1
|
Ardizzone A, Mannino D, Casili G, Campolo M, Paterniti I, Lanza M, Filippone A, Repici A, Bova V, Capra AP, Cuzzocrea S, Esposito E. Efficacy of an oral suspension containing xyloglucan and pea proteins on a murine model of gastroesophageal reflux disease. Phytother Res 2024; 38:1610-1622. [PMID: 38296262 DOI: 10.1002/ptr.8133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 03/14/2024]
Abstract
Gastroesophageal reflux disease (GERD) is the most common foregut disease, affecting about 20% of the adult population. Esophageal epithelial barrier plays a fundamental role in the pathophysiology of GERD; however, pharmacological therapies mainly aim to reduce the acidity of the gastroesophageal environment rather than to protect esophageal tissue integrity. This study aims to evaluate the efficacy of an oral solution containing xyloglucan and pea proteins (XP) in reestablishing gastroesophageal tissue integrity and biochemical markers. To induce GERD, C57BL/6 mice were alternatively overfed and fasted for 56 days and then treated with XP, sodium alginate, omeprazole, or omeprazole+XP twice daily for 7 days. Gastric pain and inflammatory markers were evaluated after 3 and 7 days of treatment. After sacrifice, the esophagi and stomachs were surgically removed for macroscopic and histological examination. Gastric pain was significantly reduced at days 3 and 7 by XP, omeprazole, and omeprazole+XP, while alginates were ineffective at day 3. XP was able to diminish gastric macroscopic damage and demonstrated the same efficacy as omeprazole in reducing esophageal damage. XP significantly reduced histological damage, with an efficacy comparable to that of omeprazole, but superior to alginates. Inflammatory markers were significantly reduced by XP, with superior efficacy compared with alginates at day 7. Interestingly, XP was also able to significantly increase gastric pH. This study demonstrated that XP restored gastric homeostasis, improved esophageal integrity, and decreased inflammation and pain with a similar efficacy to omeprazole and greater than alginates.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Shoman NA, Saady M, Teaima M, Abdelmonem R, El-Nabarawi MA, Elhabal SF. Merging konjac glucomannan with other copolymeric hydrogels as a cutting-edge liquid raft system for dual delivery of etoricoxib and famotidine. Drug Deliv 2023; 30:2189630. [PMID: 36927148 PMCID: PMC10184610 DOI: 10.1080/10717544.2023.2189630] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023] Open
Abstract
This study aimed to formulate and evaluate a floating raft system for the co-delivery of etoricoxib (ETO) and famotidine (FAM) using a combination of glucomannan with natural/semi-synthetic polysaccharides. Formulation variables affect gelation lag time (GLT), floating lag time (FLT), and release percentage of drugs after 1-8 h, Stability, and viscosity parameters were evaluated. In vivo X-ray studies, followed by the pharmacokinetic study, were performed on human volunteers. Formulations exhibited pseudoplastic behavior for ease of swallowing. The optimum raft system (ORS) comprised 1% Na alginate, 0.1% Low Methoxyl (LM) pectin, 0.8% Konjac glucomannan (KGL), 1% Precirol, and 1% CaCO3. ORS exhibited rapid GLT and FLT (around 42 and 8 sec respectively) in 0.1 N HCl as well as controlled release of ETO (15% in 1 h and 82% in 8 h) and FAM (29% in 1 h and 85% in 8 h). Formulation stability with the absence of any drug-excipient interactions was observed. The X-ray imaging showed a promising buoyancy ability for approximately 8 h. Compared with marketed products, ORS showed superior relative bioavailability for both drugs. These findings revealed the successful preparation of a promising raft system with improved dual drug delivery.
Collapse
Affiliation(s)
- Nabil A. Shoman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Marwa Saady
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo, Egypt
| |
Collapse
|
3
|
Mehranfard N, Ghasemi M, Rajabian A, Ansari L. Protective potential of naringenin and its nanoformulations in redox mechanisms of injury and disease. Heliyon 2023; 9:e22820. [PMID: 38058425 PMCID: PMC10696200 DOI: 10.1016/j.heliyon.2023.e22820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Increasing evidence suggests that elevated intracellular levels of reactive oxygen species (ROS) play a significant role in the pathogenesis of many diseases. Increased intracellular levels of ROS can lead to the oxidation of lipids, DNA, and proteins, contributing to cellular damage. Hence, the maintenance of redox hemostasis is essential. Naringenin (NAR) is a flavonoid included in the flavanones subcategory. Various pharmacological actions have been ascribable to this phytochemical composition, including antioxidant, anti-inflammatory, antibacterial, antiviral, antitumor, antiadipogenic, neuro-, and cardio-protective activities. This review focused on the underlying mechanism responsible for the antioxidative stress properties of NAR and its' nanoformulations. Several lines of in vitro and in vivo investigations suggest the effects of NAR and its nanoformulation on their target cells via modulating signaling pathways. These nanoformulations include nanoemulsion, nanocarriers, solid lipid nanoparticles (SLN), and nanomicelle. This review also highlights several beneficial health effects of NAR nanoformulations on human diseases including brain disorders, cancer, rheumatoid arthritis, and small intestine injuries. Employing nanoformulation can improve the pharmacokinetic properties of NAR and consequently efficiency by reducing its limitations, such as low bioavailability. The protective effects of NAR and its' nanoformulations against oxidative stress may be linked to the modulation of Nrf2-heme oxygenase-1, NO/cGMP/potassium channel, COX-2, NF-κB, AMPK/SIRT3, PI3K/Akt/mTOR, BDNF, NOX, and LOX-1 pathways. Understanding the mechanism behind the protective effects of NAR can facilitate drug development for the treatment of oxidative stress-related disorders.
Collapse
Affiliation(s)
- Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Legha Ansari
- Nanokadeh Darooee Samen Private Joint Stock Company, Urmia, 5715793731, Iran
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Traserra S, Cuerda H, Vallejo A, Segarra S, Sabata R, Jimenez M. Gastroprotective Effects of Oral Glycosaminoglycans with Sodium Alginate in an Indomethacin-Induced Gastric Injury Model in Rats. Vet Sci 2023; 10:667. [PMID: 38133218 PMCID: PMC10747959 DOI: 10.3390/vetsci10120667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The gastrointestinal (GI) mucosal barrier is often exposed to inflammatory and erosive insults, resulting in gastric lesions. Glycosaminoglycans (GAGs), such as hyaluronic acid (HA), chondroitin sulfate (CS), and N-acetylglucosamine (NAG) have shown potential beneficial effects as GI protectants. This study aimed to evaluate the gastroprotective effects of oral GAGs in rats with indomethacin-induced GI lesions. Forty-five Sprague-Dawley rats (8-9 weeks-old, 228 ± 7 g) were included in the study, divided into five study groups, and given, administered orally, either sucralfate (positive control group; PC), NAG (G group), sodium alginate plus HA and CS (AHC group), sodium alginate plus HA, CS, and NAG (AHCG group), or no treatment (negative control group; NC). Animals were administered 12.5 mg/kg indomethacin orally 15 min after receiving the assigned treatment. After 4 h, stomach samples were obtained and used to perform a macroscopic evaluation of gastric lesions and to allow histological assessment of the gastric wall (via H/E staining) and mucous (via PAS staining). The AHCG group showed significant gastroprotective improvements compared to the NC group, and a similar efficacy to the PC group. This combination of sodium alginate with GAGs might, therefore, become a safe and effective alternative to prescription drugs for gastric lesions, such as sucralfate, and have potential usefulness in companion animals.
