1
|
Yoshino Y, Fujii Y, Chihara K, Nakae A, Enmi JI, Yoshioka Y, Miyawaki I. Comparison of 1H-magnetic resonance spectroscopy and blood biochemistry as methods for monitoring non-diffuse hepatic steatosis in a rat model. Toxicol Rep 2023; 10:481-486. [PMID: 37179768 PMCID: PMC10172911 DOI: 10.1016/j.toxrep.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
No method of monitoring drug-induced hepatic steatosis has been established, which is a concern in drug development. Hepatic steatosis is divided into diffuse and non-diffuse forms according to the pattern of fat deposition. Diffuse hepatic steatosis was reported as evaluable by 1H-magnetic resonance spectroscopy (1H-MRS), which is used as an adjunct to the MRI examination. Blood biomarkers for hepatic steatosis have been also actively investigated. However, there are few reports to conduct 1H-MRS or blood test in human or animal non-diffuse hepatic steatosis with reference to histopathology. Therefore, to investigate whether non-diffuse hepatic steatosis can be monitored by 1H-MRS and/or blood samples, we compared histopathology to 1H-MRS and blood biochemistry in a non-diffuse hepatic steatosis rat model. Non-diffuse hepatic steatosis was induced by feeding rats the methionine choline deficient diet (MCDD) for 15 days. The evaluation sites of 1H-MRS and histopathological examination were three hepatic lobes in each animal. The hepatic fat fraction (HFF) and the hepatic fat area ratio (HFAR) were calculated from 1H-MRS spectra and digital histopathological images, respectively. Blood biochemistry analyses included triglycerides, total cholesterol, alanine aminotransferase, and aspartate aminotransferase. A strong correlation was found between HFFs and HFARs in each hepatic lobe (r = 0.78, p < 0.0001) in rats fed the MCDD. On the other hand, no correlation was found between blood biochemistry values and HFARs. This study showed that 1H-MRS parameters correlated with histopathological changes but blood biochemistry parameters didn't, so that it is suggested that 1H-MRS has the potential to be a monitoring method for non-diffuse hepatic steatosis in rats fed the MCDD. Given that 1H-MRS is commonly used in preclinical and clinical studies, 1H-MRS should be considered a candidate method for monitoring drug-induced hepatic steatosis.
Collapse
Affiliation(s)
- Yuka Yoshino
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3–1-98 Kasugade-naka, Konohana-ku, Osaka 554–0022, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita city, Osaka 565–0871, Japan
- Correspondence to: D.V.M., Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3–1-98 Kasugade-naka, Konohana-ku, Osaka 554–0022, Japan.
| | - Yuta Fujii
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3–1-98 Kasugade-naka, Konohana-ku, Osaka 554–0022, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita city, Osaka 565–0871, Japan
| | - Kazuhiro Chihara
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3–1-98 Kasugade-naka, Konohana-ku, Osaka 554–0022, Japan
| | - Aya Nakae
- Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita city, Osaka 565–0871, Japan
- Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), 1–4 Yamadaoka, Suita city, Osaka 565–0871, Japan
| | - Jun-ichiro Enmi
- Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita city, Osaka 565–0871, Japan
- Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), 1–4 Yamadaoka, Suita city, Osaka 565–0871, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita city, Osaka 565–0871, Japan
- Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), 1–4 Yamadaoka, Suita city, Osaka 565–0871, Japan
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3–1-98 Kasugade-naka, Konohana-ku, Osaka 554–0022, Japan
| |
Collapse
|
2
|
Pantaleão ACS, de Castro MP, Meirelles Araujo KSF, Campos CFF, da Silva ALA, Manso JEF, Machado JC. Ultrasound biomicroscopy for the assessment of early-stage nonalcoholic fatty liver disease induced in rats by a high-fat diet. Ultrasonography 2022; 41:750-760. [PMID: 35923118 PMCID: PMC9532208 DOI: 10.14366/usg.21182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/24/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE The aim of this study was to assess the ability of ultrasound biomicroscopy (UBM) to diagnose the initial stages of nonalcoholic fatty liver disease (NAFLD) in a rat model. METHODS Eighteen male Wistar rats were allocated to control or experimental groups. A high-fat diet (HFD) with 20% fructose and 2% cholesterol, resembling a common Western diet, was fed to animals in the experimental groups for up to 16 weeks; those in the control group received a regular diet. A 21 MHz UBM system was used to acquire B-mode images at specific times: baseline (T0), 10 weeks (T10), and 16 weeks (T16). The sonographic hepatorenal index (SHRI), based on the average ultrasound image gray-level intensities from the liver parenchyma and right renal cortex, was determined at T0, T10, and T16. The liver specimen histology was classified using the modified Nonalcoholic Steatohepatitis Clinical Research Network NAFLD activity scoring system. RESULTS The livers in the animals in the experimental groups progressed from sinusoidal congestion and moderate macro- and micro-vesicular steatosis to moderate steatosis and frequent hepatocyte ballooning. The SHRI obtained in the experimental group animals at T10 and T16 was significantly different from the SHRI of pooled control group. No significant difference existed between the SHRI in animals receiving HFD between T10 and T16. CONCLUSION SHRI measurement using UBM may be a promising noninvasive tool to characterize early-stage NAFLD in rat models.
