1
|
Xun Y, Chen G, Tang G, Zhang C, Zhou S, Fong TL, Chen Y, Xiong R, Wang N, Feng Y. Traditional Chinese medicine and natural products in management of hepatocellular carcinoma: Biological mechanisms and therapeutic potential. Pharmacol Res 2025; 215:107733. [PMID: 40209965 DOI: 10.1016/j.phrs.2025.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Hepatocellular carcinoma (HCC), originating from hepatocytes, is the most common type of primary liver cancer. HCC imposes a significant global health burden with high morbidity and mortality, making it a critical public concern. Surgical interventions, including hepatectomy and liver transplantation, are pivotal in achieving long-term survival for patients with HCC. Additionally, ablation therapy, endovascular interventional therapy, radiotherapy, and systemic anti-tumor therapies are commonly employed. However, these treatment modalities are often associated with considerable challenges, including high postoperative recurrence rates and adverse effects. Traditional Chinese medicine (TCM) and natural products have been utilized for centuries as a complementary approach in managing HCC and its complications, demonstrating favorable clinical outcomes. Various bioactive compounds derived from TCM and natural products have been identified and purified, and their mechanisms of action have been extensively investigated. This review aims to provide a comprehensive and up-to-date evaluation of the clinical efficacy of TCM, natural products and their active constituents in the treatment and management of HCC. Particular emphasis is placed on elucidating the potential molecular mechanisms and therapeutic targets of these agents, including their roles in inhibiting HCC cell proliferation, inducing apoptosis and pyroptosis, suppressing tumor invasion and metastasis, and restraining angiogenesis within HCC tissues.
Collapse
Affiliation(s)
- Yunqing Xun
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Guang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Shichen Zhou
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Tung-Leong Fong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Yue Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Ruogu Xiong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
2
|
Tian ZF, Hu RY, Wang Z, Wang YJ, Li W. Molecular mechanisms behind the inhibitory effects of ginsenoside Rg3 on hepatic fibrosis: a review. Arch Toxicol 2025; 99:541-561. [PMID: 39729114 DOI: 10.1007/s00204-024-03941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Hepatitis is a chronic inflammatory liver disease and an important cause of liver fibrosis, which can progress to cirrhosis and even hepatocellular carcinoma if left untreated. However, liver fibrosis is a reversible disease, so finding new intervention targets and molecular markers is the key to preventing and treating liver fibrosis. Ginseng, the roots of Panax ginseng C. A. Meyer, is a precious Traditional Chinese Medicines with high medicinal value and is known as the "king of all herbs", and its active ingredient, ginsenoside Rg3 is a rare saponin and a new class of drug, one of the most thoroughly and extensively studied in a large number of studies. Ginsenoside Rg3 is an active ingredient extracted from ginseng that possesses a variety of biological activities, including anti-inflammatory, antioxidant, and anti-fibrotic effects. Several studies have suggested that ginsenoside Rg3 may help reduce hepatic inflammation and oxidative stress, thereby slowing the progression of liver fibrosis. Ginsenoside Rg3 may have some therapeutic effects on liver fibrosis, and the underlying molecular mechanisms behind these effects are attributed to cellular autophagy, apoptosis, and anti-inflammation, as well as the modulation of antioxidant activity and multiple signaling pathways. The molecular mechanisms behind the inhibitory effect of ginsenoside Rg3 on hepatic fibrosis are reviewed, with a view to providing reference for related studies.
Collapse
Affiliation(s)
- Zhao-Feng Tian
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Rui-Yi Hu
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
| | - Ya-Jun Wang
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China.
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Shang S, Yang H, Qu L, Fan D, Deng J. Ginsenoside, a potential natural product against liver diseases: a comprehensive review from molecular mechanisms to application. Crit Rev Food Sci Nutr 2025:1-25. [PMID: 39810734 DOI: 10.1080/10408398.2025.2451761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Liver disease constitutes a significant cause of global mortality, with its pathogenesis being multifaceted. Identifying effective pharmacological and preventive strategies is imperative for liver protection. Ginsenosides, the major bioactive compounds found in ginseng, exhibit multiple pharmacological activities including protection against liver-related diseases by mitigating liver fat accumulation and inflammation, preventing hepatic fibrosis, and exerting anti-hepatocarcinogenic effects. However, a comprehensive overview elucidating the regulatory pathways associated with ginsenosides in liver disease remains elusive. This review aims to consolidate the molecular mechanisms through which different ginsenosides ameliorate distinct liver diseases, alongside the pathogenic factors underlying liver ailments. Notably, ginsenosides Rb1 and Rg1 demonstrate significantly effective in treating fatty liver, hepatitis, and liver fibrosis, and ginsenosides CK and Rh2 exhibit potent anti-hepatocellular carcinogenic effects. Their molecular mechanisms underlying these effects primarily involve the modulation of AMPK, NF-κB, TGF-β, NFR2, JNK, and other pathways, thereby attenuating hepatic fat accumulation, inflammation, inhibition of hepatic stellate cell activation, and promoting apoptosis in hepatocellular carcinoma cells. Furthermore, it provides insights into the safety profile and current applications of ginsenosides, thereby facilitating their clinical development. Consequently, ginsenosides present promising prospects for liver disease management, underscoring their potential as valuable therapeutic agents in this context.
Collapse
Affiliation(s)
- Shiyan Shang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Linlin Qu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Shen Y, Gao Y, Yang G, Zhao Z, Zhao Y, Gao L, Li S. Anti-colorectal cancer effect of total minor ginsenosides produced by lactobacilli transformation of major ginsenosides by inducing apoptosis and regulating gut microbiota. Front Pharmacol 2025; 15:1496346. [PMID: 39845805 PMCID: PMC11750747 DOI: 10.3389/fphar.2024.1496346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Objective Minor ginsenosides have demonstrated promising anticancer effects in previous reports. Total minor ginsenosides (TMG) were obtained through the fermentation of major ginsenosides with Lactiplantibacillus plantarum, and potential anticancer effects of TMGs on the mouse colon cancer cell line CT26.WT, in vitro and in vivo, were investigated. Materials and Methods We employed the Cell Counting Kit-8 (CCK-8), TdT-mediated dUTP nick end labeling (TUNEL), and Western blot analysis in vitro to explore the anti-proliferative and pro-apoptotic functions of TMG in CT26.WT cells. In vivo, a xenograft model was established by subcutaneously injecting mice with CT26.WT cells and administering a dose of 100 mg/kg/day TMG to the tumor-bearing mice. The level of apoptosis and expression of various proteins in the tumor tissues were detected by immunohistochemistry and Western blot. High-throughput 16S rRNA sequencing was used to determine the alterations in the gut microbiota. Results In vitro studies demonstrated that TMG significantly inhibited proliferation and promoted apoptosis in CT26.WT cells. Interestingly, TMG induced apoptosis in CT26.WT cells by affecting the Bax/Bcl-2/caspase-3 pathway. Furthermore, the result of the transplanted tumor model indicated that TMG substantially enhanced the activities of Bax and caspase-3, reduced the activity of Bcl-2, and suppressed the expression of Raf/MEK/ERK protein levels. Fecal analysis revealed that TMG reconstructed the gut microbiota in colorectal cancer-affected mice by augmenting the abundance of the advantageous bacterium Lactobacillus and decreasing the abundance of the harmful bacterium Proteus. Conclusion TMG can exhibit potent anti-colorectal cancer effects through diverse apoptotic mechanisms, with their mode of action closely related to the regulation of gut microbiota.
Collapse
Affiliation(s)
- Yunjiao Shen
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
- School of Chinese Materia Medica, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yansong Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Lei Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| |
Collapse
|
5
|
Yu HB, Hu JQ, Han BJ, Du YY, Chen ST, Chen X, Xiong HT, Gao J, Zheng HG. Combinatorial treatment with traditional medicinal preparations and VEGFR-tyrosine kinase inhibitors for middle-advanced primary liver cancer: A systematic review and meta-analysis. PLoS One 2024; 19:e0313443. [PMID: 39576764 PMCID: PMC11584121 DOI: 10.1371/journal.pone.0313443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND This study aimed to investigate the therapeutic efficacy and safety of Traditional medicine preparations (TMPs) given in combination with vascular endothelial growth factor receptor (VEGFR)-associated multi-targeted tyrosine kinase inhibitors (TKIs) for the treatment of middle to advanced-stage primary liver cancer (PLC). METHODS This systematic literature survey employed 10 electronic databases and 2 clinical trial registration platforms to identify relevant studies on the use of TMPs + VEGFR-TKIs to treat patients with middle-advanced PLC. Furthermore, a meta-analysis was performed following the PRISMA guidelines using the risk ratio (RR) at 95% confidence intervals (CI) or standardized mean difference as effect measures. RESULTS A total of 26 studies comprising 1678 middle-advanced PLC patients were selected. The meta-analysis revealed that compared with VEGFR-TKI mono-treatment, the co-therapy of TMPs + VEGFR-TKIs considerably enhanced the objective response rate (RR = 1.49, 95% CI: 1.31-1.69), disease control rate (RR = 1.23, 95% CI: 1.16-1.30), and one-year overall survival (RR = 1.49, 95% CI: 1.28-1.74). Furthermore, the co-therapy was associated with reduced incidences of liver dysfunction (RR = 0.64, 95% CI: 0.45-0.91), proteinuria (RR = 0.43, 95% CI: 0.24-0.75), hypertension (RR = 0.66, 95% CI: 0.53-0.83), hand-foot skin reactions (RR = 0.63, 95% CI: 0.49-0.80), myelosuppression (RR = 0.63, 95% CI: 0.46-0.87), and gastrointestinal reactions (RR = 0.64, 95% CI: 0.45-0.92). Moreover, the co-therapy indicated no increase in the incidences of rash and fatigue. CONCLUSION This systematic analysis revealed that co-therapy with TMPs + VEGFR-TKIs has a higher effectiveness and safety profile for treating middle-advanced PLC patients. However, further validation using randomized control trials is required. PROSPERO REGISTRATION NO CRD42022350634.
Collapse
Affiliation(s)
- Hui-Bo Yu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Qi Hu
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Bao-Jin Han
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yan-Yuan Du
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shun-Tai Chen
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Chen
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Tai Xiong
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin Gao
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Gang Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Wu J, Tang G, Cheng CS, Yeerken R, Chan YT, Fu Z, Zheng YC, Feng Y, Wang N. Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: from clinical evidence to drug discovery. Mol Cancer 2024; 23:218. [PMID: 39354529 PMCID: PMC11443773 DOI: 10.1186/s12943-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatic, biliary, and pancreatic cancer pose significant challenges in the field of digestive system diseases due to their highly malignant nature. Traditional Chinese medicine (TCM) has gained attention as a potential therapeutic approach with long-standing use in China and well-recognized clinical benefits. In this review, we systematically summarized the clinical applications of TCM that have shown promising results in clinical trials in treating hepatic, biliary, and pancreatic cancer. We highlighted several commonly used TCM therapeutics with validated efficacy through rigorous clinical trials, including Huaier Granule, Huachansu, and Icaritin. The active compounds and their potential targets have been thoroughly elucidated to offer valuable insights into the potential of TCM for anti-cancer drug discovery. We emphasized the importance of further research to bridge the gap between TCM and modern oncology, facilitating the development of evidence-based TCM treatment for these challenging malignancies.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Chien-Shan Cheng
- Department of Digestive Endoscopy Center & Gastroenterology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Ranna Yeerken
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Yau-Tuen Chan
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention &, Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| |
Collapse
|
7
|
Zhou Y, Wang Z, Ren S, Li W. Mechanism of action of protopanaxadiol ginsenosides on hepatocellular carcinoma and network pharmacological analysis. CHINESE HERBAL MEDICINES 2024; 16:548-557. [PMID: 39606268 PMCID: PMC11589304 DOI: 10.1016/j.chmed.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 06/18/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies globally, posing a major challenge to global health care. Protopanaxadiol ginsenosides (PDs) have been believed to significantly improve liver diseases. PDs, such as Rg3, have been developed as a new class of anti-cancer drugs. Ginsenosides Rb1, Rd, Rg3, and Rh2 exhibit effective anti-inflammatory and anti-tumor activities. Studies have confirmed that PDs could be used to treat HCC. However, the mechanism of action of PDs on HCC remains unclear. In the study, we reviewed the anti-HCC effects and mechanisms of PDs including Rb1, Rd, Rg3, Rg5, Rh2, Rk1, and Compound K (CK). Then, we searched for relevant targets of PDs and HCC from databases and enriched them for analysis. Subsequently, molecular docking was simulated to reveal molecular mechanisms. We found that PDs may treat HCC through multiple signaling pathways and related targets. PDs could inhibit the proliferation, invasion, and metastasis of HCC while promoting apoptosis and inducing differentiation. In conclusion, this review and network pharmacological analysis might offer a direction for in-depth research on related mechanisms. These insights will aid in the direction of further pharmacological studies and the development of safe and effective clinical drugs.
