subsequent differentiation into hepatocytes. Despite the identification of several factors regulating BEC dedifferentiation and activation, little is known about factors involved in the regulation of LPC differentiation into hepatocytes during liver regeneration. Using a zebrafish model of near-complete hepatocyte ablation, we show that bone morphogenetic protein (Bmp) signaling is required for BEC conversion to hepatocytes, particularly for LPC differentiation into hepatocytes. We found that severe liver injury led to the up-regulation of genes involved in Bmp signaling, including smad5, tbx2b, and id2a, in the liver. Bmp suppression did not block BEC dedifferentiation into HB-LCs; however, the differentiation of HB-LCs into hepatocytes was impaired due to the maintenance of HB-LCs in an undifferentiated state. Later Bmp suppression did not affect HB-LC differentiation but increased BEC number through proliferation. Notably, smad5, tbx2b, and id2a mutants exhibited similar liver regeneration defects as those observed in Bmp-suppressed livers. Moreover, BMP2 addition promoted the differentiation of a murine LPC line into hepatocytes in vitro. CONCLUSIONS Bmp signaling regulates BEC-driven liver regeneration through smad5, tbx2b, and id2a: it regulates HB-LC differentiation into hepatocytes through tbx2b and BEC proliferation through id2a; our findings provide insights into promoting innate liver regeneration as a novel therapy. (Hepatology 2017;66:1616-1630).
Collapse
Affiliation(s)
- Tae-Young Choi
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mehwish Khaliq
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Shinya Tsurusaki
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nikolay Ninov
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y.R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA,Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Minoru Tanaka
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Donghun Shin
- Department of Developmental Biology, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA,Correspondence: Donghun Shin, 3501 5 Ave. #5063 Pittsburgh, PA 15260, 1-412-624-2144 (phone), 1-412-383-2211 (fax),
| |
Collapse
|
11
|
Rao S, Zaidi S, Banerjee J, Jogunoori W, Sebastian R, Mishra B, Nguyen BN, Wu RC, White J, Deng C, Amdur R, Li S, Mishra L. Transforming growth factor-β in liver cancer stem cells and regeneration. Hepatol Commun 2017; 1:477-493. [PMID: 29404474 PMCID: PMC5678904 DOI: 10.1002/hep4.1062] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/27/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells have established mechanisms that contribute to tumor heterogeneity as well as resistance to therapy. Over 40% of hepatocellular carcinomas (HCCs) are considered to be clonal and arise from a stem-like/cancer stem cell. Moreover, HCC is the second leading cause of cancer death worldwide, and an improved understanding of cancer stem cells and targeting these in this cancer are urgently needed. Multiple studies have revealed etiological patterns and multiple genes/pathways signifying initiation and progression of HCC; however, unlike the transforming growth factor β (TGF-β) pathway, loss of p53 and/or activation of β-catenin do not spontaneously drive HCC in animal models. Despite many advances in cancer genetics that include identifying the dominant role of TGF-β signaling in gastrointestinal cancers, we have not reached an integrated view of genetic mutations, copy number changes, driver pathways, and animal models that support effective targeted therapies for these common and lethal cancers. Moreover, pathways involved in stem cell transformation into gastrointestinal cancers remain largely undefined. Identifying the key mechanisms and developing models that reflect the human disease can lead to effective new treatment strategies. In this review, we dissect the evidence obtained from mouse and human liver regeneration, and mouse genetics, to provide insight into the role of TGF-β in regulating the cancer stem cell niche. (Hepatology Communications 2017;1:477-493).
Collapse
Affiliation(s)
- Shuyun Rao
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Sobia Zaidi
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Jaideep Banerjee
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Wilma Jogunoori
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Raul Sebastian
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Bibhuti Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Ray-Chang Wu
- Department of Biochemistry and Molecular Medicine George Washington University Washington DC
| | - Jon White
- Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| | - Chuxia Deng
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Health Sciences University of Macau Taipa Macau China
| | - Richard Amdur
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC
| | - Shulin Li
- Department of Pediatrics The University of Texas MD Anderson Cancer Center Houston TX
| | - Lopa Mishra
- Center for Translational Medicine Department of Surgery, George Washington University Washington DC.,Institute for Clinical Research, Veterans Affairs Medical Center Washington DC
| |
Collapse
|
12
|
Grgurevic L, Christensen GL, Schulz TJ, Vukicevic S. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism. Cytokine Growth Factor Rev 2015; 27:105-18. [PMID: 26762842 DOI: 10.1016/j.cytogfr.2015.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/10/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022]
Abstract
Bore morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-β superfamily, a group of secreted proteins that regulate embryonic development. This review summarizes the effects of BMPs on physiological processes not exclusively linked to the musculoskeletal system. Specifically, we focus on the involvement of BMPs in inflammatory disorders, e.g. fibrosis, inflammatory bowel disease, anchylosing spondylitis, rheumatoid arthritis. Moreover, we discuss the role of BMPs in the context of vascular disorders, and explore the role of these signalling proteins in iron homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role in skeletal homeostasis. However, increased understanding of these pleiotropic functions also highlights the necessity of tissue-specific strategies when harnessing BMP action as a therapeutic target.