Collapse
Affiliation(s)
- Sara Traserra
- Department of Cell Biology Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (S.T.); (H.C.); (A.V.)
| | - Héctor Cuerda
- Department of Cell Biology Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (S.T.); (H.C.); (A.V.)
| | - Adriana Vallejo
- Department of Cell Biology Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (S.T.); (H.C.); (A.V.)
| | - Sergi Segarra
- R&D Bioiberica S.A.U., 08950 Esplugues de Llobregat, Spain; (S.S.); (R.S.)
| | - Roger Sabata
- R&D Bioiberica S.A.U., 08950 Esplugues de Llobregat, Spain; (S.S.); (R.S.)
| | - Marcel Jimenez
- Department of Cell Biology Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (S.T.); (H.C.); (A.V.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
5
|
Pritchard MF, Powell LC, Adams JYM, Menzies G, Khan S, Tøndervik A, Sletta H, Aarstad O, Skjåk-Bræk G, McKenna S, Buurma NJ, Farnell DJJ, Rye PD, Hill KE, Thomas DW. Structure-Activity Relationships of Low Molecular Weight Alginate Oligosaccharide Therapy against Pseudomonas aeruginosa. Biomolecules 2023; 13:1366. [PMID: 37759766 PMCID: PMC10527064 DOI: 10.3390/biom13091366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Low molecular weight alginate oligosaccharides have been shown to exhibit anti-microbial activity against a range of multi-drug resistant bacteria, including Pseudomonas aeruginosa. Previous studies suggested that the disruption of calcium (Ca2+)-DNA binding within bacterial biofilms and dysregulation of quorum sensing (QS) were key factors in these observed effects. To further investigate the contribution of Ca2+ binding, G-block (OligoG) and M-block alginate oligosaccharides (OligoM) with comparable average size DPn 19 but contrasting Ca2+ binding properties were prepared. Fourier-transform infrared spectroscopy demonstrated prolonged binding of alginate oligosaccharides to the pseudomonal cell membrane even after hydrodynamic shear treatment. Molecular dynamics simulations and isothermal titration calorimetry revealed that OligoG exhibited stronger interactions with bacterial LPS than OligoM, although this difference was not mirrored by differential reductions in bacterial growth. While confocal laser scanning microscopy showed that both agents demonstrated similar dose-dependent reductions in biofilm formation, OligoG exhibited a stronger QS inhibitory effect and increased potentiation of the antibiotic azithromycin in minimum inhibitory concentration and biofilm assays. This study demonstrates that the anti-microbial effects of alginate oligosaccharides are not purely influenced by Ca2+-dependent processes but also by electrostatic interactions that are common to both G-block and M-block structures.
Collapse
Affiliation(s)
- Manon F. Pritchard
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (L.C.P.); (J.Y.M.A.); (S.K.); (S.M.); (D.J.J.F.); (K.E.H.); (D.W.T.)
| | - Lydia C. Powell
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (L.C.P.); (J.Y.M.A.); (S.K.); (S.M.); (D.J.J.F.); (K.E.H.); (D.W.T.)
- Microbiology and Infectious Disease Group, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Jennifer Y. M. Adams
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (L.C.P.); (J.Y.M.A.); (S.K.); (S.M.); (D.J.J.F.); (K.E.H.); (D.W.T.)
| | - Georgina Menzies
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Saira Khan
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (L.C.P.); (J.Y.M.A.); (S.K.); (S.M.); (D.J.J.F.); (K.E.H.); (D.W.T.)
| | - Anne Tøndervik
- Department of Bioprocess Technology, SINTEF Materials and Chemistry, N-7465 Trondheim, Norway; (A.T.); (H.S.)
| | - Håvard Sletta
- Department of Bioprocess Technology, SINTEF Materials and Chemistry, N-7465 Trondheim, Norway; (A.T.); (H.S.)
| | - Olav Aarstad
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; (O.A.); (G.S.-B.)
| | - Gudmund Skjåk-Bræk
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; (O.A.); (G.S.-B.)
| | - Stephen McKenna
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (L.C.P.); (J.Y.M.A.); (S.K.); (S.M.); (D.J.J.F.); (K.E.H.); (D.W.T.)
| | - Niklaas J. Buurma
- Physical Organic Chemistry Centre, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK;
| | - Damian J. J. Farnell
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (L.C.P.); (J.Y.M.A.); (S.K.); (S.M.); (D.J.J.F.); (K.E.H.); (D.W.T.)
| | - Philip D. Rye
- AlgiPharma AS, Industriveien 33, N-1337 Sandvika, Norway;
| | - Katja E. Hill
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (L.C.P.); (J.Y.M.A.); (S.K.); (S.M.); (D.J.J.F.); (K.E.H.); (D.W.T.)
| | - David W. Thomas
- Advanced Therapies Group, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK; (L.C.P.); (J.Y.M.A.); (S.K.); (S.M.); (D.J.J.F.); (K.E.H.); (D.W.T.)
| |
Collapse
|
6
|
Madkhali JY, Hussein RH, Alnahdi HS. Therapeutic effect of bromelain and papain on intestinal injury induced by indomethacin in male rats. Int J Health Sci (Qassim) 2023; 17:23-30. [PMID: 37692988 PMCID: PMC10484068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Objectives Inflammatory bowel diseases (IBDs) are a multiple inflammatory status in small intestines and colon. Bromelain and Papain were cysteine proteases enzymes extracted from pineapple and papaya, and possess antioxidant and anti-inflammatory characteristics. Therefore, this comparative work aimed to examine the anti-inflammatory and antioxidant effect of bromelain and papain in intestinal inflammation of rats and to evaluate the most potent effect of both types of enzymes. Methods Forty rats were used in this study (8 rats/group), G1: control group, G2: (Indo group) intestinal inflammation was induced by two doses of Indomethacin (7.5 mg/kg body weight) apart 24 h. G3: (Indomethacin + Bromelain) intestinal inflamed rats treated by oral dose of bromelain (1000 mg/kg/day). G4: (Indomethacin + Papain) intestinal inflamed rats treated by oral dose of papain (800 mg/kg/day). G5: (Indomethacin + Sulfasalazine) intestinal inflamed rats treated by oral dose of sulfasalazine (500 mg/kg/day). Oxidative stress and inflammatory markers were measured along with histological assessment. Results Indomethacin-induced intestinal inflammation (in both Jejunum and Ileum) characterized by increased oxidative stress biomarkers: Xanthine oxidase, Catalase, Glutathione reductase, and Protein carbonyl and Inflammatory biomarkers: Tumor necrosis factor-α, Interleukin-10, Monocyte chemoattractant protein-1, Nuclear factor-kappa β, C-reactive protein, and Prostaglandin E2, as compared to control rats. On the other hand, administering either bromelain or Papain would effectively decrease symptoms of intestinal inflammation and modulate biomarkers of oxidative stress and pro-inflammatory cytokines. Conclusion Comparing results revealed that bromelain showed the most potent protective effect and possesses an apparent role in protection against the development of intestinal inflammation.
