1
|
Marjot T, Armstrong MJ, Stine JG. Skeletal muscle and MASLD: Mechanistic and clinical insights. Hepatol Commun 2025; 9:e0711. [PMID: 40408301 DOI: 10.1097/hc9.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 05/25/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is intrinsically linked with widespread metabolic perturbations, including within skeletal muscle. Indeed, MASLD is associated with a range of skeletal muscle abnormalities, including insulin resistance, myosteatosis, and sarcopenia, which all converge on the liver to drive disease progression and adverse patient outcomes. This review explores the mechanistic links between skeletal muscle and MASLD, including the role of abnormal glycemic control, systemic inflammation, and disordered myokine signaling. In turn, we discuss how intrinsic liver pathology can feed back to further exacerbate poor skeletal muscle health. Given the central importance of skeletal muscle in MASLD pathogenesis, it offers clinicians an opportunity to intervene for therapeutic benefit. We, therefore, summarize the role of nutrition and physical activity on skeletal muscle mass, quality, and metabolic function and discuss the knock-on effect this has on the liver. An awareness of these treatment strategies is particularly important in the era of effective pharmacological and surgical weight loss interventions, which can be associated with the development of sarcopenia. Finally, we highlight a number of promising drug agents in the clinical trial pipeline that specifically target skeletal muscle in an attempt to improve metabolic and physical functioning.
Collapse
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, UK
- Translational Gastroenterology and Liver Unit (TGLU), Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Matthew J Armstrong
- Liver Unit, Queen Elizabeth University Hospital Birmingham, Birmingham, UK
- Birmingham NIHR Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Jonathan G Stine
- Department of Medicine, Division of Gastroenterology and Hepatology, Penn State Health-Milton S. Hershey Medical Centre, Hershey, Pennsylvania, USA
| |
Collapse
|
2
|
Medeiros DG, Ferreira LF, Lamp JDS, Telles da Rosa LH. The impact of resistance training in patients diagnosed with metabolic dysfunction-associated steatotic liver disease: a systematic review. Eur J Gastroenterol Hepatol 2025; 37:129-136. [PMID: 39589803 PMCID: PMC11658022 DOI: 10.1097/meg.0000000000002887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Resistance training, as a modality of physical exercise, has been recognized as a fundamental pillar in the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Current reviews, however, have not given due priority to the specific effects of this type of training on hepatic and clinical markers in individuals with MASLD. This study aimed to compile the available evidence on the impact of resistance training on hepatic and clinical parameters in individuals diagnosed with MASLD. To this end, a systematic search was conducted in the PubMed, Lilacs, Embase, Cochrane, SciELO, and Pedro databases, as well as a manual search, covering the period from January 2011 to December 2023. Randomized clinical trials that evaluated liver fat, insulin resistance, and liver enzymes in individuals with MASLD who were exclusively subjected to resistance training interventions were selected. This study is registered with International Prospective Register of Systematic Reviews (PROSPERO) (CRD4202236638) and the risk of bias in the eligible studies was assessed using ROB 2. Six studies were included, totaling 232 adult participants. Resistance training resulted in a significant reduction in liver fat ( P < 0.001), liver enzymes ( P < 0.05), and insulin resistance ( P < 0.05) in individuals in the strength training group. Furthermore, greater adherence to resistance training (>90%) was observed compared to aerobic training. It is concluded that resistance training can be an easily accepted and consistent option for adults with MASLD, playing an important role in improving the clinical and hepatic markers of these individuals.
Collapse
Affiliation(s)
- Daniele Gorski Medeiros
- Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis Fernando Ferreira
- Postgraduate Program in Medicine: Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- School of Electronics, Electrical Engineering and Computer Sciences, Queens University of Belfast (QUB), Belfast, Northern Ireland, United Kingdom
| | - Jessica da Silva Lamp
- Postgraduate Program in Human Movement Sciences, Federal University of Rio Grande do Sul
| | - Luis Henrique Telles da Rosa
- Department of Physiotherapy, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Yu C, Ding C, Yu C, Bao H, Cheng X. Decoding the fatty liver-hyperuricemia link in the obese and nonobese hypertensive patients: insights from a cohort study. Sci Rep 2024; 14:29525. [PMID: 39604465 PMCID: PMC11603371 DOI: 10.1038/s41598-024-80895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic-dysfunction-associated fatty liver disease (MAFLD) and serum uric acid are closely related to cardiovascular and cerebrovascular diseases. However, the causal association between MAFLD and serum uric acid remains unclear. A total of 3417 patients without hyperuricemia were included in the final analysis. MAFLD was defined as fatty liver index (FLI) ≥ 30. Multivariate Cox regression analysis was used to explore the association between FLI and new-onset hyperuricemia. Restricted cubic splines and threshold saturation effect analysis were used to detect nonlinear associations. The mean age was 62.8 ± 8.3 year, and 68.5% were women. A total of 738 (21.6%) hypertensive patients developed new-onset hyperuricemia, 388 (11.4%) new-onset hyperuricemia10 and 190 (5.6%) new-onset hyperuricemia20 during the 4-year midday follow-up period. In the fully adjusted model, compared with the Q1 (FLI ≤ 8.5) group, the risk of hyperuricemia increased by 56% (HR: 1.56; 95% CI: 1.02, 2.38) in the Q4 (FLI > 39.4) group, new-onset hyperuricemia10 increased by 108% (HR: 2.08; 95% CI: 1.15, 3.78), and new-onset hyperuricemia20 increased by 156% (HR: 2.56; 95% CI: 1.11, 5.94), respectively. Saturation effects showed a nonlinear association between FLI and new-onset hyperuricemia (p for log likelihood ratio test < 0.05). Subgroup analysis and stratified analysis showed that there had a significantly higher risk of new-onset hyperuricemia in the patients with normal body mass index (< 24 kg/m2) (p for interaction: 0.018) and non-central obesity (p for interaction: 0.024). MAFLD is an independent risk factor for hyperuricemia in hypertensive patients, especially in patients with normal body mass index and non-central obesity.