Collapse
Affiliation(s)
- Antonio Carlos Soares Pantaleão
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - André Luiz Alves da Silva
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Eduardo Ferreira Manso
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Carlos Machado
- Post-graduate Program in Surgical Sciences, Department of Surgery, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Biomedical Engineering Program-COPPE/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Moraes DS, Lelis DDF, Andrade JMO, Meyer L, Guimarães ALS, De Paula AMB, Farias LC, Santos SHS. Enalapril improves obesity associated liver injury ameliorating systemic metabolic markers by modulating Angiotensin Converting Enzymes ACE/ACE2 expression in high-fat feed mice. Prostaglandins Other Lipid Mediat 2021; 152:106501. [PMID: 33049402 DOI: 10.1016/j.prostaglandins.2020.106501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Obesity is a chronic disease caused multiple associated factors that results in excessive body fat accumulation. The Renin-Angiotensin System (RAS) unbalance is now recognized as a key factor on regulating body energy and metabolism. AIM The aim of the present study was to evaluate the Enalapril (ACE inhibitor) effects on the metabolic function and hepatic steatosis of obese mice evaluating Angiotensin Converting Enzymes (ACEs) expression. METHODS The experiment was performed using 32 male Swiss mice (8 weeks old) equally and randomly divided into 4 groups (n = 8): standard diet (ST), standard diet plus Enalapril (ST + ENAL), hyperlipidic diet (HF) and hyperlipidic diet plus Enalapril (HF + ENAL). Weekly measurements of animal weight and feed consumption were performed. At the end of treatment period a glucose tolerance test (GTT) and insulin sensitivity test (IST) were performed. Ultrasonography was used to evaluate hepatic and epididymal fat pad. Liver samples were submitted to HE histology and gene expression analyses were performed using Real-Time PCR. RESULTS The main results showed a decrease in body weight after treatment with Enalapril, as well as a reduced size of epididymal fat pad (EFP). Hepatic echogenicity and steatosis measurement were lower in the obese groups treated with Enalapril also modulating ACE2/ACE expressions. CONCLUSIONS Enalapril use improved metabolism reducing hepatic steatosis, decreasing ACE expression and increasing ACE2 expression.
Collapse
Affiliation(s)
- Daniel Silva Moraes
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Deborah de Farias Lelis
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Lara Meyer
- Department of Biomedical Sciences, McMurry University, Abilene, TX, USA
| | - André Luiz Sena Guimarães
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Alfredo Maurício Batista De Paula
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Lucyana Conceição Farias
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Laboratory of Health Science, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Minas Gerais, Brazil; Institute of Agricultural Sciences. Food Engineering College, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Ling B, Lee J, Maresca D, Lee-Gosselin A, Malounda D, Swift MB, Shapiro MG. Biomolecular Ultrasound Imaging of Phagolysosomal Function. ACS NANO 2020; 14:12210-12221. [PMID: 32902951 PMCID: PMC7685203 DOI: 10.1021/acsnano.0c05912] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Phagocytic clearance and lysosomal processing of pathogens and debris are essential functions of the innate immune system. However, the assessment of these functions in vivo is challenging because most nanoscale contrast agents compatible with noninvasive imaging techniques are made from nonbiodegradable synthetic materials that do not undergo regular lysosomal degradation. To overcome this challenge, we describe the use of an all-protein contrast agent to directly visualize and quantify phagocytic and lysosomal activities in vivo by ultrasound imaging. This contrast agent is based on gas vesicles (GVs), a class of air-filled protein nanostructures naturally expressed by buoyant microbes. Using a combination of ultrasound imaging, pharmacology, immunohistology, and live-cell optical microscopy, we show that after intravenous injection, GVs are cleared from circulation by liver-resident macrophages. Once internalized, the GVs undergo lysosomal degradation, resulting in the elimination of their ultrasound contrast. By noninvasively monitoring the temporal dynamics of GV-generated ultrasound signal in circulation and in the liver and fitting them with a pharmacokinetic model, we can quantify the rates of phagocytosis and lysosomal degradation in living animals. We demonstrate the utility of this method by showing how these rates are perturbed in two models of liver dysfunction: phagocyte deficiency and nonalcoholic fatty liver disease. The combination of proteolytically degradable nanoscale contrast agents and quantitative ultrasound imaging thus enables noninvasive functional imaging of cellular degradative processes.