Collapse
Affiliation(s)
- Jameelah Y. Madkhali
- Department of Applied Biochemistry, College of Science, University of Jeddah, Jeddah, KSA
| | - Rasha H. Hussein
- Department of Applied Biochemistry, College of Science, University of Jeddah, Jeddah, KSA
- Department of Biochemistry and Nutrition, Women Faculty for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Hanan S. Alnahdi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Maruyama S, Segawa Y, Harui A, Yamamoto K, Hashimoto H, Osera T, Kurihara N. Influence of Intestinal Barrier on Alleviating an Increase in Blood Pressure by Sodium Alginate Intake in 2-Kidney, 1-Clip Renovascular Hypertensive Rats. Mar Drugs 2023; 21:324. [PMID: 37367649 DOI: 10.3390/md21060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Sodium alginate (SALG) is a substance derived from brown seaweed that has been shown to reduce blood pressure (BP). However, its effects on renovascular hypertension caused by 2-kidney, 1-clip (2K1C) are not yet clear. Previous research suggests that hypertensive rats have increased intestinal permeability, and that SALG improves the gut barrier in inflammatory bowel disease mouse models. Therefore, the goal of this study was to determine whether the antihypertensive effects of SALG involve the intestinal barrier in 2K1C rats. Rats were fed either a 1.0% SALG diet or a control diet for six weeks after being subjected to 2K1C surgery or a sham operation. The systolic BP was measured weekly, and the mean arterial BP was measured at the end of the study. Intestinal samples were taken for analysis, and plasma lipopolysaccharide (LPS) levels were measured. The results showed that BP in 2K1C rats was significantly higher than in SHAM rats when fed CTL, but not when fed SALG. The gut barrier in 2K1C rats was improved by SALG intake. Plasma LPS levels also differed depending on the animal model and diet. In conclusion, dietary SALG may alleviate 2K1C renovascular hypertension by altering the gut barrier.
Collapse
Affiliation(s)
- Saki Maruyama
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
| | - Yukiko Segawa
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
- Faculty of Cookery and Confectionery, Osaka Seikei College, 10-62 Aikawa, Higashiyodogawa, Osaka 533-0007, Japan
| | - Ayaka Harui
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
| | - Kanae Yamamoto
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
| | - Hiroko Hashimoto
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
- Faculty of Nutrition, Osaka Seikei College, 10-62 Aikawa, Higashiyodogawa, Osaka 533-0007, Japan
| | - Tomoko Osera
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
- Department of Nutrition and Health Sciences, Toyo University, 1-1-1 Izumino, Ora-gun, Itakura-machi 374-0193, Gunma, Japan
| | - Nobutaka Kurihara
- Hygiene and Preventive Medicine, Graduate School of Home Economics, Kobe Women's University, 2-1 Higashisuma-Aoyama, Suma, Kobe 654-8585, Japan
| |
Collapse
|
8
|
Wang X, Yin J, Hu J, Nie S, Xie M. Gastroprotective polysaccharide from natural sources: Review on structure, mechanism, and structure–activity relationship. FOOD FRONTIERS 2022; 3:560-591. [DOI: 10.1002/fft2.172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
AbstractPolysaccharides from natural sources have the potentials in being used as substitutes of chemosynthetic drugs for gastroprotection because of its safety and efficacy. For giving a better understanding of gastroprotective polysaccharides, the research progress on preparation, structure, bioactivity, and their action mechanism is comprehensively summarized in this review. Moreover, the structure–activity relationship of gastroprotective polysaccharides is discussed. Accumulating evidence has indicated that natural polysaccharides, which were widely prepared by water extraction and column chromatography purifications, exhibited gastroprotective effects in vitro and in vivo. The action mechanism might be related to gastric secretions, promotion of gastric defensive factor releases, antioxidation, anti‐inflammatory, antiapoptosis, and facilitation of proliferation. Phenolic compounds, molecular weight and conformation, monosaccharide composition, backbone structure and side chain, and functional group have great influences on the gastroprotective activities of polysaccharides. This review gives comprehensive guidance to the exploitation and application of natural polysaccharides in food and other industries for gastroprotection.
Collapse
Affiliation(s)
- Xiao‐Yin Wang
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
- School of Public Health and Health Management Gannan Medical University Ganzhou 341000 China
| | - Jun‐Yi Yin
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Jie‐Lun Hu
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Shao‐Ping Nie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| | - Ming‐Yong Xie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang 330047 China
| |
Collapse
|
9
|
Cell-free probiotic supernatant (CFS) treatment alleviates indomethacin-induced enterocolopathy in BALB/c mice by down-modulating inflammatory response and oxidative stress: potential alternative targeted treatment. Inflammopharmacology 2022; 30:1685-1703. [PMID: 35505268 DOI: 10.1007/s10787-022-00996-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/08/2022] [Indexed: 11/05/2022]
Abstract
Probiotics and their metabolites appear to be a promising approach that targets both the intestinal inflammation and dysbiosis in bowel diseases. In this context, the emergence of the probiotic cell-free supernatant (CFS) has attracted more attention as a safe and targeted alternative therapy with reduced side effects. The use of nonsteroidal anti-inflammatory drugs (NSAIDs) can cause significant intestinal alterations and inflammation, leading to experimental enterocolopathy resembling Crohn disease. Therefore, we investigated the effect of CFS supplementation on the inflammation and the mucosal intestinal alterations induced by NSAIDs, indomethacin. In the current study, a murine model of intestinal inflammation was generated by the oral gavage (o.g) of indomethacin (10 mg/kg) to BALB/C mice. A group of mice treated with indomethacin was concomitantly treated orally by CFS for 5 days. The Body Health Condition index was monitored, and histological scores were evaluated. Moreover, oxidative and pro-inflammatory markers were assessed. Interestingly, we observed that CFS treatment attenuated the severity of the intestinal inflammation in our enterocolopathy model and resulted in the improvement of the clinical symptoms and the histopathological features. Notably, nitric oxide, tumor necrosis factor alpha, malondialdehyde, and myeloperoxidase levels were down-modulated by CFS supplementation. Concomitantly, an attenuation of NF-κB p65, iNOS, COX2 expression in the ileum and the colon was reported. Collectively, our data suggest that CFS treatment has a beneficial effect in experimental enterocolopathy model and could constitute a good therapeutic candidate for alleviating inflammatory responses and to maintain mucosal homeostasis during chronic and severe conditions of intestinal inflammation.
Collapse
|
10
|
Cho M, Bu Y, Park JW, Rahman H, Ko SJ. Efficacy of complementary medicine for nonsteroidal anti-inflammatory drug-induced small intestinal injuries: A narrative review. Medicine (Baltimore) 2021; 100:e28005. [PMID: 35049210 PMCID: PMC9191556 DOI: 10.1097/md.0000000000028005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug-induced small bowel injuries (NSIs) have been largely ignored for decades due to the focus on nonsteroidal anti-inflammatory drug gastropathy. With the visualization of the small intestines enabled by video capsule endoscopy, the frequency and severity of NSIs have become more evident. NSIs have a complex pathophysiology, and no effective preventive or treatment options have been proven. Complementary and alternative medicine (CAM) has been used to treat disorders of the small intestine, and more research on its effectiveness for NSIs has been conducted.We reviewed the current evidence and mechanisms of action of CAMs on NSI. Clinical and experimental studies on the effect of CAMs on NSIs were performed using 10 databases.Twenty-two studies (3 clinical and 19 in vivo experimental studies) were included in the final analysis involving 10 kinds of CAMs: bovine colostrum, Orengedokuto (coptis), muscovite, licorice, grape seed, wheat, brown seaweed, Ganoderma lucidum fungus mycelia, Chaenomeles speciosa (sweet) Nakai (muguasantie), and Jinghua Weikang capsule. The mechanisms of CAM include an increase in prostaglandin E2, reparation of the enteric nervous system, inhibition of pro-inflammatory cytokines, reduction of intestinal permeability and enteric bacterial numbers, decrease in oxidative stress, and modulation of small intestinal motility.CAM may be a novel alternative option for treating and preventing NSI, and further studies on human and animal models with relevant comorbidities are warranted.