Collapse
Affiliation(s)
- Chuanli Yu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
| | - Congcong Ding
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
| | - Chao Yu
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
| | - Huihui Bao
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China.
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China.
| | - Xiaoshu Cheng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Huang M, Yang J, Wang Y, Wu J. Comparative efficacy of different exercise modalities on metabolic profiles and liver functions in non-alcoholic fatty liver disease: a network meta-analysis. Front Physiol 2024; 15:1428723. [PMID: 39376897 PMCID: PMC11457013 DOI: 10.3389/fphys.2024.1428723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Objective Research evidence suggests that exercise is a potent therapeutic strategy for non-alcoholic fatty liver disease (NAFLD). Many investigations have delved into the curative potential of diverse exercise regimens on NAFLD. This investigation synthesizes findings from randomized controlled trials via a network meta-analysis to evaluate the efficacy of exercise-based interventions on NAFLD. Methods We conducted a search across five electronic databases (Web of Science, EMBASE, PubMed, SCOPUS, and CNKI)to identify randomized controlled trials (RCTs) comparing the effects of different exercise modalities on metabolic profiles and liver functions in patients with NAFLD. The literature search was comprehensive up to 15, December 2023. The selected studies were subjected to a rigorous quality appraisal and risk of bias analysis in accordance with the Cochrane Handbook's guidelines, version 5.1.0. We employed Stata/MP 17 for the network meta-analysis, presenting effect sizes as standardized mean differences (SMD). Results This study aggregated results from 28 studies, involving a total of 1,606 participants. The network meta-analysis revealed that aerobic exercise was the most effective intervention for improving BMI in patients with NAFLD, demonstrating a significant decrease in BMI (-0.72, 95%CI: -0.98 to -0.46; p < 0.05; Surface Under the Cumulative Ranking (SUCRA) = 79.8%). HIIT was the top intervention for enhancing HDL-C (0.12, 95% CI: 0.04 to 0.20; p < 0.05; SUCRA = 76.1%). Resistance exercise was the most effective for reducing LDL-C (-0.20, 95% CI: -0.33 to -0.06; p < 0.05; SUCRA = 69.7%). Mind-body exercise showed superior effectiveness in improving TC (-0.67, 95% CI: -1.10 to -0.24; p < 0.05; SUCRA = 89.7%), TG = -0.67, 95% CI: -1.10 to -0.24; p < 0.05; SUCRA = 99.6%), AST (-8.07, 95% CI: -12.88 to -3.25; p < 0.05; SUCRA = 76.1%), ALT (-12.56, 95% CI: -17.54 to -7.58; p < 0.05; SUCRA = 99.5%), and GGT (-13.77, 95% CI: -22.00 to -5.54; p < 0.05; SUCRA = 81.8%). Conclusion This network meta-analysis demonstrates that exercise interventions positively affect various metabolic profiles and liver functions in NAFLD patients. Mind-body exercises are particularly effective, surpassing other exercise forms in improving metabolic profiles and liver functions. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/, identifier registration number CRD42024526332.
Collapse
Affiliation(s)
- Mingming Huang
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Jiafa Yang
- School of Arts and Sports, Dong-A University, Busan, Republic of Korea
| | - Yihao Wang
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Jian Wu
- School of Exercise Science and Health, Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
5
|
Varmazyar I, Monazzami AA, Moradi M, McAinch AJ. Effects of 12-weeks resistance training and vitamin E supplementation on aminotransferases, CTRP-2, and CTRP-9 levels in males with nonalcoholic fatty liver disease: a double-blind, randomized trial. BMC Sports Sci Med Rehabil 2024; 16:185. [PMID: 39232815 PMCID: PMC11373101 DOI: 10.1186/s13102-024-00972-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) involves excessive liver fat accumulation and is closely linked to oxidative stress, which contributes to liver inflammation and damage. This study aimed to evaluate how interventions such as resistance training (RT) and vitamin E supplementation (VES) can modulate markers of NAFLD and key proteins regulating glucose and lipid metabolism, such as C1Q/TNF-related proteins (CTRPs). METHODS Forty participants with NAFLD (mean age: 32.4 ± 8.2 years) were randomly assigned to one of four groups for 12 weeks: placebo (PLB), VES, PLB + RT, and VES + RT. VES was administered at 800 IU/day in a double-blind manner. The RT regimen included eight exercises at 60-80% of one-repetition maximum (1RM), with three sets of 8-12 repetitions, performed three times per week. Pre- and post-intervention assessments included body composition, aspartate aminotransferase (AST), alanine aminotransferase (ALT), lipid profile, glycemic control, CTRP-2, CTRP-9, and 1RM evaluations. RESULTS Following the interventions, there was a significant improvement in body composition, lipid profile, glycemic control, and 1RM indices in the exercise groups compared to non-exercise groups (p < 0.05). AST and ALT levels decreased in all groups (p < 0.05) compared to the PLB group. There was also a significant difference between the VES + RT group and both the VES and PLB + RT groups (p < 0.05). CTRP-2 and CTRP-9 levels decreased in the exercise groups compared to non-exercise groups (p < 0.05), and their changes showed a marked correlation with body composition, lipid profile, and glycemic control indices (p < 0.05). CONCLUSIONS This study highlights the benefits of RT on various health parameters among NAFLD patients. While adding VES to RT resulted in greater decreases in aminotransferases, it did not provide further improvements in other variables. Additionally, enhancements in body composition, lipid profile, and glycemic control indices were possibly associated with decreased levels of CTRPs. TRIAL REGISTRATION Registered retrospectively in the Iranian Registry of Clinical Trials (IRCT20220601055056N1) on December 21, 2023. Access at https://irct.behdasht.gov.ir/trial/69231 .