Collapse
Affiliation(s)
- Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Justin Lee
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Audrey Lee-Gosselin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Margaret B. Swift
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| |
Collapse
|
5
|
Lee JH, Kim JH, Lee S, Han JK. Monitoring of impaired phagocytic function of Kupffer cells in an obstructive cholangitis rat model using superparamagnetic iron oxide MRI and contrast-enhanced ultrasound. Acta Radiol 2019; 60:407-414. [PMID: 30724596 DOI: 10.1177/0284185118784978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Kupffer cells (KC) have an important role in the host defense in obstructive cholangitis. Non-invasive monitoring of phagocytic function of KC is pivotal. Several studies showed the possibility of non-invasive monitoring of phagocytic function of KC using superparamagnetic iron oxide-enhanced magnetic resonance imaging (SPIO-MRI) or contrast-enhanced ultrasound (CEUS). PURPOSE To investigate the serial change of KC function using SPIO-MRI and CEUS and whether the SPIO-MRI parameter correlates with the CEUS parameter in obstructive cholangitis rat models. MATERIAL AND METHODS With our institutional Animal Care and Use Committee approval, 19 rats (common bile duct ligation [CBDL]: n = 9; control: n = 10) underwent SPIO-MRI and CEUS at baseline, two, and four weeks after CBDL. The relative signal loss (RSL) of T2* value on SPIO-MRI and Kupffer phase parenchymal echogenicity (KPE) on CEUS were measured. The correlation between SPIO-MRI and CEUS parameters were compared with KC count. RESULTS In CBDL group, RSL and KPE had significantly decreased (72.1% to 29.5%, 2.7 to 0.4) at four weeks compared with those in the control group (68.2% to 58.3%, 2.5 to 3.0, P < 0.05). During the follow-up period, RSL showed significantly positive correlations with KPE ( P = 0.007). In addition, at four weeks, we found RSL was positively correlated with KPE (ρ = 0.750, P = 0.002). KC count was negatively correlated to RSL and KPE at four weeks (ρ = -0.771, P = 0.001 and ρ = -0.644, P = 0.013). CONCLUSION SPIO-MRI and CEUS may be equally useful for monitoring the serial changes of KC phagocytic function in vivo.
Collapse
Affiliation(s)
- Jae Hwan Lee
- Center for Liver Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Lee S, Kim JH, Lee JH, Zen Y, Han JK. Imaging Monitoring of Kupffer Cell Function and Hepatic Oxygen Saturation in Preneoplastic Changes During Cholangiocarcinogenesis. Sci Rep 2017; 7:14203. [PMID: 29079853 PMCID: PMC5660185 DOI: 10.1038/s41598-017-14218-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022] Open
Abstract
We investigated serial changes of the Kupffer cell (KC) function and hepatic oxygen saturation (sO2) using contrast-enhanced ultrasound imaging (CEUS) and photoacoustic imaging (PAI) in preneoplastic changes during cholangiocarcinogenesis induced by obstructive cholangitis and N-nitrosodimethylamine in a mouse model. The CEUS and PAI were performed to assess Sonazoid contrast agent uptake by KC and changes in the sO2 of liver parenchyma. An extensive bile ductular reaction, cystic dilatation, and epithelial hyperplasia with dysplastic changes were noted in the experimental group. During the preneoplastic changes, the parenchymal echogenicity on the Kupffer-phase of CEUS was continuously decreased in the experimental group, and which means that the Sonazoid phagocytosis by KC was decreased. The number of KCs was increased in the CD68 analysis, indicating functionally impaired KCs. There was a simultaneous serial decrease in sO2 on PAI measurement of the experimental group during the preneoplastic changes. The experimental group also showed significantly higher expression of hypoxia-inducible factor-1α and vascular endothelial growth factor protein. Our study demonstrated that KC dysfunction and hypoxic environmental changes were the factors influencing preneoplastic change during cholangiocarcinogenesis, and we could non-invasively monitor these changes using CEUS and PAI.