Collapse
Affiliation(s)
- Minji Cho
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jae-Woo Park
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Seok-Jae Ko
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Gastroprotective Effect of Enteral Nutrition Formula in Mice Injected Subcutaneously with Indomethacin. Nutrients 2021; 13:nu13093297. [PMID: 34579173 PMCID: PMC8468157 DOI: 10.3390/nu13093297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
We have previously shown that two enteral nutrition formulas suppressed gastric lesions induced by the oral administration of indomethacin (IND) in mice. However, the mechanism of their protective effect is unknown. In this study, the effect of the two enteral nutrition formulas on gastric lesions induced by subcutaneous IND injection was investigated, with the objective of exploring the possibility that they may interact directly with IND in the gastrointestinal tract. Ten-week-old, male, ICR mice were fasted, then orally given either purified water, Mermed® One, or 2-fold diluted Terumeal® 2.0α as enteral nutrition formula (25 mL/kg). IND was injected subcutaneously at 20 mg/kg after 30 min, and the stomach was removed 6 h later and fixed in formalin. The number and area of lesions in the stomachs of mice given enteral nutrition formula was reduced to 56–89% and 34–61%, respectively, compared with the mice given purified water. The time courses of plasma IND concentrations were comparable among the three groups. These results suggested that the effect of these enteral nutrition formulas on gastric lesions did not originate from their direct interaction with IND in the gastrointestinal tract or their effect on the disposition of IND.
Collapse
|
12
|
Nam SY, Lee SW, Jeon SW, Kwon YH. Effect of Sodium Alginate on Gastrointestinal Symptoms after Esophagogastroduodenoscopy with Biopsy: Randomized Controlled Trial. Gut Liver 2021; 16:37-43. [PMID: 34373362 PMCID: PMC8761922 DOI: 10.5009/gnl20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/07/2021] [Accepted: 02/24/2021] [Indexed: 11/04/2022] Open
Abstract
Background/Aims After esophagogastroduodenoscopy (EGD) with biopsy, some patients experience gastrointestinal symptoms. This study investigated the effect of sodium alginate on biopsy-related gastrointestinal symptoms. Methods In this open-label, randomized, controlled trial, patients undergoing EGD with biopsy were randomly assigned to a treatment or control group. In the treatment group, sodium alginate was orally administered for 3 days after EGD. Patients completed questionnaires about their gastrointestinal symptoms at baseline (past week), the day after returning home, and after another 3 days. Gastrointestinal symptoms, including abdominal pain, epigastric pain/soreness, heartburn, acid reflux, nausea/vomiting, borborygmus, abdominal distension, and belching, were rated using an upper gastrointestinal symptom rating scale (GSRS). Results A total of 210 persons (138 men) who underwent EGD with biopsy were enrolled and allocated to the treatment (n=104) or control (n=106) group. At baseline, the demographic factors and GSRS scores were not different between the control and treatment groups. The epigastric pain/soreness score increased in the control group after endoscopic biopsy (+0.056), whereas the score was decreased in the treatment group (-0.067) (p=0.042). In the treatment group, the scores for acid regurgitation and epigastric soreness decreased during follow-up from those at baseline (p<0.05), whereas there were no significant reductions in the control group. The scores for belching and borborygmus decreased during follow-up only in the treatment group. Abdominal bloating decreased in both the control and treatment groups. Conclusions Sodium alginate reduced epigastric pain/soreness after EGD with biopsy. Therefore, the prescription of sodium alginate should be considered after endoscopic biopsy.
Collapse
Affiliation(s)
- Su Youn Nam
- Department of Internal Medicine, School of Medicine, Kyungpook National University and Kyungpook National University Hospital, Daegu, Korea
| | - Sang Won Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University and Kyungpook National University Hospital, Daegu, Korea
| | - Seong Woo Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University and Kyungpook National University Hospital, Daegu, Korea
| | - Yong Hwan Kwon
- Department of Internal Medicine, School of Medicine, Kyungpook National University and Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
13
|
Cervantes-García D, Bahena-Delgado AI, Jiménez M, Córdova-Dávalos LE, Ruiz-Esparza Palacios V, Sánchez-Alemán E, Martínez-Saldaña MC, Salinas E. Glycomacropeptide Ameliorates Indomethacin-Induced Enteropathy in Rats by Modifying Intestinal Inflammation and Oxidative Stress. Molecules 2020; 25:molecules25102351. [PMID: 32443501 PMCID: PMC7287897 DOI: 10.3390/molecules25102351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy is considered a serious and increasing clinical problem without available treatment. Glycomacropeptide (GMP) is a 64-amino acid peptide derived from milk κ-casein with numerous biological activities. The aim of this study was to investigate the protective effect of GMP on NSAID enteropathy in rats. Enteropathy was induced by seven days oral indomethacin administration. Rats were orally GMP treated from seven days previous and during the establishment of the enteropathy model. Changes in metabolism, hematological and biochemical blood alterations, intestinal inflammation and oxidative damage were analyzed. Integrity barrier markers, macroscopic intestinal damage and survival rate were also evaluated. GMP treatment prevented anorexia and weight loss in animals. Furthermore, prophylaxis with GMP ameliorated the decline in hemoglobin, hematocrit, albumin and total protein levels. The treatment had no therapeutic efficacy on the decrease of occludin and mucin (MUC)-2 expression in intestinal tissue. However, GMP markedly decreased neutrophil infiltration, and CXCL1, interleukin-1β and inducible nitric oxide synthase expression. Nitric oxide production and lipid hydroperoxide level in the small intestine were also diminished. These beneficial effects were mirrored by preventing ulcer development and increasing animal survival. These results suggest that GMP may protect against NSAID enteropathy through anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Daniel Cervantes-García
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
- National Council of Science and Technology, Mexico City 03940, Mexico
| | - Armida I. Bahena-Delgado
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
| | - Mariela Jiménez
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
| | - Laura E. Córdova-Dávalos
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
| | - Vanessa Ruiz-Esparza Palacios
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
| | - Esperanza Sánchez-Alemán
- Department of Morphology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (E.S.-A.); (M.C.M.-S.)