Collapse
Affiliation(s)
- Irfan Varmazyar
- Department of Sport Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Amir Abbas Monazzami
- Department of Sport Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Mozhgan Moradi
- Department of Internal Medicine, Faculty of Medicine, University of Medical Sciences, Kermanshah, Iran
| | - Andrew J McAinch
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
6
|
Mambrini SP, Grillo A, Colosimo S, Zarpellon F, Pozzi G, Furlan D, Amodeo G, Bertoli S. Diet and physical exercise as key players to tackle MASLD through improvement of insulin resistance and metabolic flexibility. Front Nutr 2024; 11:1426551. [PMID: 39229589 PMCID: PMC11370663 DOI: 10.3389/fnut.2024.1426551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) has emerged as a prevalent health concern, encompassing a wide spectrum of liver-related disorders. Insulin resistance, a key pathophysiological feature of MASLD, can be effectively ameliorated through dietary interventions. The Mediterranean diet, rich in whole grains, fruits, vegetables, legumes, and healthy fats, has shown promising results in improving insulin sensitivity. Several components of the Mediterranean diet, such as monounsaturated fats and polyphenols, exert anti-inflammatory and antioxidant effects, thereby reducing hepatic steatosis and inflammation. Furthermore, this dietary pattern has been associated with a higher likelihood of achieving MASLD remission. In addition to dietary modifications, physical exercise, particularly resistance exercise, plays a crucial role in enhancing metabolic flexibility. Resistance exercise training promotes the utilization of fatty acids as an energy source. It enhances muscle glucose uptake and glycogen storage, thus reducing the burden on the liver to uptake excess blood glucose. Furthermore, resistance exercise stimulates muscle protein synthesis, contributing to an improved muscle-to-fat ratio and overall metabolic health. When implemented synergistically, the Mediterranean diet and resistance exercise can elicit complementary effects in combating MASLD. Combined interventions have demonstrated additive benefits, including greater improvements in insulin resistance, increased metabolic flexibility, and enhanced potential for MASLD remission. This underscores the importance of adopting a multifaceted approach encompassing dietary modifications and regular physical exercise to effectively manage MASLD. This narrative review explores the biological mechanisms of diet and physical exercise in addressing MASLD by targeting insulin resistance and decreased metabolic flexibility.
Collapse
Affiliation(s)
- Sara Paola Mambrini
- Nutrition Science Research Lab, Ospedale S. Giuseppe, Istituto Auxologico Italiano IRCCS, Piancavallo, Italy
| | | | - Santo Colosimo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
- PhD School of Nutrition Science, University of Milan, Milan, Italy
| | - Francesco Zarpellon
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Giorgia Pozzi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Davide Furlan
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | - Simona Bertoli
- Nutrition Science Research Lab, Ospedale S. Giuseppe, Istituto Auxologico Italiano IRCCS, Piancavallo, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
7
|
Wang H, Ma Q, Chen Y, Luo L, Ye J, Zhong B. Optimized strategy among diet, exercise, and pharmacological interventions for nonalcoholic fatty liver disease: A network meta-analysis of randomized controlled trials. Obes Rev 2024; 25:e13727. [PMID: 38509775 DOI: 10.1111/obr.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Emerging treatment methods, including exercise, diet, and drugs, for nonalcoholic fatty liver disease have been proposed. However, the differences in their efficacy have not been determined. We aimed to compare the effects of these treatments excluding surgery via a systematic review and network meta-analysis of randomized controlled trials. DATA SOURCE The data sources included PubMed, Embase, Web of Science and Cochrane up to February 1st, 2023. The endpoints consisted of body mass index (BMI), serum markers of metabolism and liver injury markers, liver fat content, and stiffness. RESULTS A total of 174 studies with 10,183 patients were included in this meta-analysis. In terms of improving BMI, Pan-agonist of peroxisome proliferator-activated receptors (PPAR) is the best treatment with the highest SUCRA (surface under the cumulative ranking) of 84.8% (mean = -3.40, 95% CI -5.55, -1.24) by the comparative effectiveness ranking. GLP-1 (glucagon-like peptide-1) has the best effect in improving the liver fat content based on the MRI-PDFF, steatosis score (SUCRA 99.7%, mean = -2.19, 95% CI -2.90, -1.48) and ballooning score (SUCRA 61.2%, mean = -0.82, 95% CI -4.46, 2.83). CONCLUSIONS Pan-agonist of PPAR was the most efficacious regimen in lowering BMIs, whereas GLP-1R agonists achieved the highest efficacy of steatosis improvement in this network meta-analysis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Qianqian Ma
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Youpeng Chen
- Department of Infectious Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ling Luo
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bihui Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Zeng J, Fan J, Francque SM. Therapeutic management of metabolic dysfunction associated steatotic liver disease. United European Gastroenterol J 2024; 12:177-186. [PMID: 38193865 PMCID: PMC10954426 DOI: 10.1002/ueg2.12525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024] Open
Abstract
The incidence and prevalence of non-alcoholic fatty liver disease (NAFLD) have been steadily increasing worldwide, with a huge societal and economic burden. Recently, NAFLD and non-alcoholic steatohepatitis have been renamed and redefined as metabolic dysfunction associated steatotic liver disease (MASLD) and steatohepatitis (Metabolic Dysfunction Associated Steatohepatitis (MASH)), which result from an imbalance between metabolic and inflammatory stress (mainly as a consequence of adipose tissue dysfunction and insulin resistance) and the defence and repair mechanisms of the steatotic liver. Once MASLD progresses to end-stage of liver disease, treatment efficacy becomes limited and may require liver transplantation. Early detection and intervention are crucial. Lifestyle modification is consequently the cornerstone of its management. Timely consideration of bariatric surgeries should be given to patients meeting specific criteria. A multidisciplinary approach is warranted, starting from the concept that MASLD/MASH is at the centre of the cardiovascular-liver-metabolic syndrome. In some cases, pharmacological treatment can complement lifestyle modification. Several drugs used to treat the cardiometabolic co-morbidities have some potential efficacy in slowing Down disease progression, and some have demonstrated efficacy on histological endpoints that are likely to translate into long-term clinical benefits. Optimising the use of these drugs within their licenced indications is thus paramount for patients with MASLD. Several MASH-specific drugs are on the horizon and are likely to enrich our therapeutic armamentarium in the near future, particularly in non-cirrhotic stages of the disease. Much work still needs to be done to understand the specific features of MASH cirrhosis and develop efficacious treatments for this disease stage.