Collapse
Affiliation(s)
- Yue Zhou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
8
|
Wang W, Li K, Xiao W. The pharmacological role of Ginsenoside Rg3 in liver diseases: A review on molecular mechanisms. J Ginseng Res 2024; 48:129-139. [PMID: 38465219 PMCID: PMC10920009 DOI: 10.1016/j.jgr.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 11/10/2023] [Indexed: 03/12/2024] Open
Abstract
Liver diseases are a significant global health burden and are among the most common diseases. Ginssennoside Rg3 (Rg3), which is one of the most abundant ginsenosides, has been found to have significant preventive and therapeutic effects against various types of diseases with minimal side effects. Numerous studies have demonstrated the significant preventive and therapeutic effects of Rg3 on various liver diseases such as viral hepatitis, acute liver injury, nonalcoholic liver diseases (NAFLD), liver fibrosis and hepatocellular carcinoma (HCC). The underlying molecular mechanism behind these effects is attributed to apoptosis, autophagy, antioxidant, anti-inflammatory activities, and the regulation of multiple signaling pathways. This review provides a comprehensive description of the potential molecular mechanisms of Rg3 in the development of liver diseases. The article focuses on the regulation of apoptosis, oxidative stress, autophagy, inflammation, and other related factors. Additionally, the review discusses combination therapy and liver targeting strategy, which can accelerate the translation of Rg3 from bench to bedside. Overall, this article serves as a valuable reference for researchers and clinicians alike.
Collapse
Affiliation(s)
- Wenhong Wang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Ke Li
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Weihua Xiao
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
9
|
赵 娅, 邓 丽, 曹 玥, 马 步, 李 月, 徐 靖, 李 红, 黄 英. [Inhibitory Effect of Ginsenoside Rg3 Combined With 5-Fluorouracil on Tumor Angiogenesis and Tumor Growth of Colon Cancer in Mice: An Experimental Study]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:111-117. [PMID: 38322531 PMCID: PMC10839471 DOI: 10.12182/20240160506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 02/08/2024]
Abstract
Objective To evaluate the inhibitory effect of ginsenoside Rg3 combined with 5-fluorouracil (5-FU) on tumor angiogenesis and tumor growth in colon cancer in mice. Methods CT26 mouse model of colon cancer was established and the mice were randomly assigned to the control group, the ginsenoside Rg3 group, the 5-FU group, and the Rg3 combined with 5-FU group. The 5-FU group was injected intraperitoneally at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 10 days. Treatment for the Rg3 group was given at the dose of 20 mg/kg, 0.2 mL/animal, and once a day for 21 days via gastric gavage. The dose and the mode of treatment for the Rg3+5-FU combination group were the same as those for the 5-FU and the Rg3 group. The control group was intraperitoneally injected with 0.2 mL/d of normal saline for 10 days. The expression of vascular endothelial growth factor (VEGF) and CD31 and the microvascular density (MVD) of the tumor tissues were examined by immunohistochemistry. The blood flow signals and tumor necrosis were examined by color Doppler flow imaging (CDFI). The quality of life, survival rate, tumor volume, tumor mass, and tumor inhibition rate of the mice were monitored. Results After 21 days of treatment, the tumor volume and the tumor mass of all treatment groups were significantly decreased compared with those the control group, with the combination treatment group exhibiting the most significant decrease. The tumor inhibition rates of the Rg3 group, the 5-FU group, and the combination group were 29.96%, 68.78%, and 73.42%, respectively. Rg3 treatment alone had inhibitory effect on tumor growth to a certain degree, while 5-FU treatment alone or 5-FU combined with Rg3 had a stronger inhibitory effect on tumor growth. The tumor inhibition rate of the combination group was higher than that of the 5-FU group, but the difference was not statistically significant (P>0.05). Color Doppler ultrasound showed that there were multiple localized and large tumor necrotic areas that were obvious and observable in the Rg3 group and the combination group, and that there were only small tumor necrotic areas in the 5-FU group and the control group. The tumor necrosis rate of the combination group was (55.63±3.12)%, which was significantly higher than those of the other groups (P<0.05). CDFI examination of the blood flow inside of the tumor of the mice showed that the blood flow signals in the combination group were mostly grade 0-Ⅰ, and that the blood flow signals in the control group were the most abundant, being mostly grade Ⅱ-Ⅲ. The abundance of the blood flow signals in the Rg3 and 5-FU groups were between those of the control group and the combination group. Compared with those of the control group, the expression levels of MVD and VEGF in the tumor tissues of the Rg3 group, the 5-FU group, and the combination group were significantly decreased, with the combination group showing the most significant decrease (P<0.05). HE staining results indicated that there was significant tumor necrosis in mice in the control group and that there were more blood vessels. In contrast, in the tumor of the Rg3 group and the 5-FU group, there were fewer blood vessels and necrotic gaps appeared within the tumors. In the combination group, the tumor tissues had the fewest blood vessels and rope-like necrosis was observed. The mice started dying on the 18th day after treatment started, and all the mice in the control group died on the 42nd day. By this time, there were 3, 5, and 7 mice still alive in the Rg3 group, the 5-FU group, and the combination group, respectively, presenting a survival rate of 30%, 50%, and 70%, respectively. All mice in all the groups died on day 60 after treatment started. Conclusion Ginsenoside Rg3 combined with 5-FU can significantly inhibit tumor angiogenesis and tumor growth of colon cancer in mice and improve the survival and quality of life of tumor-bearing mice.
Collapse
Affiliation(s)
- 娅菽 赵
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 丽聪 邓
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 玥 曹
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 步云 马
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 月 李
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 靖怡 徐
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 红 李
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 英 黄
- 四川大学华西基础医学与法医学院 病理生理学教研室 (成都 610041)Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Liu Q, Song B, Tong S, Yang Q, Zhao H, Guo J, Tian X, Chang R, Wu J. Research Progress on the Anticancer Activity of Plant Polysaccharides. Recent Pat Anticancer Drug Discov 2024; 19:573-598. [PMID: 37724671 DOI: 10.2174/1574892819666230915103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023]
Abstract
Tumor is a serious threat to human health, with extremely high morbidity and mortality rates. However, tumor treatment is challenging, and the development of antitumor drugs has always been a significant research focus. Plant polysaccharides are known to possess various biological activities. They have many pharmacological properties such as immunomodulation, antitumor, antiviral, antioxidative, antithrombotic, and antiradiation effects, reduction of blood pressure and blood sugar levels, and protection from liver injury. Among these effects, the antitumor effect of plant polysaccharides has been widely studied. Plant polysaccharides can inhibit tumor proliferation and growth by inhibiting tumor cell invasion and metastasis, inducing cell apoptosis, affecting the cell cycle, and regulating the tumor microenvironment. They also have the characteristics of safety, high efficiency, and low toxicity, which can alleviate, to a certain extent, the adverse reactions caused by traditional tumor treatment methods such as surgery, radiotherapy, and chemotherapy. Therefore, this paper systematically summarizes the direct antitumor effects of plant polysaccharides, their regulatory effects on the tumor microenvironment, and intervening many common high-incidence tumors in other ways. It also provides data support for the administration of plant polysaccharides in modern tumor drug therapy, enabling the identification of new targets and development of new drugs for tumor therapy.
Collapse
Affiliation(s)
- Qiaoyan Liu
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bo Song
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Sen Tong
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qiuqiong Yang
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Huanhuan Zhao
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jia Guo
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xuexia Tian
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Renjie Chang
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Junzi Wu
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
11
|
Xia D, Wang S, Wu K, Li N, Fan W. Ginsenosides and Tumors: A Comprehensive and Visualized Analysis of Research Hotspots and Antitumor Mechanisms. J Cancer 2024; 15:671-684. [PMID: 38213735 PMCID: PMC10777040 DOI: 10.7150/jca.88783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 01/13/2024] Open
Abstract
Background: Ginsenoside, the main active constituent of traditional Chinese medicine Ginseng, has been shown to play an important role in the prevention and treatment of cancer. However, the literature as well as the antitumor mechanisms of ginsenosides has not yet been systematically studied. Methods: We screened all relevant literature on ginsenosides and tumors from Web of Science during 2001-2021 and analyzed the extracted terms of these publications by VOSviewer and CiteSpace. DAVID online tool was used to perform Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathways analysis of ginsenoside-related genes. Cytoscape and String software were used to construct the interaction networks of ginsenoside-related genes and corresponding proteins. Results: A total of 919 publications were included in the study. A total of 122 identified keywords were mainly divided into 3 clusters: "pharmacological function research", "functional validation in animal models" and "anti-tumor efficacy and mechanism". The keywords of "oxidative stress" had the strongest citation burst in the past 5 years. A total of 50 genes were identified as ginsenoside-related genes in tumors. They have the function of regulating gene expression and apoptosis, and they are closely related to signaling pathways in cancers. Ginsenoside-related genes form a complex interactional network, in which TP53 and IL-6 are centrally located. Conclusions: We explored and revealed research hotspots related to the ginsenosides and tumors. More precise anti-tumor mechanism research will be promising in the future. TP53 and IL-6 may be the key points to comprehending the anti-tumor mechanism of ginsenosides.
Collapse
Affiliation(s)
- Demeng Xia
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
- Department of Clinical Medicine, Hainan Health Vocational College, Hainan 572000, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Shuo Wang
- Department of Clinical Laboratory. Naval Hospital of Eastern Theater of PLA, Zhoushan, Zhejiang Province 316000, China
| | - Kaiwen Wu
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| |
Collapse
|
12
|
Yang J, Zhang L, Peng X, Zhang S, Sun S, Ding Q, Ding C, Liu W. Polymer-Based Wound Dressings Loaded with Ginsenoside Rg3. Molecules 2023; 28:5066. [PMID: 37446725 DOI: 10.3390/molecules28135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The skin, the largest organ in the human body, mainly plays a protective role. Once damaged, it can lead to acute or chronic wounds. Wound healing involves a series of complex physiological processes that require ideal wound dressings to promote it. The current wound dressings have characteristics such as high porosity and moderate water vapor permeability, but they are limited in antibacterial properties and cannot protect wounds from microbial infections, which can delay wound healing. In addition, several dressings contain antibiotics, which may have bad impacts on patients. Natural active substances have good biocompatibility; for example, ginsenoside Rg3 has anti-inflammatory, antibacterial, antioxidant, and other biological activities, which can effectively promote wound healing. Some researchers have developed various polymer wound dressings loaded with ginsenoside Rg3 that have good biocompatibility and can effectively promote wound healing and reduce scar formation. This article will focus on the application and mechanism of ginsenoside Rg3-loaded dressings in wounds.