Collapse
Affiliation(s)
- Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea. .,Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea.
| | - Jeong Hwa Lee
- Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| | - Yoh Zen
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
7
|
Lee S, Kim JH, Lee JH, Choi SY. Image Monitoring of the Impaired Phagocytic Activity of Kupffer Cells and Liver Oxygen Saturation in a Mouse Cholangitis Model Using Contrast-Enhanced Ultrasound Imaging and Photoacoustic Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2461-2468. [PMID: 28673477 DOI: 10.1016/j.ultrasmedbio.2017.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
Bile duct ligation (BDL) can cause cholangitis, which is known to induce impaired Kupffer cell (KC) function and increased oxygen consumption in a mouse model. It is important to monitor changes in KC function and tissue oxygen saturation, both of which are critical factors in the progression of cholangitis. The purpose of this study is to investigate the impaired phagocytic activity of KC and liver oxygen saturation (sO2) in a mouse cholangitis model using contrast-enhanced ultrasound imaging (CEUS) and photoacoustic imaging (PAI). A mouse cholangitis model was created by ligation of the common bile duct (CBDL, n = 20), and the left intrahepatic bile duct (BDL-L, n = 19), both of which were compared with the non-ligation groups-right lobe measurement group after left intrahepatic bile duct ligation (BDL-R, n = 19) and the control group (n = 14). The echogenicity and sO2 were measured by CEUS and PAI and the KC fraction was assessed at 1, 2 and 4 wk after ligation. We found a significantly lower echogenicity of the Kupffer phase in the CBDL and BDL-L groups compared with that in the control and BDL-R groups at 2 wk (p < .01). The CBDL and BDL-L groups showed a lower echogenicity than that of the BDL-R group at 4 wk (p < .01). We found a significantly lower sO2 of the CBDL and BDL-L groups compared with that of the control and BDL-R groups at 4 wk (p < .01). The CBDL and BDL-L groups showed a higher KC fraction than that of the BDL-R and control groups at each time point (p < .01). In conclusion, our study suggests that the Sonazoid CEUS and PAI could be a useful tool for monitoring impaired KC phagocytic activity and the liver hypoxic state.
Collapse
Affiliation(s)
- Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jung Hoon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea; Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Jae Hwan Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Seo-Youn Choi
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Seoul, Korea
| |
Collapse
|
8
|
Smits LP, Coolen BF, Panno MD, Runge JH, Nijhof WH, Verheij J, Nieuwdorp M, Stoker J, Beuers UH, Nederveen AJ, Stroes ES. Noninvasive Differentiation between Hepatic Steatosis and Steatohepatitis with MR Imaging Enhanced with USPIOs in Patients with Nonalcoholic Fatty Liver Disease: A Proof-of-Concept Study. Radiology 2016; 278:782-91. [DOI: 10.1148/radiol.2015150952] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Ballestri S, Romagnoli D, Nascimbeni F, Francica G, Lonardo A. Role of ultrasound in the diagnosis and treatment of nonalcoholic fatty liver disease and its complications. Expert Rev Gastroenterol Hepatol 2015; 9:603-627. [PMID: 25694178 DOI: 10.1586/17474124.2015.1007955] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We review the role of liver ultrasonography (US) and related techniques as non-invasive tools in predicting metabolic derangements, liver histology, portal hypertension and cardiovascular risk as well as allowing early diagnosis and management of hepatocellular carcinoma in patients with nonalcoholic fatty liver disease. In this setting, US detects fatty changes as low as ≥20% and hepatic steatosis identified ultrasonographically, in its turn, closely mirrors coronary and carotid atherosclerosis burden. Semi-quantitative US indices (to exclude nonalcoholic steatohepatitis) and sonoelastography (to quantify fibrosis) help in predicting liver histology and selecting patients to submit to liver biopsy. Surveillance for hepatocellular carcinoma conducted through biannual US is mandatory and US has a role in guiding locoregional treatment and in evaluating the efficacy of treatment. High-intensity focused ultrasound can be delivered with precision resulting in coagulative necrosis of hepatocellular carcinoma without puncturing the liver. Costs and inconveniences have so far hampered its diffusion.