Collapse
Affiliation(s)
- Jing Zeng
- Department of GastroenterologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Lab of Pediatric Gastroenterology and NutritionShanghaiChina
| | - Jian‐Gao Fan
- Department of GastroenterologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Lab of Pediatric Gastroenterology and NutritionShanghaiChina
| | - Sven M. Francque
- Department of Gastroenterology HepatologyAntwerp University HospitalEdegemBelgium
- InflaMed Centre of ExcellenceLaboratory for Experimental Medicine and PaediatricsTranslational Sciences in Inflammation and ImmunologyFaculty of Medicine and Health SciencesUniversity of AntwerpWilrijkBelgium
| |
Collapse
|
9
|
Wang J, Zeng L, Hong C, Cui H, Wang W, Zhu H, Li Q, Li Y, Li R, He J, Zhu H, Liu L, Xiao L. Lower creatinine to cystatin C ratio is associated with an increased risk of MASLD: A cross-sectional and prospective study of 368,634 UK Biobank participants. Clin Endocrinol (Oxf) 2024; 100:116-123. [PMID: 38146598 DOI: 10.1111/cen.14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE Metabolic dysfunction-associated steatotic liver disease (MASLD) affects many populations, and screening out the high-risk populations at an early stage is a challenge. As a sarcopenia index, the relationship between creatinine to cystatin C ratio (CCR) and MASLD remains unclear. This cross-sectional, prospective study aimed to explore the relationship between CCR and MASLD. Design Firstly, explored the correlation between CCR and MASLD in cross-sectional analyses. Then excluded the population with baseeline diagnosis of MASLD and analyzed the association with baseline CCR levels and the onset of MASLD in the population with available follow-up data. Univariate and multivariate logistic regression analyses were used to calculate odds ratios (ORs) to evaluate the association between CCR levels and MASLD. PATIENTS AND MEASUREMENTS This study included 368,634 participants from the UK Biobank for cross-sectional and prospective analyses. The demographic characteristics and laboratory measurements of all participants were obtained from the UK Biobank. MASLD was diagnosed according to the multi-society consensus nomenclature. Hepatic steatosis was defined as FLI ≥60. RESULTS We grouped the study participants according to CCR tertiles. In cross-sectional analyses, participants in CCR tertile 1 had the highest MASLD risk (OR: 1.070, 95% CI: 1.053-1.088, p < .001). And the similar association was observed in the prospective analyses (CCR tertile 1 OR: 1.340, 95% CI: 1.077-1.660, p = .009; CCR tertile 2 OR: 1.217, 95% CI: 1.021-1.450, p = .029, respectively). After stratification by gender, the significant association between CCR and the onset of MASLD was only observed in males (CCR tertile 1 OR: 1.639, 95% CI: 1.160-2.317, p = .005; CCR tertile 2 OR: 1.322, 95% CI: 1.073-1.628, p = .005, respectively). CONCLUSION Our results indicated that lower CCR was significantly associated with higher risk of MASLD, based on which predictive models can be developed to screen populations at high risk of developing MASLD.
Collapse
Affiliation(s)
- Jiaren Wang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Zeng
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chang Hong
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Cui
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weizhen Wang
- Department of Ultrasound, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongbo Zhu
- Department of Medical Oncology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Qimei Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruining Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingzhe He
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Zhu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lushan Xiao
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Big Data Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Habibullah M, Jemmieh K, Ouda A, Haider MZ, Malki MI, Elzouki AN. Metabolic-associated fatty liver disease: a selective review of pathogenesis, diagnostic approaches, and therapeutic strategies. Front Med (Lausanne) 2024; 11:1291501. [PMID: 38323033 PMCID: PMC10845138 DOI: 10.3389/fmed.2024.1291501] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Background Metabolic associated fatty liver disease (MAFLD) is a novel terminology introduced in 2020 to provide a more accurate description of fatty liver disease associated with metabolic dysfunction. It replaces the outdated term nonalcoholic fatty liver disease (NAFLD) and aims to improve diagnostic criteria and tailored treatment strategies for the disease. NAFLD, the most prevalent liver disease in western industrialized nations, has been steadily increasing in prevalence and is associated with serious complications such as cirrhosis and hepatocellular carcinoma. It is also linked to insulin resistance syndrome and cardiovascular diseases. However, current studies on NAFLD have limitations in meeting necessary histological endpoints. Objective This literature review aims to consolidate recent knowledge and discoveries concerning MAFLD, integrating the diverse aspects of the disease. Specifically, it focuses on analyzing the diagnostic criteria for MAFLD, differentiating it from NAFLD and alcoholic fatty liver disease (AFLD), and exploring the epidemiology, clinical manifestations, pathogenesis, and management approaches associated with MAFLD. The review also explores the associations between MAFLD and other conditions. It discusses the heightened mortality risk associated with MAFLD and its link to chronic kidney disease (CKD), showing that MAFLD exhibits enhanced diagnostic accuracy for identifying patients with CKD compared to NAFLD. The association between MAFLD and incident/prevalent CKD is supported by cohort studies and meta-analyses. Conclusion This literature review highlights the importance of MAFLD as a distinct terminology for fatty liver disease associated with metabolic dysfunction. The review provides insights into the diagnostic criteria, associations with CKD, and management approaches for MAFLD. Further research is needed to develop more accurate diagnostic tools for advanced fibrosis in MAFLD and to explore the underlying mechanisms linking MAFLD with other conditions. This review serves as a valuable resource for researchers and healthcare professionals seeking a comprehensive understanding of MAFLD.