Collapse
Affiliation(s)
- Jiali Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Lifeng Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojuan Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Wencong Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| |
Collapse
|
13
|
Sui Z, Sui D, Li M, Yu Q, Li H, Jiang Y. Ginsenoside Rg3 has effects comparable to those of ginsenoside re on diabetic kidney disease prevention in db/db mice by regulating inflammation, fibrosis and PPARγ. Mol Med Rep 2023; 27:84. [PMID: 36866725 PMCID: PMC10018274 DOI: 10.3892/mmr.2023.12971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Ginsenoside Rg3 (Rg3) is an adjuvant antitumor drug, while ginsenoside Re (Re) is an adjuvant antidiabetic drug. Our previous studies demonstrated that Rg3 and Re both have hepatoprotective effects in db/db mice. The present study aimed to observe the renoprotective effects of Rg3 on db/db mice, with Re as the control. The db/db mice were randomly assigned to receive daily oral treatment with Rg3, Re or vehicle for 8 weeks. Body weight and blood glucose were examined weekly. Blood lipids, creatinine, and BUN were examined by biochemical assay. Hematoxylin and eosin and Masson staining were used for pathological examination. The expression of peroxisome proliferator‑activated receptor gamma (PPARγ) and inflammation and fibrosis biomarkers was examined by immunohistochemical and reverse transcription‑quantitative PCR. Although neither had a significant effect on body weight, blood glucose or lipids, Rg3 and Re were both able to decrease the creatinine and blood urea nitrogen levels of db/db mice to levels similar to those of wild type mice and inhibit pathological changes. The expression of PPARγ was upregulated and biomarkers of inflammation and fibrosis were downregulated by Rg3 and Re. The results showed that the potential of Rg3 as a preventive treatment of diabetic kidney disease was similar to that of Re.
Collapse
Affiliation(s)
- Zhe Sui
- Health Management Medical Center, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Min Li
- Pharmacological Experiment Center, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Qian Yu
- Department of Pharmacy, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hongjun Li
- Health Management Medical Center, China‑Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yichuan Jiang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
14
|
Yang K, Ryu T, Chung BS. A Meta-Analysis of Preclinical Studies to Investigate the Effect of Panax ginseng on Alcohol-Associated Liver Disease. Antioxidants (Basel) 2023; 12:841. [PMID: 37107216 PMCID: PMC10135056 DOI: 10.3390/antiox12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Alcohol-associated liver disease (ALD) has become a major global concern, but the development of effective drugs remains a challenge despite numerous preclinical and clinical pieces of research on the effects of natural compounds. To address this, a meta-analysis was conducted on the efficacy of Panax ginseng for ALD based on preclinical studies. We identified 18 relevant studies from PubMed, Web of Science, and Cochrane Library database and evaluated their methodological quality using the Systematic Review Centre for Laboratory animal Experimentation tool. We analyzed the data using I2, p-values, and fixed effects models to assess overall efficacy and heterogeneity. The results of the meta-analysis suggested that Panax ginseng treatment is effective in reducing the levels of inflammatory markers associated with hepatic injury caused by ALD in animal experiments. Additionally, the administration of Panax ginseng was found to down-regulate inflammatory cytokines and attenuate lipid metabolism in ALD. Moreover, Panax ginseng markedly improved the antioxidant systems in ALD. Therefore, we concluded that Panax ginseng has the potential to be a promising therapeutic agent for ALD. Further research is needed to confirm these findings and to determine the optimal dosage and duration of treatment for patients with ALD.
Collapse
Affiliation(s)
- Keungmo Yang
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease Center, College of Medicine, Soonchunhyang University, Seoul 04401, Republic of Korea
| | - Beom Sun Chung
- Department of Anatomy, College of Medicine, Yonsei University Wonju, Wonju 26426, Republic of Korea
| |
Collapse
|
15
|
Zhang J, Tong Y, Lu X, Dong F, Ma X, Yin S, He Y, Liu Y, Liu Q, Fan D. A derivant of ginsenoside CK and its inhibitory effect on hepatocellular carcinoma. Life Sci 2022; 304:120698. [PMID: 35690105 DOI: 10.1016/j.lfs.2022.120698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/25/2022]
Abstract
Epidemiological studies have shown that hepatocellular carcinoma (HCC) is a main cause of tumor death worldwide. Accumulating data indicate that ginsenoside CK is an effective compound for preventing HCC growth and development. However, improvement of pharmaceutical effect of the ginsenoside CK is still needed. In our study, we performed acetylation of ginsenoside CK (CK-3) and investigated the antitumor effects of the derivative in vitro and in vivo. The cytotoxicity analysis revealed that compared with CK, CK-3 could inhibit the proliferation of multiple tumor cell lines at a lower concentration. Treating with CK-3 on HCC cells arrested cell cycle in G2/M phase and induced cell apoptosis through AO/EB staining, TUNEL analysis and flow cytometry. Meanwhile, CK-3 significantly inhibited tumor growth in an HCC xenograft model and showed no side effect on the function of the main organs. Mechanistically, whole transcriptome analysis revealed that the antitumor effect of CK-3 was involved in the Hippo signaling pathway. The immunoblotting and immunofluorescence results illustrated that CK-3 directly facilitated the phosphorylation of YAP1 and decreased the expression of the main transcription factor TEAD2 in HCC cell lines and tumor tissue sections. Collectively, our results demostrate the formation of a new derivative of ginsenoside CK and its regulatory mechanism in HCC, which could activate the Hippo-YAP1-TEAD2 signaling pathway to regulate HCC progression. This research could provide a new direction for traditional Chinese medicine in the therapy of tumors.
Collapse
Affiliation(s)
- Jingjing Zhang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Yangliu Tong
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xun Lu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Fangming Dong
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China
| | - Shiyu Yin
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Ying He
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Yonghong Liu
- Shaanxi Giant Biotechnology Co., LTD, No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi'an, Shaanxi 710076, China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Taibai North Road 229, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
16
|
Li K, Xiao K, Zhu S, Wang Y, Wang W. Chinese Herbal Medicine for Primary Liver Cancer Therapy: Perspectives and Challenges. Front Pharmacol 2022; 13:889799. [PMID: 35600861 PMCID: PMC9117702 DOI: 10.3389/fphar.2022.889799] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022] Open
Abstract
Primary liver cancer (PLC) is one of the most common solid malignancies. However, PLC drug development has been slow, and first-line treatments are still needed; thus, studies exploring and developing alternative strategies for effective PLC treatment are urgently needed. Chinese herbal medicine (CHM) has long been applied in the clinic due to its advantages of low toxicity and targeting of multiple factors and pathways, and it has great potential for the development of novel natural drugs against PLC. Purpose: This review aims to provide an update on the pharmacological mechanisms of Chinese patent medicines (CPMs) and the latest CHM-derived compounds for the treatment of PLC and relevant clinical evaluations. Materials and Methods: A systematic search of English literature databases, Chinese literature, the Clinical Trials Registry Platform, and the Chinese Clinical Trial Registry for studies of CHMs for PLC treatment was performed. Results: In this review, we summarize the clinical trials and mechanisms of CPMs for PLC treatment that have entered the clinic with the approval of the Chinese medicine regulatory authority. These CPMs included Huaier granules, Ganfule granules, Fufang Banmao capsules, Jinlong capsules, Brucea javanica oil emulsions, and compound kushen injections. We also summarize the latest in vivo, in vitro, and clinical studies of CHM-derived compounds against PLC: icaritin and ginsenoside Rg3. Dilemmas facing the development of CHMs, such as drug toxicity and low oral availability, and future developments are also discussed. Conclusion: This review provides a deeper the understanding of CHMs as PLC treatments and provides ideas for the development of new natural drugs against PLC.
Collapse
Affiliation(s)
- Kexin Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Kunmin Xiao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yong Wang, ; Wei Wang,
| | - Wei Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Institute of Prescription and Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provinvial Key Laboratory of TCM Pathogenesis and Prescriptions of Heart and Spleen Diseases, Guangzhou, China
- *Correspondence: Yong Wang, ; Wei Wang,
| |
Collapse
|
17
|
Renchinkhand G, Magsar U, Bae HC, Choi SH, Nam MS. Identification of β-Glucosidase Activity of Lentilactobacillus buchneri URN103L and Its Potential to Convert Ginsenoside Rb1 from Panax ginseng. Foods 2022; 11:foods11040529. [PMID: 35206006 PMCID: PMC8870947 DOI: 10.3390/foods11040529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lentilactobacillus buchneri isolated from Korean fermented plant foods produces β-glucosidase, which can hydrolyze ginsenoside Rb1 from Panax ginseng to yield ginsenoside Rd. The aim of this study was to determine the mechanisms underlying the extracellular β-glucosidase activity obtained from Lentilactobacillus buchneri URN103L. Among the 17 types of lactic acid bacteria showing positive β-glucosidase activity in the esculin iron agar test, only URN103L was found to exhibit high hydrolytic activity on ginsenoside Rb1. The strain showed 99% homology with Lentilactobacillus buchneri NRRLB 30929, whereby it was named Lentilactobacillus buchneri URN103L. Supernatants of selected cultures with β-glucosidase activity were examined for hydrolysis of the major ginsenoside Rb1 at 40 °C, pH 5.0. Furthermore, the β-glucosidase activity of this strain showed a distinct ability to hydrolyze major ginsenoside Rb1 into minor ginsenosides Rd and Rg3. Lentilactobacillus buchneri URN103L showed higher leucine arylamidase, valine arylamidase, α-galactosidass, β–galactosidase, and β-glucosidase activities than any other strain. We conclude that β-glucosidase from Lentilactobacillus buchneri URN103L can effectively hydrolyze ginsenoside Rb1 into Rd and Rg3. The converted ginsenoside can be used in functional foods, yogurts, beverage products, cosmetics, and other health products.
Collapse
Affiliation(s)
- Gereltuya Renchinkhand
- Division of Animal Resource Science, Chungnam National University, Daejeon 34134, Korea; (G.R.); (U.M.); (H.C.B.)
| | - Urgamal Magsar
- Division of Animal Resource Science, Chungnam National University, Daejeon 34134, Korea; (G.R.); (U.M.); (H.C.B.)
| | - Hyoung Churl Bae
- Division of Animal Resource Science, Chungnam National University, Daejeon 34134, Korea; (G.R.); (U.M.); (H.C.B.)
| | - Suk-Ho Choi
- Department of Animal Biotechnology, Sangji University, Wonju 26339, Korea;
| | - Myoung Soo Nam
- Division of Animal Resource Science, Chungnam National University, Daejeon 34134, Korea; (G.R.); (U.M.); (H.C.B.)