- Unit of Familiar Medicine #8, Mexican Institute of Social Security, Aguascalientes 20180, Mexico
| | - María C. Martínez-Saldaña
- Department of Morphology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (E.S.-A.); (M.C.M.-S.)
| | - Eva Salinas
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
- Correspondence: ; Tel.: +52-449-910-8424
| |
Collapse
|
14
|
Wang H, He Y, Hou Y, Geng Y, Wu X. Novel self-nanomicellizing formulation based on Rebaudioside A: A potential nanoplatform for oral delivery of naringenin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110926. [PMID: 32409076 DOI: 10.1016/j.msec.2020.110926] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
In the study described here, we strove to develop an orally administered novel self-nanomicellizing formulation based on Rebaudioside A (RA) for delivering naringenin (NAR) with improved bioavailability and therapeutic efficacy. Our research found that RA and naringenin (NAR) could be formulated into self-assembling nanomicelles (RA-NAR) using a simple ethanol dissolution-evaporation method. We found that the RA-NAR self-assemblies comprised ultra-small micelles (5.234 ± 0.311 nm) in a uniform dispersion state (the polydispersity index was 0.243 ± 0.039) with a near-neutral surface charge (-[2.268 ± 0.729] mV). We also found that RA-NAR had a well-storage stability at 4 °C with light protection. In addition, we observed that RA-NAR exhibited enhanced apparent solubility, in-vitro permeability, and antioxidant activity. After we administered RA-NAR to rats orally, we observed an increase in area under the curve (AUC0→t) to 19,500.82 ng/mL/h versus 9324.47 ng/mL/h observed with free NAR and an increase of maximum concentration (Cmax) to 27,326.10 ng/mL from the free-NAR Cmax level of 2549.04 ng/mL. The tissue distribution assessments further demonstrated that RA-NAR could effectively increase the NAR concentration in all tested intestinal segments. Our mouse model results showed as well that oral administration of RA-NAR could efficiently protect against small intestine injuries induced by indomethacin, and the mechanisms by inhibiting proinflammatory cytokines and oxidative stress were involved in its therapeutic effect. Taken together, these findings indicate that a self-nanomicellizing formulation based on RA has great potential as a novel oral nano-drug delivery system for NAR.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuanlong He
- Department of Gastroenterology, Qingdao municipal hospital, Qingdao University, Qingdao 266011, China
| | - Yuzhen Hou
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yiwan Geng
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
15
|
Rengasamy KR, Mahomoodally MF, Aumeeruddy MZ, Zengin G, Xiao J, Kim DH. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food Chem Toxicol 2020; 135:111013. [PMID: 31794803 DOI: 10.1016/j.fct.2019.111013] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023]
Abstract
Seaweeds are among the significant currently exploited marine plant resources which are gaining full applications in culinary, cosmetic, pharmaceutical, and biotechnological processes. Much attention has been devoted to seaweeds based on their proven health benefits and is considered as a rich source of structurally different bioactive metabolites for the discovery of novel functional food-based pharmacophores/drugs. Nonetheless, there is still a dearth of updated compilation and analysis of the in-depth pharmacological activities of these compounds. This review, therefore, aims to provide a piece of up-to-date detailed information on the major compounds isolated from various seaweed species together with their in-vitro and in-vivo biological properties. These compounds were found to possess broad pharmacological properties and inhibitory enzyme activities against critical enzymes involved in the aetiology of noncommunicable diseases. However, their toxicity, clinical efficacy, mechanisms of action, and interaction with conventional foods, are still less explored and require more attention in future studies.
Collapse
Affiliation(s)
- Kannan Rr Rengasamy
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 05029, South Korea.
| | | | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Doo Hwan Kim
- Department of Bio-resources and Food Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
16
|
Ghafarzadeh S, Hobbenaghi R, Tamaddonfard E, Farshid AA, Imani M. Crocin exerts improving effects on indomethacin-induced small intestinal ulcer by antioxidant, anti-inflammatory and anti-apoptotic mechanisms. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:277-284. [PMID: 32206222 PMCID: PMC7065578 DOI: 10.30466/vrf.2018.93512.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/03/2018] [Indexed: 01/07/2023]
Abstract
Crocin is a plant-derived carotenoid and bears potent antioxidant property. Ranitidine (a histamine H2 receptor blocker) is used for peptic ulcer treatment. The present study was planned to investigate the effects of crocin and ranitidine on indomethacin-induced ulcer in small intestine of rats. Animals were randomized into two major groups including indo-methacin (10.00 mg kg-1, ulcer group, 48 rats) and normal saline (1.00 mL kg-1, intact group, 48 rats) groups. Each of these two major groups was subdivided into eight subgroups for intra-peritoneal (IP) injections of normal saline, crocin (2.50, 10.00 and 40.00 mg kg-1), ranitidine (5.00 and 20.00 mg kg-1), crocin (2.50 and 10.00 mg kg-1) plus ranitidine (5.00 mg kg-1). Indomethacin induced intestinal ulcer was characterized by bleeding, inflammation, epithelial hyperplasia and crypt loss. This non-steroidal anti-inflammatory drug (NSAID), indomethacin decreased goblet cell number and superoxide dismutase (SOD) activity and increased small intestine weight, organo-somatic index (OSI), malodealdehyde (MDA), tumor necrosis factor-α (TNF-α) and caspase-3 contents of intestine. Crocin resolved all the above-mentioned parameter changes induced by indomethacin. These treatments produced no significant effects on the above-mentioned parameters of intact group. The results of the present study showed tissue protective and anti-ulcer effects of crocin on small intestine by antioxidant, anti-inflammatory and anti-apoptotic mechanisms. Ranitidine alone showed no effect; however, in combination with crocin it exerted recovery effects. It is recommended that crocin, be considered as a therapeutic agent for NSAIDs-induced intestinal damage management.
Collapse
Affiliation(s)
- Sadat Ghafarzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Hobbenaghi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Esmaeal Tamaddonfard
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Amir Abbas Farshid
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehdi Imani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
17
|
Study of the Inhibitory Effects of Enteral Nutrition Formula on Indomethacin-Induced Gastric Lesions in Mice. Nutrients 2019; 11:nu11123058. [PMID: 31847337 PMCID: PMC6949949 DOI: 10.3390/nu11123058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
We investigated the effects of enteral nutrition formula on non-steroidal anti-inflammatory drug (NSAID)-induced gastric lesions in mice. Male ICR mice aged 7–9 weeks old were fasted, then orally given either purified water, Mermed® One, or 2-fold diluted Terumeal® 2.0α as enteral nutrition (25 or 50 mL/kg each). Indomethacin (IND) was orally administered at 20 mg/kg after 30 min, and the stomach was removed 6 h later and fixed in formalin. The number and area of lesions in the stomachs of the mice given enteral nutrition showed a significant, dose-dependent decrease compared to the purified water-treated group, and no significant difference was seen between the two enteral nutrition-treated groups. Comparable time courses of plasma IND concentrations suggest that enteral nutrition does not inhibit gastrointestinal absorption of IND. Our findings indicate that administering enteral nutrition could inhibit the onset of NSAID-induced gastric ulcers.