Collapse
Affiliation(s)
| | - Khaleed Jemmieh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Amr Ouda
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | | | - Abdel-Naser Elzouki
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Internal Medicine Department, Hamad General Hospital, Doha, Qatar
- Weill Cornell Medical Qatar, Doha, Qatar
| |
Collapse
|
11
|
Keating SE, Sabag A, Hallsworth K, Hickman IJ, Macdonald GA, Stine JG, George J, Johnson NA. Exercise in the Management of Metabolic-Associated Fatty Liver Disease (MAFLD) in Adults: A Position Statement from Exercise and Sport Science Australia. Sports Med 2023; 53:2347-2371. [PMID: 37695493 PMCID: PMC10687186 DOI: 10.1007/s40279-023-01918-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/12/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most prevalent chronic liver disease worldwide, affecting 25% of people globally and up to 80% of people with obesity. MAFLD is characterised by fat accumulation in the liver (hepatic steatosis) with varying degrees of inflammation and fibrosis. MAFLD is strongly linked with cardiometabolic disease and lifestyle-related cancers, in addition to heightened liver-related morbidity and mortality. This position statement examines evidence for exercise in the management of MAFLD and describes the role of the exercise professional in the context of the multi-disciplinary care team. The purpose of these guidelines is to equip the exercise professional with a broad understanding of the pathophysiological underpinnings of MAFLD, how it is diagnosed and managed in clinical practice, and to provide evidence- and consensus-based recommendations for exercise therapy in MAFLD management. The majority of research evidence indicates that 150-240 min per week of at least moderate-intensity aerobic exercise can reduce hepatic steatosis by ~ 2-4% (absolute reduction), but as little as 135 min/week has been shown to be effective. While emerging evidence shows that high-intensity interval training (HIIT) approaches may provide comparable benefit on hepatic steatosis, there does not appear to be an intensity-dependent benefit, as long as the recommended exercise volume is achieved. This dose of exercise is likely to also reduce central adiposity, increase cardiorespiratory fitness and improve cardiometabolic health, irrespective of weight loss. Resistance training should be considered in addition to, and not instead of, aerobic exercise targets. The information in this statement is relevant and appropriate for people living with the condition historically termed non-alcoholic fatty liver disease (NAFLD), regardless of terminology.
Collapse
Affiliation(s)
- Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Room 534, Bd 26B, St Lucia, Brisbane, QLD, 4067, Australia.
| | - Angelo Sabag
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia
| | - Kate Hallsworth
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Liver Unit, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ingrid J Hickman
- Department of Nutrition and Dietetics, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
| | - Graeme A Macdonald
- Faculty of Medicine, PA-Southside Clinical Unit, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Public Health Sciences, The Pennsylvania State University- College of Medicine, Hershey, PA, USA
- Liver Center, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
- Cancer Institute, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research and Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Nathan A Johnson
- Faculty of Medicine and Health, Discipline of Exercise and Sport Science, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
12
|
Jangjo-Borazjani S, Dastgheib M, Kiyamarsi E, Jamshidi R, Rahmati-Ahmadabad S, Helalizadeh M, Iraji R, Cornish SM, Mohammadi-Darestani S, Khojasteh Z, Azarbayjani MA. Effects of resistance training and nigella sativa on type 2 diabetes: implications for metabolic markers, low-grade inflammation and liver enzyme production. Arch Physiol Biochem 2023; 129:913-921. [PMID: 33612031 DOI: 10.1080/13813455.2021.1886117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 01/08/2023]
Abstract
CONTEXT Proper nutrition and exercise are effective strategies to improve overall metabolic health in diabetic patients. OBJECTIVE This study evaluated the effects of Nigella sativa (NS) supplementation during resistance training (RT) on some biochemical variables in type 2 diabetes patients. METHODS Forty patients were assigned to groups: RT + NS (RN), NS, RT + placebo (RP), and control (CO). RT was performed and NS was consumed for 8 weeks. Blood samples were collected at rest immediately before and after the 8 week intervention. RESULTS RT or NS by themselves reduced HOMA-IR, insulin, glucose, TG, TC, LDL, ESR, CRP, AST, ALT and ALP, and increased HDL and HOMA-S. The combination of RT and NS, rather than each intervention alone, had significant effects on reduction of HOMA-IR, insulin, ESR and CRP as well as increases in HDL, HOMA-β/S. CONCLUSION RT combined with NS is sometimes a better strategy compared to single interventions for improving diabetes related biomarkers in type 2 diabetic patients.