- Correspondence: ; Tel.: +82-42-821-5782
| |
Collapse
|
18
|
Zhang LY, Zhang JG, Yang X, Cai MH, Zhang CW, Hu ZM. Targeting Tumor Immunosuppressive Microenvironment for the Prevention of Hepatic Cancer: Applications of Traditional Chinese Medicines in Targeted Delivery. Curr Top Med Chem 2021; 20:2789-2800. [PMID: 33076809 DOI: 10.2174/1568026620666201019111524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese Medicine (TCM) is one of the ancient and most accepted alternative medicinal systems in the world for the treatment of health ailments. World Health Organization recognizes TCM as one of the primary healthcare practices followed across the globe. TCM utilizes a holistic approach for the diagnosis and treatment of cancers. The tumor microenvironment (TME) surrounds cancer cells and plays pivotal roles in tumor development, growth, progression, and therapy resistance. TME is a hypoxic and acidic environment that includes immune cells, pericytes, fibroblasts, endothelial cells, various cytokines, growth factors, and extracellular matrix components. Targeting TME using targeted drug delivery and nanoparticles is an attractive strategy for the treatment of solid tumors and recently has received significant research attention under precise medicine concept. TME plays a pivotal role in the overall survival and metastasis of a tumor by stimulating cell proliferation, preventing the tumor clearance by the immune cells, enhancing the oncogenic potential of the cancer cells, and promoting tumor invasion. Hepatocellular Carcinoma (HCC) is one of the major causes of cancer-associated deaths affecting millions of individuals worldwide each year. TCM herbs contain several bioactive phytoconstituents with a broad range of biological, physiological, and immunological effects on the system. Several TCM herbs and their monomers have shown inhibitory effects in HCC by controlling the TME. This study reviews the fundamentals and applications of targeting strategies for immunosuppressing TME to treat cancers. This study focuses on TME targeting strategies using TCM herbs and the molecular mechanisms of several TCM herbs and their monomers on controlling TME.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Jun-Gang Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Xue Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Mao-Hua Cai
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an
Branch), Hangzhou 311700, Zhejiang Province, P.R. China
| | - Cheng-Wu Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| | - Zhi-Ming Hu
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, P.R. China
| |
Collapse
|
19
|
Zheng Q, Qiu Z, Sun Z, Cao L, Li F, Liu D, Wu D. In Vitro Validation of Network Pharmacology Predictions: Ginsenoside Rg3 Inhibits Hepatocellular Carcinoma Cell Proliferation via SIRT2. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211004826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To elucidate the molecular mechanisms underlying the therapeutic activity of ginsenoside Rg3 (Gs-Rg3) in the context of hepatocellular carcinoma (HCC). Methods Relevant databases were searched to identify protein targets that were both dysregulated and implicated in HCC, as well as targeted by Gs-Rg3. Generation of a protein-protein interaction network facilitated the selection of connected nodes for the construction of a shared disease- and drug-target interaction network model, and topological analysis identified the most highly connected nodes. Targets were annotated with their associated Gene Ontology terms, followed by Kyoto Encyclopedia of Genes and Genomes biological pathway enrichment analysis. In vitro experiments using 2 hours CC cell lines (Bel-7402 and HCCLM3) were performed to investigate the impact of Gs-Rg3 on cell proliferation, viability, cell cycle, cyclin D1 and sirtuin 2 (SIRT2) levels, and global cellular histone acetylation (specifically H3K18ac and H4K16ac). Results Network pharmacology suggested that Gs-Rg3 synergistically targets multiple proteins and pathways relevant to HCC pathogenesis, including those involved in cell cycle and proliferation. In vitro experiments confirmed that Gs-Rg3 dose-dependently inhibits cell proliferation and viability; induces G1 phase cell cycle arrest; decreases cyclin D1, cyclin-dependent kinase 2 (CDK2), and SIRT2 levels; and enhances global H3K18ac and H4K16ac. Conclusions Hypotheses derived from the network analysis were confirmed in vitro. Gs-Rg3 induces G1 phase cell cycle arrest, concomitant with decreased cyclin D1 and CDK2 levels, suggesting a possible mechanism for inhibiting proliferation. In addition, Gs-Rg3 decreases SIRT2 levels, concomitant with enhanced global H3K18ac and H4K16ac. These findings provide a theoretical basis and a support for further preclinical study of the safety and antineoplastic molecular mechanisms of Gs-Rg3, with the goal of eventual clinical translation.
Collapse
Affiliation(s)
- Qiyu Zheng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Zhiyuan Sun
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Lingling Cao
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Fuqiang Li
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
20
|
Liu Z, Liu T, Li W, Li J, Wang C, Zhang K. Insights into the antitumor mechanism of ginsenosides Rg3. Mol Biol Rep 2021; 48:2639-2652. [PMID: 33661439 DOI: 10.1007/s11033-021-06187-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Panax ginseng, an ancient herb, belonging to Chinese traditional medicine, is an important herb that has a remarkable impact on various diseases. Ginsenoside Rg3, one of the most abundant ginsenosides, exerts significant functions in the prevention of various types of cancers with few side effects. In the present review, its functional molecular mechanisms are explored, including the improvement of antioxidant and anti-inflammation properties, immune regulation, induction of tumor apoptosis, prevention of tumor invasion and metastasis, tumor proliferation and angiogenesis, and reduction of chemoresistance and radioresistance. On the other hand, metabolism, pharmacokinetics and clinical indications of Rg3 are also discussed. The biological functional role of ginsenoside Rg3 may be associated with that it is a steroid glycoside with diverse biological activities and many signaling pathway can be regulated. Many clinical trials are highly needed to confirm the functions of ginsenoside Rg3.
Collapse
Affiliation(s)
- Zongyu Liu
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China
| | - Cuizhu Wang
- Department of New Drug Research Office, College of Pharmacy of Jilin University, Changchun, 130000, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China.
| |
Collapse
|
21
|
Wang F, Roh YS. Mitochondrial connection to ginsenosides. Arch Pharm Res 2020; 43:1031-1045. [PMID: 33113096 DOI: 10.1007/s12272-020-01279-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in energy synthesis and supply, thereby maintaining cellular function, survival, and energy homeostasis via mitochondria-mediated pathways, including apoptosis and mitophagy. Ginsenosides are responsible for most immunological and pharmacological activities of ginseng, a highly beneficial herb with antioxidant, anti-inflammatory, anti-apoptotic, and neuroprotective properties. Studies have shown that ginsenosides assist in regulating mitochondrial energy metabolism, oxidative stress, biosynthesis, apoptosis, mitophagy, and the status of membrane channels, establishing mitochondria as one of their most important targets. This article reviews the regulatory effects of ginsenosides on the mitochondria and highlights their beneficial role in treating mitochondrial diseases.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pharmacy, College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, 28160, South Korea
| | - Yoon Seok Roh
- Department of Pharmacy, College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, 28160, South Korea.
| |
Collapse
|
22
|
Deng Z, Xu XY, Yunita F, Zhou Q, Wu YR, Hu YX, Wang ZQ, Tian XF. Synergistic anti-liver cancer effects of curcumin and total ginsenosides. World J Gastrointest Oncol 2020; 12:1091-1103. [PMID: 33133379 PMCID: PMC7579727 DOI: 10.4251/wjgo.v12.i10.1091] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Liver cancer is the sixth most frequently occurring cancer in the world and the fourth most common cause of cancer mortality. The pathogenesis of liver cancer is closely associated with inflammation and immune response in the tumor microenvironment. New therapeutic agents for liver cancer, which can control inflammation and restore cellular immunity, are required. Curcumin (Cur) is a natural anti-inflammatory drug, and total ginsenosides (TG) are a commonly used immunoregulatory drug. Of note, both Cur and TG have been shown to exert anti-liver cancer effects.
AIM To determine the synergistic immunomodulatory and anti-inflammatory effects of Cur combined with TG in a mouse model of subcutaneous liver cancer.
METHODS A subcutaneous liver cancer model was established in BALB/c mice by a subcutaneous injection of hepatoma cell line. Animals were treated with Cur (200 mg/kg per day), TG (104 mg/kg per day or 520 mg/kg per day), the combination of Cur (200 mg/kg per day) and TG (104 mg/kg per day or 520 mg/kg per day), or 5-fluorouracil combined with cisplatin as a positive control for 21 d. Tumor volume was measured and the protein expression of programmed cell death 1 and programmed cell death 1 ligand 1 (PD-L1), inflammatory indicators Toll like receptor 4 (TLR4) and nuclear factor-κB (NF-κB), and vascular growth-related factors nitric oxide synthases (iNOS) and matrix metalloproteinase 9 were analyzed by Western blot analysis. CD4+CD25+Foxp3+ regulatory T cells (Tregs) were counted by flow cytometry.
RESULTS The combination therapy of Cur and TG significantly inhibited the growth of liver cancer, as compared to vehicle-treated animals, and TG showed dose dependence. Cur combined with TG-520 markedly decreased the protein expression of PD-L1 (P < 0.0001), while CD4+CD25+Foxp3+ Tregs regulated by the PD-L1 signaling pathway exhibited a positive correlation with PD-L1. Cur combined with TG-520 also inhibited the cascade action mediated by NF-κB (P < 0.0001), thus inhibiting the TLR4/NF-κB signalling pathway (P = 0.0088, P < 0.0001), which is associated with inflammation and acts on PD-L1. It also inhibited the NF-κB-MMP9 signalling pathway (P < 0.0001), which is associated with tumor angiogenesis.
CONCLUSION Cur combined with TG regulates immune escape through the PD-L1 pathway and inhibits liver cancer growth through NF-κB-mediated inflammation and angiogenesis.
Collapse
Affiliation(s)
- Zhe Deng
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xiao-Yan Xu
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Fenny Yunita
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Qing Zhou
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yong-Rong Wu
- School of Basic Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yu-Xing Hu
- School of Basic Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhi-Qi Wang
- College of Pharmaceutical Sciences, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xue-Fei Tian
- Department of Internal Medicine, College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
- Hunan Key Laboratory of Translational Research in Formulas and Zheng of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
23
|
Yang Q, Cai N, Che D, Chen X, Wang D. Ginsenoside Rg3 inhibits the biological activity of SGC-7901. Food Sci Nutr 2020; 8:4151-4158. [PMID: 32884696 PMCID: PMC7455926 DOI: 10.1002/fsn3.1707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
AIM To explore the suppressive effects of ginsenoside Rg3 on the biological activities of gastric cancer and the mechanisms responsible therein, by conducting an in vitro study. MATERIALS AND METHODS SGC-7901 gastric cancer cells were divided into NC, DMSO, Gin-Low (10 mg/L), Gin-Middle (20 mg/L), and Gin-High (40 mg/L) groups. Using MTT, flow cytometry, transwell, and wound-healing assays, the cell biological activities in the different groups were evaluated; the protein expression levels of PTEN, p-PI3K, AKT, and P53 were measured by Western blot assay, and p-PI3K nuclear volume was evaluated by immunofluorescence. RESULTS The SGC-7901 cell proliferation rate was depressed significantly, and cell apoptosis increased significantly while cells were arrested in the G1 phase (p < .05) with ginsenoside Rg3 treatment in a dose-dependent manner (p < .05). Meanwhile, the SGC-7901 cell invasion number and wound-healing rate of ginsenoside Rg3-treated groups were significantly downregulated compared with those of the NC group, also in a dose-dependent manner (p < .05). PTEN and P53 protein expression levels were significantly increased, and p-PI3K and AKT protein expression levels were significantly depressed in ginsenoside Rg3-treated groups in a dose-dependent manner (p < .05). CONCLUSION Ginsenoside Rg3 suppresses gastric cancer via regulation of the PTEN/p-PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qing Yang
- Department of Hospital PharmacySuqian First HospitalSuqianChina
| | - Ning Cai
- Department of Hospital PharmacySuqian First HospitalSuqianChina
| | - Daobiao Che
- Department of Hospital PharmacySuqian First HospitalSuqianChina
| | - Xing Chen
- Department of Hospital PharmacySuqian First HospitalSuqianChina
| | | |
Collapse
|
24
|
Li B, Qu G. Inhibition of the hypoxia-induced factor-1α and vascular endothelial growth factor expression through ginsenoside Rg3 in human gastric cancer cells. J Cancer Res Ther 2020; 15:1642-1646. [PMID: 31939450 DOI: 10.4103/jcrt.jcrt_77_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Objective The aim of this study is to probe in the inhibitory effects of ginsenoside Rg3 on the expression of hypoxia-induced factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in human gastric cancer cells. Materials and Methods Human gastric cancer BGC823 cells were divided into the control group and experiment group, and expression levels of HIF-1α and VEGF were detected by immunocytochemistry and Western blot after cells were cultured under hypoxia for different durations. Results Under hypoxia, expression of HIF-1α and VEGF in human gastric cancer BGC823 cells showed an increasing trend, and that was remarkably lower in experiment group than in the control group after applying Rg3, which was obvious at 12 and 24 h (P < 0.05). Conclusion Rg3 can inhibit expression of HIF-1α and VEGF in human gastric cancer cells and may influence abdominal implantation metastasis of gastric cancer through inhibiting its expression.