Collapse
Affiliation(s)
- Lovorka Grgurevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Zagreb, Croatia
| | | | - Tim J Schulz
- German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| | - Slobodan Vukicevic
- University of Zagreb School of Medicine, Center for Translational and Clinical Research, Laboratory for Mineralized Tissues, Zagreb, Croatia.
| |
Collapse
|
13
|
Zheng Y, Wang X, Wang H, Yan W, Zhang Q, Chang X. Bone morphogenetic protein 2 inhibits hepatocellular carcinoma growth and migration through downregulation of the PI3K/AKT pathway. Tumour Biol 2014; 35:5189-98. [PMID: 24573607 DOI: 10.1007/s13277-014-1673-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 01/22/2014] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Previous studies have suggested that abnormal expression of BMP-4, BMP-7, and BMP-9 is correlated with tumor progression in HCC, but the role played by BMP-2 in HCC has not yet been reported. To determine the role of BMP-2 in HCC, we first investigated the effect of exogenous BMP-2 on the growth of the cell lines HCC SK-Hep-1, Hep G2, and Hep 3B. Next, we studied the function of BMP-2 in SK-Hep-1 HCC cell line using a recombinant lentivirus vector to deliver BMP-2. We also used siRNA to silence endogenous BMP-2 expression in the HCC Hep 3B cell line. Then, cell growth and migration were assayed in vitro using WST-8, wound-healing, and transwell invasion assays. Cellular apoptosis and cell-cycle distribution were assessed using flow cytometry. We also investigated the effects of BMP-2 overexpression and knockdown on the expression of proliferating cell nuclear antigen (PCNA), matrix metallopeptidase-2 (MMP-2), phosphorylated AKT (p-AKT), phosphoinositide 3-kinase p85α (PI3Kp85α), Bax, Bcl-2, caspase-3, cleaved caspase-3, p21, and cyclin E. As a result, we observed that BMP-2 inhibited the proliferation of HCC cells. Furthermore, HCC cell proliferation and migration were significantly diminished by BMP-2 overexpression, as was indicated by WST-8, would healing, and transwell assays, while knockdown of BMP-2 led to an increase in proliferation and migration of Hep 3B cells. BMP-2 overexpression significantly increased the susceptibility of SK-Hep-1 cells to low-serum-induced apoptosis, while BMP-2 knockdown reduced the susceptibility of Hep 3B cells. Overexpression of BMP-2 induced G1 phase arrest through upregulation of p21. When BMP-2 expression was elevated in SK-Hep-1 cells, the expression of PI3Kp85α, p-AKT, PCNA, and MMP-2 declined. These results suggest that BMP-2 exerts an inhibitory effect on the growth and migration of HCC cells, possibly via a blockade of PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Anesthesia, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an, Jiangsu, 223300, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
14
|
Stem cell and hepatocyte proliferation in hepatitis C cirrhosis and hepatocellular carcinoma: transplant implications. Ann Hepatol 2014. [DOI: 10.1016/s1665-2681(19)30903-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
15
|
Xu GJ, Cai S, Wu JB. Effect of insulin-like growth factor-1 on bone morphogenetic protein-2 expression in hepatic carcinoma SMMC7721 cells through the p38 MAPK signaling pathway. Asian Pac J Cancer Prev 2013; 13:1183-6. [PMID: 22799302 DOI: 10.7314/apjcp.2012.13.4.1183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To observe the effect of insulin-like growth factor-1 (IGF-1) on bone morphogenetic protein (BMP)-2 expression in hepatocellular carcinoma SMMC7721 cells. METHODS Cells were divided into blank control, IGF-1, IGF-1 + SB203580, and SB203580 groups. SB203580 was used to block the p38 MAPK signaling pathway. Changes in the expression of BMP-2, p38 MAPK, and phosphorylated p38, MERK, ERK and JNK were determined using reverse transcription polymerase chain reactions (RT-PCR) and Western blot analysis. RESULTS Protein expression of phosphorylated BMP-2, MERK, ERK, and JNK was significantly up-regulated by IGF-1 compared with the control group (1.138 ± 0.065 vs. 0.606 ± 0.013, 0.292 ± 0.005 vs. 0.150 ± 0.081, 0.378 ± 0.006 vs. 0.606 ± 0.013, and 0.299 ± 0.015 vs. 0.196 ± 0.017, respectively; P < 0.05). Levels of BMP-2 and phosphorylated MERK and JNK were significantly reduced after blocking of the p38MAPK signaling pathway (0.494 ± 0.052 vs. 0.165 ± 0.017, 0.073 ± 0.07 vs. 0.150 ± 0.081, and 0.018 ± 0.008 vs. 0.196 ± 0.017, respectively; P <0.05), but such a significant difference was not observed for phosphorylated ERK protein expression (0.173 ∓ 0.07 vs. 0.150 ∓ 0.081, P > 0.05). CONCLUSION IGF-1 can up-regulate BMP-2 expression, and p38 MAPK signaling pathway blockage can noticeably reduce the up-regulated expression. We can conclude that the up-regulatory effect of IGF-1 on BMP-2 expression is realized through the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Guan-Jun Xu