Collapse
Affiliation(s)
- Soheila Jangjo-Borazjani
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Maryam Dastgheib
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Efat Kiyamarsi
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Roghayeh Jamshidi
- Department of Physical Education and Sport Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | | | - Masoumeh Helalizadeh
- Department of Exercise Physiology, Sport Medicine Research Center, Sport Sciences Research Institute, Tehran, Iran
| | - Roya Iraji
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Stephen M Cornish
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Canada
| | | | - Zohreh Khojasteh
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
13
|
Damasceno de Lima R, Fudoli Lins Vieira R, Rosetto Muñoz V, Chaix A, Azevedo Macedo AP, Calheiros Antunes G, Felonato M, Rosseto Braga R, Castelo Branco Ramos Nakandakari S, Calais Gaspar R, Ramos da Silva AS, Esper Cintra D, Pereira de Moura L, Mekary RA, Rochete Ropelle E, Pauli JR. Time-restricted feeding combined with resistance exercise prevents obesity and improves lipid metabolism in the liver of mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2023; 325:E513-E528. [PMID: 37755454 PMCID: PMC10864020 DOI: 10.1152/ajpendo.00129.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a condition characterized by the accumulation of fat in the liver, is estimated to be the most common liver disease worldwide. Obesity is a major risk factor and contributor, and, accordingly, weight loss can improve NAFLD. Previous studies in preclinical models of diet-induced obesity and fatty liver disease have shown the independent benefits of resistance exercise training (RT) and time-restricted feeding (TRF) in preventing weight gain and hepatic build-up of fat. Here, we tested the combined effect of TRF and RT on obesity and NAFLD in mice fed a high-fat diet. Our results showed that both TRF-8-h food access in the active phase-and RT-consisting of three weekly sessions of ladder climbing-attenuated body weight gain, improved glycemic homeostasis, and decreased the accumulation of lipids in the liver. TRF combined with RT improved the respiratory exchange rate, energy expenditure, and mitochondrial respiration in the liver. Furthermore, gene expression analysis in the liver revealed lower mRNA expression of lipogenesis and inflammation genes along with increased mRNA of fatty acid oxidation genes in the TRF + RT group. Importantly, combined TRF + RT was shown to be more efficient in preventing obesity and metabolic disorders. In conclusion, TRF and RT exert complementary actions compared with isolated interventions, with significant effects on metabolic disorders and NAFLD in mice.NEW & NOTEWORTHY Whether time-restricted feeding (TRF) combined with resistance exercise training (RT) may be more efficient compared with these interventions alone is still unclear. We show that when combined with RT, TRF provided additional benefits, being more effective in increasing energy expenditure, preventing weight gain, and regulating glycemic homeostasis than each intervention alone. Thus, our results demonstrate that TRF and RT have complementary actions on some synergistic pathways that prevented obesity and hepatic liver accumulation.
Collapse
Affiliation(s)
- Robson Damasceno de Lima
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Renan Fudoli Lins Vieira
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Vitor Rosetto Muñoz
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Ana Paula Azevedo Macedo
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Gabriel Calheiros Antunes
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Maíra Felonato
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Renata Rosseto Braga
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | | | - Rafael Calais Gaspar
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
| | - Adelino Sanchez Ramos da Silva
- Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, and Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Dennys Esper Cintra
- Laboratory of Nutritional Genomics (LabGeN), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Rania A Mekary
- Massachusetts College of Pharmacy and Health Sciences (MCPHS) University, Boston, Massachusetts, United States
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise (LaBMEx), University of Campinas (UNICAMP), Limeira, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| |
Collapse
|
14
|
Younossi ZM, Zelber-Sagi S, Henry L, Gerber LH. Lifestyle interventions in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2023; 20:708-722. [PMID: 37402873 DOI: 10.1038/s41575-023-00800-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a dynamic chronic liver disease that develops in close association with metabolic irregularities. Between 2016 and 2019, the global prevalence among adults was reported as 38% and among children and adolescents it was about 10%. NAFLD can be progressive and is associated with increased mortality from cardiovascular disease, extrahepatic cancers and liver complications. Despite these numerous adverse outcomes, no pharmacological treatments currently exist to treat nonalcoholic steatohepatitis, the progressive form of NAFLD. Therefore, the main treatment is the pursuit of a healthy lifestyle for both children and adults, which includes a diet rich in fruits, nuts, seeds, whole grains, fish and chicken and avoiding overconsumption of ultra-processed food, red meat, sugar-sweetened beverages and foods cooked at high heat. Physical activity at a level where one can talk but not sing is also recommended, including leisure-time activities and structured exercise. Avoidance of smoking and alcohol is also recommended. Policy-makers, community and school leaders need to work together to make their environments healthy by developing walkable and safe spaces with food stores stocked with culturally appropriate and healthy food items at affordable prices as well as providing age-appropriate and safe play areas in both schools and neighbourhoods.
Collapse
Affiliation(s)
- Zobair M Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA.
- Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, VA, USA.
- Inova Medicine, Inova Health System, Falls Church, VA, USA.
| | | | - Linda Henry
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
- Inova Medicine, Inova Health System, Falls Church, VA, USA
| | - Lynn H Gerber
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
- Inova Medicine, Inova Health System, Falls Church, VA, USA
| |
Collapse
|
15
|
Wen J, Zhou H, Zeng L. Comment on: Effect of exercise-based interventions in nonalcoholic fatty liver disease: A systematic review with meta-analysis. Dig Liver Dis 2023; 55:1573. [PMID: 37586910 DOI: 10.1016/j.dld.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Affiliation(s)
- Juanjuan Wen
- Department of Spleen and Gastroenterology, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - Haiyan Zhou
- Department of Spleen and Gastroenterology, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - Lirong Zeng
- Department of Spleen and Gastroenterology, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China.
| |
Collapse
|
16
|
Al Ozairi E, Alsaeed D, Al Roudhan D, Jalali M, Mashankar A, Taliping D, Abdulla A, Gill JMR, Sattar N, Welsh P, Gray SR. The effect of home-based resistance exercise training in people with type 2 diabetes: A randomized controlled trial. Diabetes Metab Res Rev 2023; 39:e3677. [PMID: 37330638 DOI: 10.1002/dmrr.3677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 06/19/2023]
Abstract
AIMS To evaluate the effects of pragmatic home-based resistance exercise training on glycated haemoglobin (HbA1c) as well as muscle strength and body composition in people with type 2 diabetes. MATERIALS AND METHODS People with type 2 diabetes were randomized (1:1) to usual care or usual care plus home-based resistance exercise for 32 weeks. The changes in HbA1c, body composition, physical function, quality of life, continuous glucose monitoring and liver fat were compared by randomized group using linear regression. RESULTS This study recruited 120 participants (female: n = 46 [38%], age 60.2 (9.4) years, BMI 31.1 (5.4) kg.m-2 ), 64 to intervention and 56 to usual care. Intention to treat analysis revealed no effect on HbA1c (difference in difference: -0.4 mmol/mol, 95% confidence interval [CI]: -3.26, 2.47; p = 0.78) but the intervention increased the number of push-ups (3.6 push-ups, 95% CI: 0.8, 6.4), arm lean mass (116 g, 95% CI: 6, 227) and leg lean mass (438 g, 95% CI 65, 810) and decreased liver fat (-1.27%, 95% CI -2.17, -0.38), with no differences in other outcomes. Per-protocol analysis revealed similar results. CONCLUSIONS Home-based resistance exercise is unlikely to lower HbA1c in people with type 2 diabetes but may be of benefit for maintaining muscle mass and function and reducing liver fat.