Collapse
Affiliation(s)
- Bingqiang Li
- Department of General Surgery, Xuzhou Central Hospital, Affiliated to Medical College of Southeast University, Xuzhou, China
| | - Guofeng Qu
- Department of Breast Surgery, Xuzhou Central Hospital, Affiliated to Medical College of Southeast University, Xuzhou, China
| |
Collapse
|
25
|
A 26-week 20(S)-ginsenoside Rg3 oral toxicity study in Beagle dogs. Regul Toxicol Pharmacol 2020; 110:104522. [DOI: 10.1016/j.yrtph.2019.104522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022]
|
26
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
27
|
Ji Y, Shen J, Li M, Zhu X, Wang Y, Ding J, Jiang S, Chen L, Wei W. RMP/URI inhibits both intrinsic and extrinsic apoptosis through different signaling pathways. Int J Biol Sci 2019; 15:2692-2706. [PMID: 31754340 PMCID: PMC6854365 DOI: 10.7150/ijbs.36829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
The evading apoptosis of tumor cells may result in chemotherapy resistance. Therefore, investigating what molecular events contribute to drug-induced apoptosis, and how tumors evade apoptotic death, provides a paradigm to explain the relationship between cancer genetics and treatment sensitivity. In this study, we focused on the role of RMP/URI both in cisplatin-induced endogenous apoptosis and in TRAIL-induced exogenous apoptosis in HCC cells. Although flow cytometric analysis indicated that RMP overexpression reduced the apoptosis rate of HCC cells treated with both cisplatin and TRAIL, there was a difference in mechanism between the two treatments. Western blot showed that in intrinsic apoptosis induced by cisplatin, the overexpression of RMP promoted the Bcl-xl expression both in vitro and in vivo. Besides, RMP activated NF-κB/p65(rel) through the phosphorylation of ATM. However, in TRAIL-induced extrinsic apoptosis, RMP significantly suppressed the transcription and expression of P53. Moreover, the forced expression of P53 could offset this inhibitory effect. In conclusion, we presumed that RMP inhibited both intrinsic and extrinsic apoptosis through different signaling pathways. NF-κB was distinctively involved in the RMP circumvention of intrinsic apoptosis, but not in the extrinsic apoptosis of HCC cells. RMP might play an important role in defects of apoptosis, hence the chemotherapeutic resistance in hepatocellular carcinoma. These studies are promising to shed light on a more rational approach to clinical anticancer drug design and therapy.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Jian Shen
- Department of Interventional Radiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Min Li
- Department of Tumor, People Hospital of Maanshan, Maanshan, 243000, China
| | - Xiaoxiao Zhu
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Yanyan Wang
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Jiazheng Ding
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Shunyao Jiang
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| | - Linqi Chen
- Department of Endocrinology, Children's Hospital affiliated to Soochow University, Suzhou, 215000, China
| | - Wenxiang Wei
- Department of Cell Biology, Institute of Bioengineering, School of Medicine, Soochow University, Suzhou 215123, China
| |
Collapse
|
28
|
20(S)-Ginsenoside Rg3 Promotes HeLa Cell Apoptosis by Regulating Autophagy. Molecules 2019; 24:molecules24203655. [PMID: 31658733 PMCID: PMC6832142 DOI: 10.3390/molecules24203655] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023] Open
Abstract
20(S)-Ginsenoside Rg3 (GRg3) has various bioactivities including anti-cancer effects and inhibition of autophagy. However, no reports have investigated the appearance of autophagy or the connection between autophagy and apoptosis in HeLa cells treated with 20(S)-GRg3. Cell viability was measured by CCK-8 (cell counting kit-8) assays. Apoptosis and the cell cycle were analyzed by Hoechst 33342 staining and flow cytometry. Apoptotic pathways were examined by ROS (reactive oxygen species) determination and rhodamine 123 assays. Western blot analysis was used to determine changes in protein levels. Autophagy induction was monitored by acidic vesicular organelle staining and EGFP-LC3 transfection. 20(S)-GRg3 inhibited autophagy of cells in a starved state, making it impossible for cells to maintain a steady state through autophagy, and then induced apoptosis. 20(S)-GRg3 blocked the late stage of autophagy (fusion of lysosomes and degradation of autophagic lysosomes), including a decrease in acidic vesicular organelle fluorescence, increased LC3 I–II conversion, accumulation of EGFP-LC3 fluorescence, GFP-mRFP-LC3 red-green fluorescence ratio, degradation of the substrate p62, and loss of the balance between autophagy and apoptosis, which induced apoptosis. ROS increased, the mitochondrial membrane potential decreased, apoptotic inducer AIF was released from mitochondria, and nuclear transfer occurred, triggering a series of subsequent apoptotic events. Autophagy inducer rapamycin inhibited the apoptosis induced by 20(S)-GRg3, whereas autophagy inhibitor BA1 promoted apoptosis induced by 20(S)-GRg3. Therefore, 20(S)-GRg3 promoted HeLa cell apoptosis by regulating autophagy. In the autophagic state, 20(S)-GRg3 can be used as a novel autophagy inhibitor in synergy with tumor-blocking therapies such as chemotherapy, which supports its application in the medical field.
Collapse
|
29
|
Wu K, Huang J, Xu T, Ye Z, Jin F, Li N, Lv B. MicroRNA-181b blocks gensenoside Rg3-mediated tumor suppression of gallbladder carcinoma by promoting autophagy flux via CREBRF/CREB3 pathway. Am J Transl Res 2019; 11:5776-5787. [PMID: 31632547 PMCID: PMC6789245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Gallbladder cancer (GBC) is the seventh most common gastrointestinal cancer. Suppression of autophagy contributes to cell death of gallbladder cancer. Gensenoside Rg3 sensitizes tumor cells to chemotherapeutic agents through autophagy inhibition. However, its role mechanism on the progression of GBC remains vague. The present study is aimed to explore the functional action of Rg3 on GBC progression. METHODS Expression of miR-181b and CREBRF in human gallbladder carcinoma specimen were determined by western blotting and qRT-PCR. Biological character of tumor cells were assessed by FACS, CCK8 and xenograft assays, respectively. Dual luciferase assay was employed to explore the targeting site of miR-181b. Autophagy flux was detected by IF staining. RESULTS MiR-181b expression was increased, while CREBRF expression was reduced in GBC specimens compared to adjacent normal tissues. Based on Catalogue of Somatic Mutations in Cancer (COSMIC) database (408 GBC samples), there was negative correlation between hsa-miR-181b-5p/-3p and CREBRF which was a direct targeting of miR-181b. miR-181b mimic promoted cell proliferation and autophagy, restrained cell apoptosis by regulating CREBRF/CREB3 pathway. As an anti-tumor agent, gensenoside Rg3 inhibited cell proliferation and tumor growth, while promoted cell apoptosis by inhibiting autophagy. However, exogenous miR-181b blunted Rg3-evoked anti-tumor effect possibly by inhibiting CREBRF/CREB pathway. CONCLUSION Collectively, these data indicates that miR-181b possibly mediates the pathologic progression of GBC by CREBRF/CREB3 signaling pathways and impairs anti-tumor effects of Rg3 on GBC development, which suggests that miR-181b might be an key switch in the process of Rg3-mediated tumor cytotoxicity in the progression of GBC.
Collapse
Affiliation(s)
- Keren Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Jie Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Tao Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Zhipeng Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Fa Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Ning Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhou 310006, Zhejiang, P. R. China
| |
Collapse
|
30
|
Ginsenoside Rg3 Prolongs Survival of the Orthotopic Hepatocellular Carcinoma Model by Inducing Apoptosis and Inhibiting Angiogenesis. Anal Cell Pathol (Amst) 2019; 2019:3815786. [PMID: 31534898 PMCID: PMC6732603 DOI: 10.1155/2019/3815786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Aim Microvessel density is a marker of tumor angiogenesis activity for development and metastasis. Our preliminary study showed that ginsenoside Rg3 (Rg3) induces apoptosis in hepatocellular carcinoma (HCC) in vitro. The aim of this study was to investigate the cross-link for apoptosis induction and antiangiogenesis effect of Rg3 on orthotopic HCC in vivo. Methods The murine HCC cells Hep1-6 were implanted in the liver of mouse. With oral feeding of Rg3 (10 mg/kg once a day for 30 days), the quantitative analysis of apoptosis was performed by using pathology and a transmission electron microscope and microvessel density was quantitatively measured by immunohistochemical staining of the CD105 antibody. The mice treated with Rg3 (n = 10) were compared with the control (n = 10) using Kaplan-Meier analysis. Animal weight and tumor weight were measured to determine the toxicity of Rg3 and antitumor effect on an orthotopic HCC tumor model. Results With oral feeding of Rg3 daily in the first 30 days on tumor implantation, Rg3 significantly decreased the orthotopic tumor growth and increased the survival of animals (P < 0.05). Rg3-treated mice showed a longer survival than the control (P < 0.05). Rg3 treatment induced apoptosis and inhibited angiogenesis. They contributed to the tumor shrinkage. Rg3 initialized the tumor apoptotic progress, which then weakened the tumor volume and its capability to produce the vascularized network for further growth of the tumor and remote metastasis. Conclusion Rg3 inhibited the activation of microtumor vessel formation in vivo besides its apoptosis induction. Rg3 may be used as an adjuvant agent in the clinical HCC treatment regimen.
Collapse
|
31
|
Bian Y, An GJ, Kim K, Ngo T, Shin S, Bae ON, Lim KM, Chung JH. Ginsenoside Rg3, a component of ginseng, induces pro-thrombotic activity of erythrocytes via hemolysis-associated phosphatidylserine exposure. Food Chem Toxicol 2019; 131:110553. [PMID: 31163221 DOI: 10.1016/j.fct.2019.05.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/19/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
Ginseng and its active gradient, ginsenoside Rg3 (Rg3), are widely used for a variety of health benefits, but concerns over their misuses are increasing. Previously, it has been reported that Rg3 can cause hemolysis, but its health outcome remains unknown. Here, we demonstrated that Rg3 could promote the procoagulant activity of erythrocytes through the process of hemolysis, ultimately leading to increased thrombosis. In freshly isolated human erythrocytes, Rg3 caused pore formation and fragmentation of the erythrocyte membrane. Confocal microscopy observation and flow cytometric analysis revealed that remnant erythrocyte fragments after the exposure to Rg3 expressed phosphatidylserine (PS), which can promote blood coagulation through providing assembly sites for coagulation complexes. Rat in vivo experiments further confirmed that intravenous administration of Rg3 produced PS-bearing erythrocyte debris and increased thrombosis. Collectively, we demonstrated that Rg3 could induce the procoagulant activity of erythrocytes by generating PS-bearing erythrocyte debris through hemolysis, which might provoke thrombosis.
Collapse
Affiliation(s)
- Yiying Bian
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Gwang-Jin An
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Keunyoung Kim
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Thien Ngo
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Sue Shin
- Department of Laboratory Medicine, Boramae Hospital, Seoul, 156-707, South Korea.
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 426-791, South Korea.