Collapse
Affiliation(s)
- Stefano Ballestri
- Division of Internal Medicine, Hospital of Pavullo - Department of Internal Medicine, Azienda USL, Pavullo, Modena 41126, Italy
| | | | | | | | | |
Collapse
|
10
|
Cheong H, Lee SS, Lee JS, Kim J, Kim SW, Lee WJ. Phagocytic function of Kupffer cells in mouse nonalcoholic fatty liver disease models: Evaluation with superparamagnetic iron oxide. J Magn Reson Imaging 2014; 41:1218-27. [PMID: 24916329 DOI: 10.1002/jmri.24674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/28/2014] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To evaluate the Kupffer cell (KC) phagocytic function using superparamagnetic iron oxide-enhanced magnetic resonance imaging (SPIO-MRI) in animal models with nonalcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS Mouse NAFLD models with varying severity were created by feeding high-fat, high-cholesterol (HFHC) diets to ob/ob mice for 3, 6, or 12 weeks. SPIO-MRI was performed on a 4.7-T animal scanner in the mouse NAFLD models, in wildtype control mouse, and in the NAFLD mice (NAFLD treatment group) that received 6 weeks of pioglitazone treatment. The relative signal loss (RSL) of the liver was measured in each animal to represent the magnitude of SPIO-induced signal loss of the liver. Liver samples were analyzed for steatosis, inflammation, fibrosis, and the number of SPIO particles and KCs. RESULTS RSL values of the NAFLD mice (range of RSL value, 26.3%-53.8%) seen on SPIO-MRI were significantly lower than those of the control mice (67.7%-74.8%, P ≤ 0.008) and decreased in proportion to the duration of their HFHC diet (mean ± SD, 53.7% ± 10.9, 44.7% ± 8.2, and 26.3% ± 12.6, after 3-, 6-, and 12-week HFHC diet, respectively, on 20-minute delayed images). For the NAFLD treatment group, the RSL values increased after 6 weeks of pioglitazone treatment, compared with the values before treatment (P ≤ 0.039). The RSL values had significant independent correlation with both hepatic steatosis (P = 0.007) and inflammation (P = 0.023). CONCLUSION KC phagocytic dysfunction is aggravated in the progression of NAFLD and may be reversible with therapeutic intervention. SPIO-MRI may be useful for classifying the severity of NAFLD and monitoring the treatment response of NAFLD.
Collapse
Affiliation(s)
- Hyunhee Cheong
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
11
|
Arienti V, Aluigi L, Pretolani S, Accogli E, Polimeni L, Domanico A, Violi F. Ultrasonography (US) and non-invasive diagnostic methods for non-alcoholic fatty liver disease (NAFLD) and early vascular damage. Possible application in a population study on the metabolic syndrome (MS). Intern Emerg Med 2012; 7 Suppl 3:S283-90. [PMID: 23073869 DOI: 10.1007/s11739-012-0824-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abdominal ultrasonography (US) represents the first-line imaging examination in chronic liver diseases; in most cases, US, laboratory findings and the clinical context are generally sufficient to guide the diagnosis. Thanks to the considerable diffusion of US, we have seen an increased diagnosis of NAFLD in recent years, although this condition is generally silent from a clinical point of view. We have to identify the metabolic syndrome in the general population and to promptly recognize NAFLD to prevent its development into non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. Among the non-invasive diagnostic techniques for NAFLD and for early vascular damage, ultrasonography represents the method of choice. In fact, besides the traditional semiotics of fundamental US of the liver, new US techniques have recently been proposed (contrast enhancement US, acoustic structure characterization), with respect to serum biomarkers and Fibroscan, for the study of liver fibrosis. Similarly, also as concerns the US measurement of carotid intima-media thickness, new automated methods with sophisticated software and radio-frequency signal have recently been introduced. Finally, we report the preliminary results of a personal experience on liver and carotid US in the epidemiology of the metabolic syndrome.
Collapse
Affiliation(s)
- Vincenzo Arienti
- Ultrasound Center, Internal Medicine A, Maggiore Hospital, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
12
|
Yang LL, Ma L, Chen KF, Wang H, Lu Q, Ling WW, Quan JR, Li JW, Luo Y. Assessment of hepatic hemodynamics using high-frequency ultrasound in normal rats. Shijie Huaren Xiaohua Zazhi 2012; 20:3644. [DOI: 10.11569/wcjd.v20.i36.3644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|