Collapse
|
18
|
Alginate and Probiotics Synergistically Reversed Dextran Sulfate Sodium Salt (DSS)-Induced Gut Barrier Damage. Macromol Res 2019. [DOI: 10.1007/s13233-019-7122-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Turkyilmaz IB, Arda Pirincci P, Bolkent S, Yanardag R. The effects of vitamins and selenium mixture or ranitidine against small intestinal injury induced by indomethacin in adult rats. J Food Biochem 2019; 43:e12808. [PMID: 31353593 DOI: 10.1111/jfbc.12808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 01/03/2019] [Accepted: 01/31/2019] [Indexed: 01/18/2023]
Abstract
This study was aimed at investigating morphological and biochemical efficacies of antioxidants on indomethacin-induced small intestinal damage in rats. Group I: control animals (negative control) given only placebo, Group II: (positive control) are animals orally given combination of antioxidants [vitamin C (Vit C), vitamin E (Vit E), β-carotene and sodium selenite (Se)] daily for 3 days, Group III: Rats were given only indomethacin, Group IV: animals were given of antioxidants combination for 3 days, last dose was given 2 hr before the administration of indomethacin. Group V: Animals receiving ranitidine for 3 days (second positive control). Group VI: Animals received ranitidine for 3 days, last dose was given 2 hr before to indomethacin administration. Indomethacin caused degenerative morphological and biochemical changes, which were reversed on antioxidants administration. As a result, we propose that antioxidants combination would be therapeutically beneficial for treating indomethacin-induced lesions of small intestine. PRACTICAL APPLICATIONS: Indomethacin is a widely preferred nonsteroidal anti-inflammatory drug (NSAID) but its side effects on gastrointestinal system are well known. Indomethacin also causes production of reactive oxygen species. Antioxidants and selenium has protective effects. According to the results of this study, antioxidants and selenium can be used as a food supplement for preventing NSAID-induced side effects and toxicity.
Collapse
Affiliation(s)
- Ismet Burcu Turkyilmaz
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pelin Arda Pirincci
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Sehnaz Bolkent
- Faculty of Science, Department of Biology, Istanbul University, Istanbul, Turkey
| | - Refiye Yanardag
- Faculty of Engineering, Department of Chemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
20
|
Lack of Small Intestinal Dysbiosis Following Long-Term Selective Inhibition of Cyclooxygenase-2 by Rofecoxib in the Rat. Cells 2019; 8:cells8030251. [PMID: 30884758 PMCID: PMC6468807 DOI: 10.3390/cells8030251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Intestinal dysbiosis is linked to numerous gastrointestinal disorders, including inflammatory bowel diseases. It is a question of debate if coxibs, selective inhibitors of cyclooxygenase (COX)-2, cause dysbiosis. Therefore, in the present study, we aimed to determine the effect of long-term (four weeks) selective inhibition of COX-2 on the small intestinal microbiota in the rat. In order to avoid mucosal damage due to topical effects and inflammation-driven microbial alterations, rofecoxib, a nonacidic compound, was used. The direct inhibitory effect of rofecoxib on the growth of bacteria was ruled out in vitro. The mucosa-sparing effect of rofecoxib was confirmed by macroscopic and histological analysis, as well as by measuring the intestinal levels of cytokines and tight junction proteins. Deep sequencing of bacterial 16S rRNA revealed that chronic rofecoxib treatment had no significant influence on the composition and diversity of jejunal microbiota. In conclusion, this is the first demonstration that long-term selective inhibition of COX-2 by rofecoxib does not cause small intestinal dysbiosis in rats. Moreover, inhibition of COX-2 activity is not likely to be responsible per se for microbial alterations caused by some coxibs, but other drug-specific properties may contribute to it.
Collapse
|
21
|
Inhibitory Effects of Sodium Alginate on Hepatic Steatosis in Mice Induced by a Methionine- and Choline-deficient Diet. Mar Drugs 2019; 17:md17020104. [PMID: 30744124 PMCID: PMC6409683 DOI: 10.3390/md17020104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) progresses from nonalcoholic fatty liver disease (NAFLD); however, efficacious drugs for NASH treatment are lacking. Sodium alginate (SA), a soluble dietary fiber extracted from brown algae, could protect the small intestine from enterobacterial invasion. NASH pathogenesis has been suggested to be associated with enterobacterial invasion, so we examined the effect of SA on methionine- and choline-deficient (MCD) diet-induced steatohepatitis in mice (the most widely-used model of NASH). The mice (n = 31) were divided into three groups (mice fed with regular chow, MCD diet, and MCD diet premixed with 5% SA) for 4 and 8 weeks. The MCD diet increased lipid accumulation and inflammation in the liver, the NAFLD Activity Score and hepatic mRNA expression of tumor necrosis factor-α and collagen 1α1, and induced macrophage infiltration. Villus shortening, disruption of zonula occludens-1 localization and depletion of mucus production were observed in the small intestine of the MCD-group mice. SA administration improved lipid accumulation and inflammation in the liver, and impaired barrier function in the small intestine. Collectively, these results suggest that SA is useful for NASH treatment because it can prevent hepatic inflammation and fatty degeneration by maintaining intestinal barrier function.
Collapse
|
22
|
Colucci R, Pellegrini C, Fornai M, Tirotta E, Antonioli L, Renzulli C, Ghelardi E, Piccoli E, Gentile D, Benvenuti L, Natale G, Fulceri F, Palazón-Riquelme P, López-Castejón G, Blandizzi C, Scarpignato C. Pathophysiology of NSAID-Associated Intestinal Lesions in the Rat: Luminal Bacteria and Mucosal Inflammation as Targets for Prevention. Front Pharmacol 2018; 9:1340. [PMID: 30555323 PMCID: PMC6281992 DOI: 10.3389/fphar.2018.01340] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) can damage the small intestine, mainly through an involvement of enteric bacteria. This study examined the pathophysiology of NSAID-associated intestinal lesions in a rat model of diclofenac-enteropathy and evaluated the effect of rifaximin on small bowel damage. Enteropathy was induced in 40-week old male rats by intragastric diclofenac (4 mg/kg BID, 14 days). Rifaximin (delayed release formulation) was administered (50 mg/kg BID) 1 h before the NSAID. At the end of treatments, parameters dealing with ileal damage, inflammation, barrier integrity, microbiota composition, and TLR-NF-κB-inflammasome pathway were evaluated. In addition, the modulating effect of rifaximin on NLRP3 inflammasome was tested in an in vitro cell system. Diclofenac induced intestinal damage and inflammation, triggering an increase in tissue concentrations of tumor necrosis factor and interleukin-1β, higher expression of TLR-2 and TLR-4, MyD88, NF-κB and activation of caspase-1. In addition, the NSAID decreased ileal occludin expression and provoked a shift of bacterial phyla toward an increase in Proteobacteria and Bacteroidetes abundance. All these changes were counterbalanced by rifaximin co-administration. This drug was also capable of increasing the proportion of Lactobacilli, a genus depleted by the NSAID. In LPS-primed THP-1 cells stimulated by nigericin (a model to study the NLRP3 inflammasome), rifaximin reduced IL-1β production in a concentration-dependent fashion, this effect being associated with inhibition of the up-stream caspase-1 activation. In conclusion, diclofenac induced ileal mucosal lesions, driving inflammatory pathways and microbiota changes. In conclusion, rifaximin prevents diclofenac-induced enteropathy through both anti-bacterial and anti-inflammatory activities.