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, 03760, South Korea.
| | - Jin-Ho Chung
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
32
|
Ginsenoside Rg3: Potential Molecular Targets and Therapeutic Indication in Metastatic Breast Cancer. MEDICINES 2019; 6:medicines6010017. [PMID: 30678106 PMCID: PMC6473622 DOI: 10.3390/medicines6010017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023]
Abstract
Breast cancer is still one of the most prevalent cancers and a leading cause of cancer death worldwide. The key challenge with cancer treatment is the choice of the best therapeutic agents with the least possible toxicities on the patient. Recently, attention has been drawn to herbal compounds, in particular ginsenosides, extracted from the root of the Ginseng plant. In various studies, significant anti-cancer properties of ginsenosides have been reported in different cancers. The mode of action of ginsenoside Rg3 (Rg3) in in vitro and in vivo breast cancer models and its value as an anti-cancer treatment for breast cancer will be reviewed.
Collapse
|
33
|
Giri TK. Breaking the Barrier of Cancer Through Liposome Loaded with Phytochemicals. Curr Drug Deliv 2018; 16:3-17. [DOI: 10.2174/1567201815666180918112139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/20/2018] [Accepted: 09/11/2018] [Indexed: 11/22/2022]
Abstract
Currently, the most important cause of death is cancer. To treat the cancer there are a number of drugs existing in the market but no drug is found to be completely safe and effective. The toxicity of the drugs is the key problem in the cancer chemotherapy. However, plants and plant derived bioactive molecule have proved safe and effective in the treatment of cancers. Phytochemicals that are found in fruits, vegetables, herbs, and plant extract have been usually used for treating cancer. It has been established that several herbal drug have a strong anticancer activity. However, their poor bioavailability, solubility, and stability have severely restricted their use. These problems can be overcome by incorporating the herbal drug in nanolipolomal vesicles. In last few decades, researcher have used herbal drug loaded nanoliposome for the treatment and management of a variety of cancers. Presently, a number of liposomal formulations are on the market for the treatment of cancer and many more are in pipe line. This review discusses about the tumor microenvironment, targeting mechanism of bioactive phytochemicals to the tumor tissue, background of nanoliposome, and the potential therapeutic applications of different bioactive phytochemicals loaded nanoliposome in cancer therapy.
Collapse
Affiliation(s)
- Tapan Kumar Giri
- NSHM College of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata Group of Institutions, 124 BL Saha Road, Kolkata-700053, West Bengal, India
| |
Collapse
|
34
|
Sun MY, Song YN, Zhang M, Zhang CY, Zhang LJ, Zhang H. Ginsenoside Rg3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9. Oncol Lett 2018; 17:965-973. [PMID: 30655855 PMCID: PMC6313058 DOI: 10.3892/ol.2018.9701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 08/10/2018] [Indexed: 12/13/2022] Open
Abstract
Ginsenoside Rg3, a naturally occurring phytochemical, serves an important role in the prevention and treatment of cancer. In the present study, with the aim to reveal the molecular mechanism of Rg3 in liver cancer cell metastasis, the anti-migration and anti-invasion effects of Rg3 on liver cancer cells were investigated. It was demonstrated that Rg3 caused marked inhibition of cell migration and invasion of human liver cancer cells, HepG2 and MHCC-97L, in vitro, and the growth of HepG2 and MHCC-97L tumors in BABL/c nude mice. The protein expression of Rho GTPase activating protein 9 (ARHGAP9) was increased both in HepG2 and MHCC-97L cells. Following ARHGAP9 knockdown, the results of Transwell and tumorigenesis assays revealed that the anti-migration, anti-invasion and anti-tumor growth effects of Rg3 were impaired significantly. The increased expression of ARHGAP9 protein induced by Rg3 was remarkably suppressed. All results suggested that ARHGAP9 protein may be a vital regulator in the anti-metastatic role of Rg3. To the best of our knowledge, the present study is the first to report that Rg3 effectively suppressed the migration and invasion of liver cancer cells by upregulating the protein expression of ARHGAP9, indicating a novel natural therapeutic agent and a therapeutic target for the treatment of liver cancer.
Collapse
Affiliation(s)
- Meng-Yao Sun
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China
| | - Ya-Nan Song
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Miao Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Chun-Yan Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Li-Jun Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Hong Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China.,Central Laboratory, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
35
|
Li C, Wang Z, Li G, Wang Z, Yang J, Li Y, Wang H, Jin H, Qiao J, Wang H, Tian J, Lee AW, Gao Y. Acute and repeated dose 26-week oral toxicity study of 20(S)-ginsenoside Rg3 in Kunming mice and Sprague-Dawley rats. J Ginseng Res 2018; 44:222-228. [PMID: 32148403 PMCID: PMC7031733 DOI: 10.1016/j.jgr.2018.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022] Open
Abstract
Background 20(S)-ginsenoside-Rg3 (C42H72O13), a natural triterpenoid saponin, is extracted from red ginseng. The increasing use of 20(S)-ginsenoside Rg3 has raised product safety concerns. Methods In acute toxicity, 20(S)-ginsenoside Rg3 was singly and orally administrated to Kunming mice and Sprague–Dawley (SD) rats at the maximum doses of 1600 mg/kg and 800 mg/kg, respectively. In the 26-week toxicity study, we used repeated oral administration of 20(S)-ginsenoside Rg3 in SD rats over 26 weeks at doses of 0, 20, 60, or 180 mg/kg. Moreover, a 4-week recovery period was scheduled to observe the persistence, delayed occurrence, and reversibility of toxic effects. Results The result of acute toxicity shows that oral administration of 20(S)-ginsenoside Rg3 to mice and rats did not induce mortality or toxicity up to 1600 and 800 mg/kg, respectively. During a 26-week administration period and a 4-week withdrawal period (recovery period), there were no significant differences in clinical signs, body weight, food consumption, urinalysis parameters, biochemical and hematological values, or histopathological findings. Conclusion The mean oral lethal dose (LD50) of 20(S)-ginsenoside Rg3, in acute toxicity, is above 1600 mg/kg and 800 mg/kg in mice and rats, respectively. In a repeated-dose 26-week oral toxicity study, the no-observed-adverse-effect level for female and male SD rats was 180 mg/kg.
Collapse
Affiliation(s)
- Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zhezhe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Guisheng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zhenhua Wang
- School of Life Science, Center for Mitochondria and Healthy Aging, Yantai University, Yantai, China
| | - Jianrong Yang
- School of Life Science, Center for Mitochondria and Healthy Aging, Yantai University, Yantai, China
| | - Yanshen Li
- School of Life Science, Center for Mitochondria and Healthy Aging, Yantai University, Yantai, China
| | - Hongtao Wang
- School of Life Science, Center for Mitochondria and Healthy Aging, Yantai University, Yantai, China
| | - Haizhu Jin
- Department of Food and Biological Engineering, Wenjing College of Yantai University, Yantai, China
| | - Junhua Qiao
- Yantai University Hospital, Yantai University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | | | - Yonglin Gao
- School of Life Science, Center for Mitochondria and Healthy Aging, Yantai University, Yantai, China
- Corresponding author. School of Life Science, Yantai University, 30, Qingquan RD, Laishan District, Yantai, 264005, China.
| |
Collapse
|
36
|
Yu JS, Roh HS, Baek KH, Lee S, Kim S, So HM, Moon E, Pang C, Jang TS, Kim KH. Bioactivity-guided isolation of ginsenosides from Korean Red Ginseng with cytotoxic activity against human lung adenocarcinoma cells. J Ginseng Res 2018; 42:562-570. [PMID: 30337817 PMCID: PMC6190500 DOI: 10.1016/j.jgr.2018.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death worldwide. In this study, we used a bioactivity-guided isolation technique to identify constituents of Korean Red Ginseng (KRG) with antiproliferative activity against human lung adenocarcinoma cells. METHODS Bioactivity-guided fractionation and preparative/semipreparative HPLC purification were used with LC/MS analysis to separate the bioactive constituents. Cell viability and apoptosis in human lung cancer cell lines (A549, H1264, H1299, and Calu-6) after treatment with KRG extract fractions and constituents thereof were assessed using the water-soluble tetrazolium salt (WST-1) assay and terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. Caspase activation was assessed by detecting its surrogate marker, cleaved poly adenosine diphosphate (ADP-ribose) polymerase, using an immunoblot assay. The expression and subcellular localization of apoptosis-inducing factor were assessed using immunoblotting and immunofluorescence, respectively. RESULTS AND CONCLUSION Bioactivity-guided fractionation of the KRG extract revealed that its ethyl acetate-soluble fraction exerts significant cytotoxic activity against all human lung cancer cell lines tested by inducing apoptosis. Chemical investigation of the ethyl acetatesoluble fraction led to the isolation of six ginsenosides, including ginsenoside Rb1 (1), ginsenoside Rb2 (2), ginsenoside Rc (3), ginsenoside Rd (4), ginsenoside Rg1 (5), and ginsenoside Rg3 (6). Among the isolated ginsenosides, ginsenoside Rg3 exhibited the most cytotoxic activity against all human lung cancer cell lines examined, with IC50 values ranging from 161.1 μM to 264.6 μM. The cytotoxicity of ginsenoside Rg3 was found to be mediated by induction of apoptosis in a caspase-independent manner. These findings provide experimental evidence for a novel biological activity of ginsenoside Rg3 against human lung cancer cells.
Collapse
Affiliation(s)
- Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Hyuck Baek
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Seul Lee
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sil Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hae Min So
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eunjung Moon
- Charmzone R&D Center, Charmzone Co. LTD., Seoul, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tae Su Jang
- Institute of Green Bio Science & Technology, Seoul National University, Pyeong Chang, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
37
|
Wang X, Xia HY, Qin HY, Kang XP, Hu HY, Zheng J, Jiang JY, Yao LA, Xu YW, Zhang T, Zhang XL. 20(S)-protopanaxadiol induces apoptosis in human umbilical vein endothelial cells by activating the PERK-eIF2alpha-ATF4 signaling pathway. J Cell Biochem 2018; 120:5085-5096. [PMID: 30259568 DOI: 10.1002/jcb.27785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/06/2018] [Indexed: 01/19/2023]
Abstract
20(S)-protopanaxadiol (PPD)-type ginsenosides are generally believed to be the most pharmacologically active components of Panax ginseng. These compounds induce apoptotic cell death in various cancer cells, which suggests that they have anti-cancer activity. Anti-angiogenesis is a promising therapeutic approach for controlling angiogenesis-related diseases such as malignant tumors, age-related macular degeneration, and atherosclerosis. Studies showed that 20(S)-PPD at low concentrations induces endothelial cell growth, but in our present study, we found 20(S)-PPD at high concentrations inhibited cell growth and mediated apoptosis in human umbilical vein endothelial cells (HUVECs). The mechanism by which high concentrations of 20(S)-PPD mediate endothelial cell apoptosis remains elusive. The present current study investigated how 20(S)-PPD induces apoptosis in HUVECs for the first time. We found that caspase-9 and its downstream caspase, caspase-3, were cleaved into their active forms after 20(S)-PPD treatment. Treatment with 20(S)-PPD decreased the level of Bcl-2 expression but did not change the level of Bax expression. 20(S)-PPD induced endoplasmic reticulum stress in HUVECs and stimulated UPR signaling, initiated by protein kinase R-like endoplasmic reticulum kinase (PERK) activation. Total protein expression and ATF4 nuclear import were increased, and CEBP-homologous protein (CHOP) expression increased after treatment with 20(S)-PPD. Furthermore, siRNA-mediated knockdown of PERK or ATF4 inhibited the induction of CHOP expression and 20(s)-PPD-induced apoptosis. Collectively, our findings show that 20(S)-PPD inhibits HUVEC growth by inducing apoptosis and that ATF4 expression activated by the PERK-eIF2α signaling pathway is essential for this process. These findings suggest that high concentrations of 20(S)-PPD could be used to treat angiogenesis-related diseases.