Collapse
Affiliation(s)
- Ebaa Al Ozairi
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Medicine, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Dalal Alsaeed
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dherar Al Roudhan
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohammed Jalali
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Anant Mashankar
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Dennis Taliping
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Amal Abdulla
- Clinical Research Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jason M R Gill
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Paul Welsh
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Stuart R Gray
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Hadefi A, Arvanitakis M, Trépo E, Zelber‐Sagi S. Dietary strategies in non-alcoholic fatty liver disease patients: From evidence to daily clinical practice, a systematic review. United European Gastroenterol J 2023; 11:663-689. [PMID: 37491835 PMCID: PMC10493364 DOI: 10.1002/ueg2.12443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/12/2023] [Indexed: 07/27/2023] Open
Abstract
Lifestyle modification comprising calorie restriction (CR) and increased physical activity enabling weight loss is the first-line of treatment for non-alcoholic fatty liver disease (NAFLD). However, CR alone is not optimal and evidence suggests that dietary pattern and composition are also critical in NAFLD management. Accordingly, high consumption of red and processed meat, saturated fat, added sugar, and sweetened beverages are associated with an increased risk of developing NAFLD and hepatocellular carcinoma, while other foods and compounds such as fish, olive oil, and polyphenols are, in contrast, beneficial for metabolic disorders. Therefore, several dietary interventions have been studied in order to determine which strategy would be the most beneficial for NAFLD. The evidence regarding the effectiveness of different dietary interventions such as low carbohydrate/low-fat diet, time-restricted eating diet, CR, and the well-studied Mediterranean diet is summarized.
Collapse
Affiliation(s)
- Alia Hadefi
- Department of Gastroenterology, Hepatopancreatology, and Digestive OncologyCUB Hôpital ErasmeUniversité Libre de BruxellesHôpital Universitaire de Bruxelles (HUB)BrusselsBelgium
- Laboratory of Experimental GastroenterologyUniversité Libre de BruxellesBrusselsBelgium
| | - Marianna Arvanitakis
- Department of Gastroenterology, Hepatopancreatology, and Digestive OncologyCUB Hôpital ErasmeUniversité Libre de BruxellesHôpital Universitaire de Bruxelles (HUB)BrusselsBelgium
| | - Eric Trépo
- Department of Gastroenterology, Hepatopancreatology, and Digestive OncologyCUB Hôpital ErasmeUniversité Libre de BruxellesHôpital Universitaire de Bruxelles (HUB)BrusselsBelgium
- Laboratory of Experimental GastroenterologyUniversité Libre de BruxellesBrusselsBelgium
| | - Shira Zelber‐Sagi
- Faculty of Social Welfare and Health SciencesSchool of Public HealthUniversity of HaifaHaifaIsrael
- Department of GastroenterologyTel‐Aviv Medical CentreTel‐AvivIsrael
| |
Collapse
|
18
|
Rondanelli M, Gasparri C, Razza C, Ferraris C, Perna S, Ferrarotti I, Corsico AG. Practical dietary advices for subjects with alpha-1 antitrypsin deficiency. Biomed Pharmacother 2023; 163:114753. [PMID: 37119738 DOI: 10.1016/j.biopha.2023.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
Congenital alpha-1 antitrypsin deficiency (AATD) is a rare inherited disorder caused by the mutation of the SERPINA1 gene on chromosome 14. At pulmonary level, AAT deficiency leads to an increased risk of chronic obstructive pulmonary disease (COPD) and emphysema, starting from the third-fourth decade of life. At hepatic level, some variants of the allelic, in particular PI*Z, cause a conformational change of the AAT molecule, which polymerizes within the hepatocytes. Excessive hepatic accumulation of these abnormal molecules can lead to liver disease in both adults and children, with clinical presentation ranging from cholestatic jaundice in the newborn to abnormal blood indices of liver function in children and adults, up to fatty liver, cirrhosis and hepatocarcinoma. Nutritional interventions in AATD aim to provide the necessary calories, stop protein catabolism, prevent and treat malnutrition as in the case of common COPD, and even take into account any liver disease that is a distinctive trait, compared to common COPD. Actually, there is a lack of formal research regarding the effects of specific nutritional recommendations in patients with AATD, proper eating habits may help to preserve lung and liver function. For practical dietary advice in patients with AATD and COPD, recently a food pyramid proposal has been published. It has been observed that there is a marked overlap between AATD liver disease and obesity-related liver disease, suggesting shared molecular basis and, therefore, similar nutritional strategies. In this narrative review dietary advice for all possible stages of liver disease have been reported.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia 27100, Italy; Department of Public Health, Experimental and Forensic Medicine, Unit of Human and Clinical Nutrition, University of Pavia, Pavia 27100, Italy.