Collapse
Affiliation(s)
- Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Carolina Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Erika Tirotta
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cecilia Renzulli
- Reasearch & Development Department, Alfasigma SpA, Bologna, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elena Piccoli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Gentile
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Federica Fulceri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Pablo Palazón-Riquelme
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | - Gloria López-Castejón
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carmelo Scarpignato
- Clinical Pharmacology & Digestive Pathophysiology Unit, Department of Clinical & Experimental Medicine, University of Parma, Parma, Italy
| |
Collapse
|
23
|
Kondo S, Mizuno S, Hashita T, Iwao T, Matsunaga T. Using human iPS cell-derived enterocytes as novel in vitro model for the evaluation of human intestinal mucosal damage. Inflamm Res 2018; 67:975-984. [PMID: 30317465 DOI: 10.1007/s00011-018-1193-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/23/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE AND DESIGN The primary component in gut mucus is mucin 2 (MUC2) secreted by goblet cells. Fluctuations in MUC2 expression are considered a useful indicator for evaluating mucosal damage and protective effect of various agents using animal studies. However, there are few in vitro studies evaluating mucosal damage using MUC2 as the indicator. Hence, we attempted to establish a novel in vitro model with MUC2 as the indicator for evaluating drug-induced mucosal damage and protective effect using enterocytes derived from human iPS cells. METHODS Compounds were added into enterocytes derived from human iPS cells, and MUC2 mRNA and protein expression levels were evaluated. Further, the effect of compounds on membrane permeability was investigated. RESULTS Nonsteroidal anti-inflammatory drugs were found to decrease MUC2 mRNA expression in enterocytes, whereas mucosal protective agents increased mRNA levels. Changes in MUC2 protein expression were consistent with those of mRNA. Additionally, our results indicated that indomethacin caused mucosal damage, affecting membrane permeability of the drug. Moreover, we observed protective effect of rebamipide against the indomethacin-induced permeability increase. CONCLUSIONS The developed model could facilitate evaluating drug-induced mucosal damage and protective effects of various agents and could impact drug development studies regarding pharmacological efficacy and safety.
Collapse
Affiliation(s)
- Satoshi Kondo
- Department of Drug Safety Research, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima, 771-0192, Japan
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Shota Mizuno
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| |
Collapse
|
24
|
Alabi QK, Akomolafe RO, Omole JG, Adefisayo MA, Ogundipe OL, Aturamu A, Sanya JO. Polyphenol-rich extract of Ocimum gratissimum leaves ameliorates colitis via attenuating colonic mucosa injury and regulating pro-inflammatory cytokines production and oxidative stress. Biomed Pharmacother 2018; 103:812-822. [PMID: 29684860 DOI: 10.1016/j.biopha.2018.04.071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
Colitis is a chronic inflammation and ulcer on the inner lining of the large intestine. For many centuries Ocimum gratissimum (OG) leaves have been used in folk medicine in Nigeria to treat inflammatory bowel diseases, however, to date, the anti-colitis effects of OG have not been scientifically proven. In this study we investigated the effects of polyphenol rich extract of Ocimum gratissimum (PREOG) leaf on colonic mucosa injury in colitis, its mechanisms, initial administration time and dosage. Dextran sodium sulfate (DSS)-induced rat colitis models was used. PREOG administration was initiated at 3 and 7 d after the model was established at doses of 200, 400 and 800 mg/kg for 7 d. 5-aminosalicylic acid (5-ASA) was used as a reference drug. The disease activity index (DAI), vascular permeability, markers of oxidative stress, granulocyte infiltration, inflammation and histopathological alteration were evaluated. Obvious colonic inflammation and mucosa injuries were observed in DSS-induced colitis groups. PREOG administration promoted repair of colonic mucosa injuries, attenuated inflammation, and decreased DAI scores in rats with colitis. PREOG also decreased the plasma concentrations of Interleukin-(IL)-6 and tumor necrosis factor (TNF)-α, and concentrations of myeloperoxidase, nitric oxide, cyclooxygenase-2 and malondialdehyde in the colon, and increased the plasma concentrations of IL-4 and IL-10 as well as the concentration of superoxide dismutase, catalase and reduced glutathione in the colon. The efficacy of PREOG was dosage dependent. In conclusion, OG repairs colonic mucosa injury in experimental colitis through its ant-inflammatory and ant-oxidant. Its efficacy related to initial administration time and dose.
Collapse
Affiliation(s)
- Quadri K Alabi
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria.
| | - Rufus O Akomolafe
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Joseph G Omole
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | - Modinat A Adefisayo
- Department of Physiology, Faculty of Basic Medical Sciences, University of Medical Sciences,Ondo State, Nigeria
| | - Olaofe L Ogundipe
- Department of Public Health and Community Medicine, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| | - Ayodeji Aturamu
- Health Center College of Education, Ikere Ekiti, Ekiti State, Nigeria
| | - Joseph O Sanya
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medicine, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| |
Collapse
|
25
|
Wang SY, Tao P, Hu HY, Yuan JY, Zhao L, Sun BY, Zhang WJ, Lin J. Effects of initiating time and dosage of Panax notoginseng on mucosal microvascular injury in experimental colitis. World J Gastroenterol 2017; 23:8308-8320. [PMID: 29307991 PMCID: PMC5743502 DOI: 10.3748/wjg.v23.i47.8308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of Panax notoginseng (PN) on microvascular injury in colitis, its mechanisms, initial administration time and dosage.
METHODS Dextran sodium sulfate (DSS)- or iodoacetamide (IA)-induced rat colitis models were used to evaluate and investigate the effects of ethanol extract of PN on microvascular injuries and their related mechanisms. PN administration was initiated at 3 and 7 d after the model was established at doses of 0.5, 1.0 and 2.0 g/kg for 7 d. The severity of colitis was evaluated by disease activity index (DAI). The pathological lesions were observed under a microscope. Microvessel density (MVD) was evaluated by immunohistochemistry. Vascular permeability was evaluated using the Evans blue method. The serum concentrations of cytokines, including vascular endothelial growth factor (VEGF)A121, VEGFA165, interleukin (IL)-4, IL-6, IL-10 and tumor necrosis factor (TNF)-α, were detected by enzyme-linked immunosorbent assay. Myeloperoxidase (MPO) and superoxide dismutase (SOD) were measured to evaluate the level of oxidative stress. Expression of hypoxia-inducible factor (HIF)-1α protein was detected by western blotting.
RESULTS Obvious colonic inflammation and injuries of mucosa and microvessels were observed in DSS- and IA-induced colitis groups. DAI scores, serum concentrations of VEGFA121, VEGFA165, VEGFA165/VEGFA121, IL-6 and TNF-α, and concentrations of MPO and HIF-1α in the colon were significantly higher while serum concentrations of IL-4 and IL-10 and MVD in colon were significantly lower in the colitis model groups than in the normal control group. PN promoted repair of injuries of colonic mucosa and microvessels, attenuated inflammation, and decreased DAI scores in rats with colitis. PN also decreased the serum concentrations of VEGFA121, VEGFA165, VEGFA165/VEGFA121, IL-6 and TNF-α, and concentrations of MPO and HIF-1α in the colon, and increased the serum concentrations of IL-4 and IL-10 as well as the concentration of SOD in the colon. The efficacy of PN was dosage dependent. In addition, DAI scores in the group administered PN on day 3 were significantly lower than in the group administered PN on day 7.
CONCLUSION PN repairs vascular injury in experimental colitis via attenuating inflammation and oxidative stress in the colonic mucosa. Efficacy is related to initial administration time and dose.