- Department of Oncology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | | | | |
Collapse
|
16
|
Do N, Zhao R, Ray K, Ho K, Dib M, Ren X, Kuzontkoski P, Terwilliger E, Karp SJ. BMP4 is a novel paracrine inhibitor of liver regeneration. Am J Physiol Gastrointest Liver Physiol 2012; 303:G1220-7. [PMID: 23019195 PMCID: PMC3532457 DOI: 10.1152/ajpgi.00105.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transforming growth factor (TGF)-β family members exert strong effects on restoration of liver mass after injury. Bone morphogenetic proteins (BMPs) are members of the TGF-β family and are found in the liver, suggesting that these proteins may play a role in liver regeneration. We examined BMP signaling in the liver during hepatectomy. We found that BMP4 is constitutively expressed in the peribiliary stroma and endothelial cells of the liver and that expression is decreased after hepatectomy. Mice driven to maintain BMP4 expression in the liver display inhibited hepatocyte proliferation and restoration of liver mass after hepatectomy, suggesting that reduced BMP4 is necessary for normal regeneration. Consistent with this finding, hepatocyte-specific deletion of the BMP receptor activin receptor-like kinase 3 (Alk3) enhances regeneration and reduces phosphorylation of SMAD1/5/8, a transducer of BMP signaling. In contrast to experiments in wild-type mice, maintaining BMP4 levels has no effect on liver regeneration in hepatocyte-specific Alk3 null mice, providing evidence that BMP4 signals through Alk3 to inhibit liver regeneration. Consistent with these findings, the BMP4 antagonist Noggin enhances regeneration. Furthermore, high-dose BMP4 inhibits proliferation of primary hepatocytes and HepG2 cells in culture. These findings elucidate a new, potentially clinically relevant paradigm in which a constitutively expressed paracrine inhibitory factor plays a critical role in liver regeneration.
Collapse
Affiliation(s)
- Nhue Do
- 1Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts;
| | - Rong Zhao
- 1Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts;
| | - Kevin Ray
- 2Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Karen Ho
- 3Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts; and
| | - Martin Dib
- 1Department of Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts;
| | - Xianghui Ren
- 4Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Paula Kuzontkoski
- 4Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Ernest Terwilliger
- 4Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Seth J. Karp
- 2Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
17
|
Mollbrink A, Holmström P, Sjöström M, Hultcrantz R, Eriksson LC, Stål P. Iron-regulatory gene expression during liver regeneration. Scand J Gastroenterol 2012; 47:591-600. [PMID: 22364558 DOI: 10.3109/00365521.2012.661761] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND In rat, the first 18-24 h after partial hepatectomy (PH) are characterized by an acute-phase reaction, after which liver regeneration predominates. Interleukin-6 (IL-6) induces the iron hormone hepcidin, which blocks iron uptake and may compromise iron uptake in the growing liver. The expressions of hepcidin and the iron-regulatory pathway of hepcidin gene expression during the late phase of liver regeneration are unknown. AIM To characterize the expression pattern of hepcidin and the iron-sensing pathway of hepcidin regulation during liver regeneration. METHODS Rats were subjected to PH or sham operation. Liver weights, number of S-phase nuclei, and serum levels of iron and IL-6 were determined. Messenger-RNA levels of hepcidin, ferritin, hemojuvelin, transferrin receptor 1 and 2, HFE, divalent metal transporter 1, ferroportin, and ceruloplasmin were determined with qPCR at different time points. Protein levels of STAT3 and SMAD4 were determined with western blot. RESULTS During the acute-phase response, IL-6 release induced STAT3 protein and hepcidin mRNA, whereas mRNA levels of proteins in the iron-sensing pathway (HFE, hemojuvelin, and transferrin receptor 2) decreased. The mRNA levels of proteins involved in cellular iron uptake were increased and cellular iron export unchanged. During liver regeneration >24 h after PH, gene expressions in the iron-sensing pathway were continuously suppressed and hepcidin mRNA levels declined 3-7 days after surgery. CONCLUSIONS Hepcidin gene expression peaks during the acute-phase response, but a sustained down-regulation of the iron-sensing pathway of hepcidin regulation gradually reduces hepcidin gene expression until regeneration is complete, thereby promoting iron mobilization to the regenerating liver.