Collapse
Affiliation(s)
- Xue Wang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua-Ying Xia
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-You Qin
- Shanghai Shenyou Biological Technology Company, Shanghai, China
| | - Xiang-Ping Kang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Yan Hu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zheng
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Ye Jiang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Ai Yao
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Wu Xu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Li Zhang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Jung Y, Kim K, Bian Y, Ngo T, Bae ON, Lim KM, Chung JH. Ginsenoside Rg3 disrupts actin-cytoskeletal integrity leading to contractile dysfunction and apoptotic cell death in vascular smooth muscle. Food Chem Toxicol 2018; 118:645-652. [DOI: 10.1016/j.fct.2018.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 01/19/2023]
|
39
|
Jang HJ, Lee SA, Seong S, Kim S, Han G. Combined Treatment for Lung Metastasis from Hepatocellular Carcinoma: A Case Report. Explore (NY) 2018; 14:385-388. [PMID: 30126778 DOI: 10.1016/j.explore.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/09/2017] [Indexed: 12/27/2022]
Abstract
The survival rate of patients with hepatocellular carcinoma and extrahepatic metastases is very poor. Sorafenib, a targeted chemotherapy agent, has been shown effective for patients with advanced hepatocellular carcinoma (HCC), but it is associated with serious side effects. In addition, although surgery has been regarded as effective for lung metastases from HCC, its use in these patients is limited. Complementary and alternative medicine, including traditional Korean medicine (TKM), is increasingly used in cancer treatment, as it has been found to improve patient quality of life and maintain tumor size. This report describes a 62-year-old Korean woman with lung metastases from HCC. She first underwent surgery (stage IV) and six cycles of adjuvant chemotherapy. She was subsequently treated with sorafenib, but computed tomography showed progressive disease and she experienced the side effects of sorafenib. The patient started treatment with TKM, including pharmacopuncture and herbal medicine, in addition to sorafenib. After 8 weeks of TKM treatment, the size of the metastatic nodules decreased and the sorafenib-associated side effect symptoms improved. These findings suggest that treatment with a combination of TKM and sorafenib may be a promising method for patients with HCC and extrahepatic metastases.
Collapse
Affiliation(s)
- Hee-Jae Jang
- Soram Korean Medicine Hospital, 458, Bongeunsa-ro, Gangnam-gu, Seoul, Republic of Korea.
| | - Sang-A Lee
- Soram Korean Medicine Hospital, 458, Bongeunsa-ro, Gangnam-gu, Seoul, Republic of Korea.
| | - Sin Seong
- Soram Korean Medicine Hospital, 458, Bongeunsa-ro, Gangnam-gu, Seoul, Republic of Korea.
| | - Sungsu Kim
- Soram Korean Medicine Hospital, 458, Bongeunsa-ro, Gangnam-gu, Seoul, Republic of Korea.
| | - Gajin Han
- Soram Korean Medicine Hospital, 458, Bongeunsa-ro, Gangnam-gu, Seoul, Republic of Korea; Soram Bio-Medicine Research Institute, 458, Bongeunsa-ro, Gangnam-gu, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Zhao X, Wang J, Song Y, Chen X. Synthesis of nanomedicines by nanohybrids conjugating ginsenosides with auto-targeting and enhanced MRI contrast for liver cancer therapy. Drug Dev Ind Pharm 2018. [PMID: 29527925 DOI: 10.1080/03639045.2018.1449853] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new methodology has been developed with conjugating nanoparticles (NPs) with an active ingredient of Chinese herbs for nanomedicines with auto-targeting and enhanced magnetic resonance imaging (MRI) for liver cancer therapy. Fe@Fe3O4 NPs are first synthesized via the programed microfluidic process, whose surfaces are first modified with -NH2 groups using a silane coupling technique that uses (3-aminopropyl)trimethoxysilane (APTMS) as the coupling reagent and are subsequently activated by the bifunctional amine-active cross-linker [e.g. disuccinimidyl suberate (DSS)]. The model medicines of ginsenosides pre-activated by APTMS are further cross-linked with activated NPs, forming the desired nanomedicines (Nano-Fe-GSS). Sizes and structures of Fe@Fe3O4 NPs were characterized by transmission electron microscopy and X-ray diffraction, revealing that their core-shell structures consist of amorphous boron doped Fe cores and partial crystalline Fe3O4 shells. The accomplishment of coupling reactions in the final nanomedicines is confirmed by the characterization of the composition of NPs and Nano-Fe-GSS via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy. The nanoparticles' effects as MRI contrast agents are further investigated by comparing the T2 weighted spin echo imaging (T2WI) in livers before and after intravenous injection and intragastric administration of nanomedicines. The results indicate that these nanomedicines possess enhanced MRI effects. Investigation of the toxicity and metabolism of Nano-Fe-GSS suggests that they are safe to related vital organs. The results provide an efficient alternative route to synthesize desired multi-functional nanomedicines based on NPs and the active ingredients of Chinese herbs, which can promote their potential synergistic effects in anti-tumor therapy.
Collapse
Affiliation(s)
- Xiaoxiong Zhao
- a Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics , Center for Modern Physics Technology, University of Science and Technology Beijing , Beijing , China
| | - Junmei Wang
- a Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics , Center for Modern Physics Technology, University of Science and Technology Beijing , Beijing , China
| | - Yujun Song
- a Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics , Center for Modern Physics Technology, University of Science and Technology Beijing , Beijing , China
| | - Xinhua Chen
- b Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Department of Hepatobiliary and Pancreatic Surgery , The First Affiliated Hospital, Zhejiang University , Hangzhou , Zhejiang , China
| |
Collapse
|
41
|
Li Y, Wang Y, Niu K, Chen X, Xia L, Lu D, Kong R, Chen Z, Duan Y, Sun J. Clinical benefit from EGFR-TKI plus ginsenoside Rg3 in patients with advanced non-small cell lung cancer harboring EGFR active mutation. Oncotarget 2018; 7:70535-70545. [PMID: 27655708 PMCID: PMC5342572 DOI: 10.18632/oncotarget.12059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/25/2016] [Indexed: 01/10/2023] Open
Abstract
Purpose Acquired resistance is a bottleneck that restricts the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) for lung cancer. Ginsenoside Rg3 is an antiangiogenic agent which can down-regulate the expressions of vascular endothelial growth factor (VEGF) and EGFR. Combination of EGFR-TKI and ginsenoside Rg3 may be a promising strategy to delay acquired resistance. This retrospective study explored the efficacy and safety of this combined regimen in patients with EGFR mutation and advanced non-small cell lung cancer (NSCLC). Results By the deadline of March 31th 2016, the median follow-up period reached 22.9 months. The median PFS was significantly longer in group A than in group B (12.4 months vs 9.9 months, P = 0.017). In addition, ORR was significantly higher in group A than in group B (59.6% vs 41.7%, P = 0.049). The median OS in group A showed no extended tendency compared with that in group B (25.4 months vs 21.4 months, P = 0.258). No significant difference in side effects was found between the two groups. Methods A total of 124 patients with advanced NSCLC and EGFR active mutation were collected and analyzed. All of them were treated with first-line EGFR-TKI and divided into two groups. In group A (n=52), patients were administered EGFR-TKI plus ginsenoside Rg3 at standard doses. In group B (n=72), patients received EGFR-TKI alone. Progression-free survival (PFS), overall survival (OS), objective response rate (ORR) and side effects were analyzed. Conclusions Ginsenoside Rg3 improves median PFS and ORR of first-line EGFR-TKI treatment in EGFR-mutant advanced NSCLC patients, thus providing a new regimen to delay acquired resistance of EGFR-TKI.
Collapse
Affiliation(s)
- Yan Li
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yanmei Wang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Kai Niu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xiewan Chen
- Medical English Department, College of Basic Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Liqin Xia
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Dingxi Lu
- Medical English Department, College of Basic Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Rui Kong
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Zhengtang Chen
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuzhong Duan
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jianguo Sun
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| |
Collapse
|
42
|
Lu M, Fei Z, Zhang G. Synergistic anticancer activity of 20(S)-Ginsenoside Rg3 and Sorafenib in hepatocellular carcinoma by modulating PTEN/Akt signaling pathway. Biomed Pharmacother 2017; 97:1282-1288. [PMID: 29156516 DOI: 10.1016/j.biopha.2017.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 01/15/2023] Open
Abstract
Sorafenib, a multikinase inhibitor for hepatocellular carcinoma treatment, inhibits the Raf/MAPK/ERK signaling pathway. However, PI3K/Akt signaling pathway is activated by Sorafenib and cross-talks with the Raf/MAPK/ERK signaling pathway, leading to drug resistance. 20(S)-Ginsenoside Rg3 has been reported with significant anticancer effect to numerous carcinomas by inhibition of PI3K-Akt signaling pathway. Hence, we aim to examine the synergistic anticancer activity of 20(S)-Ginsenoside Rg3 and Sorafenib via modulation of PTEN/Akt signaling pathway. Human hepatocellular carcinoma cell lines HepG2 and Huh7 were used. Cell viability, clonogenic assay, apoptosis assay, western blot analysis, xenograft treatment and immunohistochemistry were carried out. The viability of hepatocellular carcinoma cells significantly decreased by the treatment of Sorafenib combined with 20(S)-Ginsenoside Rg3, as well as the enhanced apoptotic rates. The levels of PTEN, Bax and cleaved caspase-3 expression increased, while the levels of phospho-PDK1 and phospho-Akt expression decreased by the treatment of Sorafenib combined with 20(S)-Ginsenoside Rg3. In vivo, the tumor volumes and weight decreased in the Sorafenib combined with 20(S)-Ginsenoside Rg3 group. The results demonstrated the synergistic anticancer activity of 20(S)-Ginsenoside Rg3 and Sorafenib in HCC by modulating PTEN/Akt signaling pathway. These findings suggest a promising strategy for HCC treatment, which could be performed in a sufficiently frequent manner.