Collapse
Affiliation(s)
- Shi-Ying Wang
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ping Tao
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Hong-Yi Hu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jian-Ye Yuan
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lei Zhao
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Bo-Yun Sun
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wang-Jun Zhang
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
26
|
Horibe S, Tanahashi T, Kawauchi S, Mizuno S, Rikitake Y. Preventative Effects of Sodium Alginate on Indomethacin-induced Small-intestinal Injury in Mice. Int J Med Sci 2016; 13:653-63. [PMID: 27647994 PMCID: PMC5027183 DOI: 10.7150/ijms.16232] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/15/2016] [Indexed: 12/22/2022] Open
Abstract
Recent advances in diagnostic technologies have revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) can cause serious mucosal injury in the upper and lower gastrointestinal tract (including the small intestine). A drug to treat NSAID-induced small-intestinal injury (SII) is lacking. Sodium alginate is a soluble dietary fiber extracted from brown seaweed and its solution has been used as a hemostatic agent to treat gastrointestinal bleeding due to gastric ulcers. Whether sodium alginate has therapeutic effects on NSAID-induced SII and its mechanism of action are not known. Here, we investigated if administration of two forms (high-molecular-weight (HMW) and low-molecular-weight (LMW)) of sodium alginate could ameliorate indomethacin-induced SII. Pretreatment with HMW sodium alginate or LMW sodium alginate before indomethacin administration improved ulceration and the resultant intestinal shortening was associated with reduced histological severity of mucosal injury and ameliorated mRNA expression of inflammation-related molecules in the small intestine. We found that mRNAs of secretory Muc2 and membrane-associated Muc1, Muc3 and Muc4 were expressed in the small intestine. mRNA expression of Muc1-4 was increased in indomethacin-induced SII, and these increases were prevented by sodium alginate. Thus, administration of sodium alginate could be a therapeutic approach to prevent indomethacin-induced SII.
Collapse
Affiliation(s)
- Sayo Horibe
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Toshihito Tanahashi
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan;; Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Shoji Kawauchi
- Educational Center for Clinical Pharmacy, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Shigeto Mizuno
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan;; Endoscopy Department, Kindai University Nara Hospital, Ikoma 630-0293, Japan
| | - Yoshiyuki Rikitake
- Department of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan;; Division of Signal Transduction, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
27
|
Fornai M, Antonioli L, Pellegrini C, Colucci R, Sacco D, Tirotta E, Natale G, Bartalucci A, Flaibani M, Renzulli C, Ghelardi E, Blandizzi C, Scarpignato C. Small bowel protection against NSAID-injury in rats: Effect of rifaximin, a poorly absorbed, GI targeted, antibiotic. Pharmacol Res 2015; 104:186-96. [PMID: 26747402 DOI: 10.1016/j.phrs.2015.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/17/2015] [Accepted: 12/25/2015] [Indexed: 12/22/2022]
Abstract
Nonsteroidal anti-inflammatory drugs, besides exerting detrimental effects on the upper digestive tract, can also damage the small and large intestine. Although the underlying mechanisms remain unclear, there is evidence that enteric bacteria play a pivotal role. The present study examined the enteroprotective effects of a delayed-release formulation of rifaximin-EIR (R-EIR, 50mg/kg BID, i.g.), a poorly absorbed antibiotic with a broad spectrum of antibacterial activity, in a rat model of enteropathy induced by indomethacin (IND, 1.5mg/kg BID for 14 days) administration. R-EIR was administered starting 7 days before or in concomitance with IND administration. At the end of treatments, blood samples were collected to evaluate hemoglobin (Hb) concentration (as an index of digestive bleeding). Small intestine was processed for: (1) histological assessment of intestinal damage (percentage length of lesions over the total length examined); (2) assay of tissue myeloperoxidase (MPO) and TNF levels, as markers of inflammation; (3) assay of tissue malondialdehyde (MDA) and protein carbonyl concentrations, as an index of lipid and protein peroxidation, respectively; (4) evaluation of the major bacterial phyla. IND significantly decreased Hb levels, this effect being significantly blunted by R-EIR. IND also induced the occurrence of lesions in the jejunum and ileum. In both intestinal regions, R-EIR significantly reduced the percentage of lesions, as compared with rats receiving IND alone. Either the markers of inflammation and tissue peroxidation were significantly increased in jejunum and ileum from IND-treated rats. However, in rats treated with R-EIR, these parameters were not significantly different from those observed in controls. R-EIR was also able to counterbalance the increase in Proteobacteria and Firmicutes abundance induced by INDO. To summarize, R-EIR treatment significantly prevents IND-induced intestinal damage, this enteroprotective effect being associated with a decrease in tissue inflammation, oxidative stress and digestive bleeding as well as reversal of NSAID-induced alterations in bacterial population.
Collapse
Affiliation(s)
- Matteo Fornai
- Division of Pharmacology, Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Luca Antonioli
- Division of Pharmacology, Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Carolina Pellegrini
- Division of Pharmacology, Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Rocchina Colucci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Deborah Sacco
- Division of Pharmacology, Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Erika Tirotta
- Division of Pharmacology, Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Gianfranco Natale
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Alessia Bartalucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Marina Flaibani
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Cecilia Renzulli
- Department of Research & Development, Alfa Wassermann SpA, Via Ragazzi del'99, 5, 40133 Bologna, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 37, 56127 Pisa, Italy
| | - Corrado Blandizzi
- Division of Pharmacology, Department of Clinical & Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Carmelo Scarpignato
- Clinical Pharmacology & Digestive Pathophysiology Unit, Department of Clinical & Experimental Medicine, University of Parma, Via Gramsci 14, 43125 Parma, Italy.
| |
Collapse
|
28
|
Kuda T, Kosaka M, Hirano S, Kawahara M, Sato M, Kaneshima T, Nishizawa M, Takahashi H, Kimura B. Effect of sodium-alginate and laminaran on Salmonella Typhimurium infection in human enterocyte-like HT-29-Luc cells and BALB/c mice. Carbohydr Polym 2015; 125:113-9. [PMID: 25857966 DOI: 10.1016/j.carbpol.2015.01.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/23/2015] [Accepted: 01/24/2015] [Indexed: 02/07/2023]
Abstract
Brown algal polysaccharides such as alginate, polymers of uronic acids, and laminaran, beta-1,3 and 1,6-glucan, can be fermented by human intestinal microbiota. To evaluate the effects of these polysaccharides on infections caused by food poisoning pathogens, we investigated the adhesion and invasion of pathogens (Salmonella Typhimurium, Listeria monocytogenes and Vibrio parahaemolyticus) in human enterocyte-like HT-29-Luc cells and in infections caused in BALB/c mice. Both sodium Na-alginate and laminaran (0.1% each) inhibited the adhesion of the pathogens to HT-29-Luc cells by approximately 70-90%. The invasion of S. Typhimurium was also inhibited by approximately 70 and 80% by Na-alginate and laminaran, respectively. We observed that incubation with Na-alginate for 18 h increased the transepithelial electrical resistance of HT-29-Luc monolayer cells. Four days after inoculation with 7 log CFU/mouse of S. Typhimurium, the faecal pathogen count in mice that were not fed polysaccharides (control mice) was about 6.5 log CFU/g while the count in mice that were fed Na-alginate had decreased to 5.0 log CFU/g. The liver pathogen count, which was 4.1 log CFU/g in the control mice, was also decreased in mice that were fed Na-alginate. In contrast, the mice that were fed laminaran exhibited a more severe infection than that exhibited by control mice.
Collapse
Affiliation(s)
- Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan.
| | - Misa Kosaka
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Shino Hirano
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Miho Kawahara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Masahiro Sato
- Kaigen Pharma Co. Ltd., 1-25-18, Okusawa, Otaru 047-0013, Japan
| | - Tai Kaneshima
- Department of Food and Cosmetic Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Makoto Nishizawa
- Department of Food and Cosmetic Sciences, Tokyo University of Agriculture, Abashiri, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato City, Tokyo 108-8477, Japan
| |
Collapse
|