Collapse
Affiliation(s)
- Annelie Mollbrink
- Department of Medicine, Karolinska University Hospital Huddinge, Division of Gastroenterology and Hepatology, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
18
|
E. coli-produced BMP-2 as a chemopreventive strategy for colon cancer: a proof-of-concept study. Gastroenterol Res Pract 2012; 2012:895462. [PMID: 22315590 PMCID: PMC3270523 DOI: 10.1155/2012/895462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/20/2011] [Indexed: 12/20/2022] Open
Abstract
Colon cancer is a serious health problem, and novel preventive and therapeutical avenues are urgently called for. Delivery of proteins with anticancer activity through genetically modified bacteria provides an interesting, potentially specific, economic and effective approach here. Interestingly, bone morphogenetic protein 2 (BMP-2) is an important and powerful tumour suppressor in the colon and is thus an attractive candidate protein for delivery through genetically modified bacteria. It has not been shown, however, that BMP production in the bacterial context is effective on colon cancer cells. Here we demonstrate that transforming E. coli with a cDNA encoding an ileal-derived mature human BMP-2 induces effective apoptosis in an in vitro model system for colorectal cancer, whereas the maternal organism was not effective in this respect. Furthermore, these effects were sensitive to cotreatment with the BMP inhibitor Noggin. We propose that prevention and treatment of colorectal cancer using transgenic bacteria is feasible.
Collapse
|
19
|
Brehm K. The role of evolutionarily conserved signalling systems in Echinococcus multilocularis development and host–parasite interaction. Med Microbiol Immunol 2010. [DOI: 78495111110.1007/s00430-010-0154-1' target='_blank'>'"<>78495111110.1007/s00430-010-0154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1007/s00430-010-0154-1','', '10.3748/wjg.v12.i47.7621')">Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
78495111110.1007/s00430-010-0154-1" />
|
20
|
The role of evolutionarily conserved signalling systems in Echinococcus multilocularis development and host-parasite interaction. Med Microbiol Immunol 2010; 199:247-59. [PMID: 20376483 DOI: 10.1007/s00430-010-0154-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Indexed: 12/15/2022]
Abstract
Alveolar echinococcosis, one of the most serious and life-threatening zoonoses in the world, is caused by the metacestode larval stage of the fox-tapeworm Echinococcus multilocularis. Mostly due to its accessibility to in vitro cultivation, this parasite has recently evolved into an experimental model system to study larval cestode development and associated host-parasite interaction mechanisms. Respective advances include the establishment of axenic in vitro cultivation systems for parasite larvae as well as culture systems by which the early development of metacestode vesicles from totipotent parasite stem cells can be reconstituted under controlled laboratory conditions. A series of evolutionarily conserved signalling molecules of the insulin, epidermal growth factor and transforming growth factor-beta pathways that are able to functionally interact with corresponding host cytokines have been described in E. multilocularis and most likely play a crucial role in parasite development within the liver of the intermediate host. Furthermore, a whole genome sequencing project has been initiated by which a comprehensive picture on E. multilocularis cell-cell communication systems will be available in due time, including information on parasite cytokines that are secreted towards host tissue and thus might affect the immune response. In this article, an overview of our current picture on Echinococcus signalling systems will be given, and the potential to exploit these pathways as targets for anti-parasitic chemotherapy will be discussed.
Collapse
|
21
|
Echinococcus multilocularis as an experimental model in stem cell research and molecular host-parasite interaction. Parasitology 2009; 137:537-55. [PMID: 19961652 DOI: 10.1017/s0031182009991727] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Totipotent somatic stem cells (neoblasts) are key players in the biology of flatworms and account for their amazing regenerative capability and developmental plasticity. During recent years, considerable progress has been made in elucidating molecular features of neoblasts from free-living flatworms, whereas their role in parasitic species has so far merely been addressed by descriptive studies. Very recently, however, significant advances have been made in the in vitro culture of neoblasts from the cestode Echinococcus multilocularis. The isolated cells proved capable of generating mature metacestode vesicles under laboratory conditions in a manner that closely resembles the oncosphere-metacestode transition during natural infections. Using the established neoblast cultivation protocols, combined with targeted manipulation of Echinococcus genes by RNA-interference, several fundamental questions of host-dependent parasite development can now be addressed. Here, I give an overview of current cultivation techniques for E. multilocularis neoblasts and present experimental approaches to study their function. Furthermore, I introduce the E. multilocularis genome sequencing project that is presently in an advanced stage. The combined input of data from the E. multilocularis sequencing project, stem cell cultivation, and recently initiated attempts to genetically manipulate Echinococcus will provide an ideal platform for hypothesis-driven research into cestode development in the next years.
Collapse
|