Collapse
Affiliation(s)
- Mingxia Lu
- Department of Infectious Disease, Jinhua People's Hospital, Jinhua, Zhejiang 321000, PR China
| | - Zhenghua Fei
- Department of Radiotherapy and Chemotherapy, The 1st Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, Zhejiang 325000, PR China
| | - Ganlu Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, PR China.
| |
Collapse
|
43
|
Mohanan P, Subramaniyam S, Mathiyalagan R, Yang DC. Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 2017; 42:123-132. [PMID: 29719458 PMCID: PMC5926405 DOI: 10.1016/j.jgr.2017.01.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/16/2017] [Indexed: 11/02/2022] Open
Abstract
Ginseng has gained its popularity as an adaptogen since ancient days because of its triterpenoid saponins, known as ginsenosides. These triterpenoid saponins are unique and classified as protopanaxatriol and protopanaxadiol saponins based on their glycosylation patterns. They play many protective roles in humans and are under intense research as various groups continue to study their efficacy at the molecular level in various disorders. Ginsenosides Rb1 and Rg1 are the most abundant ginsenosides present in ginseng roots, and they confer the pharmacological properties of the plant, whereas ginsenoside Rg3 is abundantly present in Korean Red Ginseng preparation, which is highly known for its anticancer effects. These ginsenosides have a unique mode of action in modulating various signaling cascades and networks in different tissues. Their effect depends on the bioavailability and the physiological status of the cell. Mostly they amplify the response by stimulating phosphotidylinositol-4,5-bisphosphate 3-kinase/protein kinase B pathway, caspase-3/caspase-9-mediated apoptotic pathway, adenosine monophosphate-activated protein kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells signaling. Furthermore, they trigger receptors such as estrogen receptor, glucocorticoid receptor, and N-methyl-d-aspartate receptor. This review critically evaluates the signaling pathways attenuated by ginsenosides Rb1, Rg1, and Rg3 in various tissues with emphasis on cancer, diabetes, cardiovascular diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Padmanaban Mohanan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Sathiyamoorthy Subramaniyam
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Suwon, Republic of Korea.,Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Suwon, Republic of Korea
| |
Collapse
|
44
|
Sun M, Ye Y, Xiao L, Duan X, Zhang Y, Zhang H. Anticancer effects of ginsenoside Rg3 (Review). Int J Mol Med 2017; 39:507-518. [PMID: 28098857 DOI: 10.3892/ijmm.2017.2857] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 10/20/2016] [Indexed: 11/05/2022] Open
Abstract
Cancer is a life-threatening disease with an alarmingly increased annual mortality rate globally. Although various therapies are employed for cancer, the final effect is not satisfactory. Chemotherapy is currently the most commonly used treatment option. However, the unsatisfactory efficacy, severe side-effects and drug resistance hinder the therapeutic efficacy of chemotherapeutic drugs. There is increasing evidence indicating that ginsenoside Rg3, a naturally occurring phytochemical, plays an important role in the prevention and treatment of cancer. The suggested mechanisms mainly include the induction of apoptosis, and the inhibition of proliferation, metastasis and angiogenesis, as well as the promotion of immunity. In addition, ginsenoside Rg3 can be used as an adjuvant to conventional cancer therapies, improving the efficacy and/or reducing adverse effects via synergistic activities. Ginsenoside Rg3 may be a widely applied natural medicine against cancer. To date however, there is no systematic summary available of the anticancer effects of ginsenoside Rg3. Therefore, in this review, all available literature over the past 10 years was reviewed and discussed in order to facilitate further research of ginsenoside Rg3.
Collapse
Affiliation(s)
- Mengyao Sun
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Ying Ye
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Ling Xiao
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Xinya Duan
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| | - Yongming Zhang
- Department of Cardiothoracic Surgery, Shanghai Pudong New District Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Hong Zhang
- Central Laboratory, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, P.R. China
| |
Collapse
|
45
|
Park TY, Hong M, Sung H, Kim S, Suk KT. Effect of Korean Red Ginseng in chronic liver disease. J Ginseng Res 2017; 41:450-455. [PMID: 29021690 PMCID: PMC5628344 DOI: 10.1016/j.jgr.2016.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease, one of the most common diseases, typically arises from nonalcoholic fatty liver disease, alcoholic liver disease, chronic viral hepatitis, or hepatocellular carcinoma. Therefore, there is a pressing need for improved treatment strategies. Korean Red Ginseng has been known to have positive effects on liver disease and liver function. In this paper, we summarize the current knowledge on the beneficial effects of Korean Red Ginseng on chronic liver disease, a condition encompassing nonalcoholic fatty liver disease, alcoholic liver disease, chronic viral hepatitis, and hepatocellular carcinoma, as supported by experimental evaluation and clinical investigation.
Collapse
Affiliation(s)
- Tae Young Park
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Meegun Hong
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hotaik Sung
- Department of Molecular and Cell Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sangyeol Kim
- Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
46
|
Li Y, Xiao Z, Li B, Liu K, Wang H, Qi J, Wang Y. Ginsenoside exhibits concentration-dependent dual effects on HepG2 cell proliferation via regulation of c-Myc and HNF-4α. Eur J Pharmacol 2016; 792:26-32. [PMID: 27756603 DOI: 10.1016/j.ejphar.2016.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/30/2016] [Accepted: 10/14/2016] [Indexed: 01/23/2023]
Abstract
Although ginsenoside can generally promote cell proliferation, it is reported to have anti-proliferative effects in hepatocellular carcinoma (HCC). Whether ginsenoside has concentration-dependent effects on HCC cell proliferation have not been clarified. Transcription factors c-Myc and hepatocyte nuclear factor (HNF)-4α are the most important opposite controllers of HCC cell proliferation. Whether and how ginsenoside regulates c-Myc and HNF-4α as well as their recruitment of the co-activator p300 to exhibit its effects on HCC cell proliferation are pending. In this study, it was found that low concentration ginsenoside promoted HepG2 cell proliferation while high concentration ginsenoside exhibited anti-proliferation effect. For low concentration ginsenoside treatment, c-Myc was up-regulated and the binding of p300 to c-Myc was promoted with obvious co-localization to activate HepG2 cell proliferation. However, for high concentration ginsenoside treatment, besides c-Myc, HNF-4α was also up-regulated might to exhibit an alternative effect. Furthermore, in contrast to the weakened binding and co-localization of c-Myc and p300, the binding of p300 to HNF-4α was enhanced with distinct co-localization to inhibit HepG2 cell proliferation for high concentration ginsenoside treatment. The results manifested that ginsenoside with low and high concentrations may differentially regulate c-Myc and HNF-4α as well as their recruitments of p300, to exhibit concentration-dependent dual effects on HepG2 cell proliferation.
Collapse
Affiliation(s)
- Yanning Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal, China
| | - Zhigang Xiao
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, China
| | - Bin Li
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, China
| | - Kun Liu
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, China
| | - Hui Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jinsheng Qi
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, China.
| | - Yu Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal, China
| |
Collapse
|
47
|
Xu XH, Li T, Fong CMV, Chen X, Chen XJ, Wang YT, Huang MQ, Lu JJ. Saponins from Chinese Medicines as Anticancer Agents. Molecules 2016; 21:molecules21101326. [PMID: 27782048 PMCID: PMC6272920 DOI: 10.3390/molecules21101326] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
Saponins are glycosides with triterpenoid or spirostane aglycones that demonstrate various pharmacological effects against mammalian diseases. To promote the research and development of anticancer agents from saponins, this review focuses on the anticancer properties of several typical naturally derived triterpenoid saponins (ginsenosides and saikosaponins) and steroid saponins (dioscin, polyphyllin, and timosaponin) isolated from Chinese medicines. These saponins exhibit in vitro and in vivo anticancer effects, such as anti-proliferation, anti-metastasis, anti-angiogenesis, anti-multidrug resistance, and autophagy regulation actions. In addition, related signaling pathways and target proteins involved in the anticancer effects of saponins are also summarized in this work.
Collapse
Affiliation(s)
- Xiao-Huang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Chi Man Vivienne Fong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Ming-Qing Huang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
48
|
Li Y, Yang T, Li J, Hao HL, Wang SY, Yang J, Luo JM. Inhibition of multiple myeloma cell proliferation by ginsenoside Rg3 via reduction in the secretion of IGF-1. Mol Med Rep 2016; 14:2222-30. [PMID: 27430248 DOI: 10.3892/mmr.2016.5475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 05/31/2016] [Indexed: 11/05/2022] Open
Abstract
Ginsenoside Rg3 (Rg3) is one of the primary constituents isolated from ginseng, and has been found to exhibit cytotoxic effects against cancer cells. The present study aimed to investigate the effects of Rg3 on human multiple myeloma cell proliferation and apoptosis, and to examine its underlying molecular mechanisms. Cell viability was detected using a Cell Counting kit‑8 assay, and cell cycle arrest and cell apoptosis were analyzed using flow cytometry. In addition, the expression levels of cell cycle‑associated markers and apoptosis‑associated proteins, and the release of cytochrome C were determined using western blot analysis. The effects of Rg3 on the insulin‑like growth factor (IGF)-1/AKT/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase signaling pathways were also investigated using western blot analysis. The results showed that Rg3 inhibited cell viability in U266, RPMI8226 and SKO‑007 cells in a time‑ and dose‑dependent manner, and caused cell cycle arrest in the G1 phase by regulating the cyclin‑dependent kinase pathway. Furthermore, Rg3 induced multiple myeloma cell apoptosis, and was involved in B cell lymphoma-2 (Bcl2)/Bcl2-associated X protein imbalance, caspase activation and the release of cytochrome C from the mitochondria into the cytoplasm. Mechanistically, it was found that the inhibitory effects of Rg3 on multiple myeloma cell proliferation were essential for secretion of IGF‑1 and inactivation of the Akt/mTOR pathway. Collectively, these findings demonstrated that Rg3 effectively inhibited cell proliferation and induced apoptosis of multiple myeloma cells. These data broaden the clinical investigation of Rg3 in the treatment of multiple myeloma, associated with the inactivation of IGF-1/AKT/mTOR signaling.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Tao Yang
- Department of Urinary Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Jing Li
- Department of Hematology, Hebei Province Chinese Medicine Hospital, Shijiazhuang, Hebei 050011, P.R. China
| | - Hong-Ling Hao
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Su-Yun Wang
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Jie Yang
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Jian-Min Luo
- Department of Hematology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
49
|
Zheng X, Gao S, Hua HQ, Yang AZ, Qin SK. Effect of ginsenoside Rg3 combined with sorafenib in inhibiting tumor growth and neovascularization in nude mice with in situ transplanted human hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:670-677. [DOI: 10.11569/wcjd.v24.i5.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the effect of ginsenoside Rg3 combined with sorafenib in inhibiting tumor growth and neovascularization in nude mice with in situ transplanted human hepatocellular carcinoma xenografts and to explore the possible mechanism.
METHODS: Twenty-six nude mice with highly metastatic human hepatocellular carcinoma transplanted in situ (LCI-D20) were randomly divided into an R group treated with ginsenoside Rg3 (5 mg/kg, qd), an S group treated with sorafenib (30 mg/kg, qd), a combination group treated with both ginsenoside Rg3 (5 mg/kg, qd) and sorafenib (30 mg/kg, qd), and a control group treated with saline. After 2 wk of treatment, all mice were killed to collect orbital blood samples. The tumors were peeled off and weighed to calculate the tumor inhibition rate. Immunohistochemical method was used to detect the micro-vessel density (MVD) in the tumors. The expression of vascular endothelial growth factor (VEGF), hypoxia inducible factor-1α (HIF-1α), and VEGF receptor 2 (VEGFR-2) in tumors was detected by ELISA and Western blot.
RESULTS: The tumor inhibition rates of the R group, S group and combination group were 20.60%, 34.74% and 48.64%, respectively. According to the Weeb coefficient algorithm, the combination group showed a synergistic effect in inhibiting the tumor growth in nude mice. The MVD of each treatment group was significantly lower than that of the control group (P < 0.01), although there were no significant differences between the combination group and the R or S group (P > 0.05). ELISA results showed that serum VEGF levels were significantly lower in the R, S and combination groups than in the control group (P < 0.01, P < 0.05 and P < 0.01), and in the combination group than in the S group (P < 0.05), but there was no significant difference between the combination group and R group (P > 0.05). Compared with the control group, the level of HIF-1α was significantly lower in all treatment groups (P < 0.05) except the S group (P > 0.05), and the decrease was more significant in the combination group than in the S group (P < 0.05). The level of VEGFR-2 had no significant difference in the four groups (P > 0.05). Western blot showed decreased expression of VEGF, HIF-1α and VEGFR-2 in the three treatment groups (P < 0.05), although there were no significant differences between the combination group and R or S group (P > 0.05).
CONCLUSION: Ginsenoside Rg3 combined with sorafenib shows a synergistic effect in inhibiting tumor growth in nude mice, via mechanisms possibly associated with regulating the expression of angiogenesis factors VEGF, HIF-1α, and VEGFR-2.
Collapse
|
50
|
Liu D, Pan F, Liu J, Wang Y, Zhang T, Wang E, Liu J. Individual and combined antioxidant effects of ginsenoside F2 and cyanidin-3-O-glucoside in human embryonic kidney 293 cells. RSC Adv 2016; 6:81092-81100. [DOI: 10.1039/c6ra14831j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|