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, Pavia 27100, Italy
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, Pavia 27100, Italy
| | - Cinzia Ferraris
- Laboratory of Food Education and Sport Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Ilaria Ferrarotti
- Center for Diagnosis of Inherited Alpha 1-Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia 27100, Italy; Division of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, Pavia 27100, Italy
| | - Angelo Guido Corsico
- Center for Diagnosis of Inherited Alpha 1-Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia 27100, Italy; Division of Respiratory Diseases, IRCCS Policlinico San Matteo Foundation, Pavia 27100, Italy
| |
Collapse
|
19
|
Tsamos G, Vasdeki D, Koufakis T, Michou V, Makedou K, Tzimagiorgis G. Therapeutic Potentials of Reducing Liver Fat in Non-Alcoholic Fatty Liver Disease: Close Association with Type 2 Diabetes. Metabolites 2023; 13:metabo13040517. [PMID: 37110175 PMCID: PMC10141666 DOI: 10.3390/metabo13040517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most widespread chronic liver disease worldwide, confers a significant burden on health systems and leads to increased mortality and morbidity through several extrahepatic complications. NAFLD comprises a broad spectrum of liver-related disorders, including steatosis, cirrhosis, and hepatocellular carcinoma. It affects almost 30% of adults in the general population and up to 70% of people with type 2 diabetes (T2DM), sharing common pathogenetic pathways with the latter. In addition, NAFLD is closely related to obesity, which acts in synergy with other predisposing conditions, including alcohol consumption, provoking progressive and insidious liver damage. Among the most potent risk factors for accelerating the progression of NAFLD to fibrosis or cirrhosis, diabetes stands out. Despite the rapid rise in NAFLD rates, identifying the optimal treatment remains a challenge. Interestingly, NAFLD amelioration or remission appears to be associated with a lower risk of T2DM, indicating that liver-centric therapies could reduce the risk of developing T2DM and vice versa. Consequently, assessing NAFLD requires a multidisciplinary approach to identify and manage this multisystemic clinical entity early. With the continuously emerging new evidence, innovative therapeutic strategies are being developed for the treatment of NAFLD, prioritizing a combination of lifestyle changes and glucose-lowering medications. Based on recent evidence, this review scrutinizes all practical and sustainable interventions to achieve a resolution of NAFLD through a multimodal approach.
Collapse
Affiliation(s)
- Georgios Tsamos
- Division of Gastroenterology, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Dimitra Vasdeki
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Vassiliki Michou
- Sports Medicine Laboratory, School of Physical Education & Sport Science, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Kali Makedou
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 54636 Thessaloniki, Greece
| |
Collapse
|
20
|
Stefano JT, Duarte SMB, Ribeiro Leite Altikes RG, Oliveira CP. Non-pharmacological management options for MAFLD: a practical guide. Ther Adv Endocrinol Metab 2023; 14:20420188231160394. [PMID: 36968655 PMCID: PMC10031614 DOI: 10.1177/20420188231160394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/11/2023] [Indexed: 03/24/2023] Open
Abstract
Lifestyle changes should be the main basis for any treatment for metabolic dysfunction-associated fatty liver disease (MAFLD), aiming to increase energy expenditure, reduce energy intake and improve the quality of nutrients consumed. As it is a multifactorial disease, approaches such as physical exercise, a better dietary pattern, and possible pharmacological intervention are shown to be more efficient when used simultaneously to the detriment of their applications. The main treatment for MAFLD is a lifestyle change consisting of diet, activity, exercise, and weight loss. The variables for training prescription such as type of physical exercise (aerobic or strength training), the weekly frequency, and the intensity most indicated for the treatment of MAFLD remain uncertain, that is, the recommendations must be adapted to the clinical conditions comorbidities, and preferences of each subject in a way individual. This review addresses recent management options for MAFLD including diet, nutrients, gut microbiota, and physical exercise.
Collapse
Affiliation(s)
- José Tadeu Stefano
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sebastião Mauro Bezerra Duarte
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Claudia P. Oliveira
- Laboratório de Gastroenterologia Clínica e
Experimental LIM-07, Division of Clinical Gastroenterology and Hepatology,
Hospital das Clínicas HCFMUSP, Department of Gastroenterology, Faculdade de
Medicina, Universidade de Sao Paulo, Av. Dr. Enéas de Carvalho Aguiar no
255, Instituto Central, # 9159, Sao Paulo 05403-000, Brazil
- Departament of Gastroenterology, Faculdade de
Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Chai XN, Zhou BQ, Ning N, Pan T, Xu F, He SH, Chen NN, Sun M. Effects of lifestyle intervention on adults with metabolic associated fatty liver disease: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1081096. [PMID: 36875459 PMCID: PMC9978774 DOI: 10.3389/fendo.2023.1081096] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION This systematic review and meta-analysis evaluates the overall effects of lifestyle interventions upon hepatic fat content and metabolism-related indicators among adults with metabolic associated fatty liver disease. METHODS It was registered under PROSPERO (CRD42021251527). We searched PubMed, EMBASE, MEDLINE, Cochrane, CINAHL, Scopus, CNKI, Wan-fang, VIP, and CBM from the inception of each database to May 2021 for RCT studies of lifestyle interventions on hepatic fat content and metabolism-related indicators. We used Review Manager 5.3 for meta-analysis and used text and detailed tabular summaries when heterogeneity existed. RESULTS Thirty-four RCT studies with 2652 participants were included. All participants were obesity, 8% of whom also had diabetes, and none was lean or normal weight. Through subgroup analysis, we found low carbohydrate diet, aerobic training and resistance training significantly improved the level of HFC, TG, HDL, HbA1c, and HOMA-IR. Moreover, low carbohydrate diet is more effective in improving HFC than low fat diet and resistance training is better than aerobic training in reduction in HFC and TG (SMD, -0.25, 95% CI, -0.45 to -0.06; SMD, 0.24, 95% CI, 0.03 to 0.44, respectively). DISCUSSION Overall, this is the first review that systematically synthesizes studies focused on the effects of various lifestyle on adults with MAFLD. The data generated in this systematic review were more applicable to obesity MAFLD rather than lean or normal weight MAFLD. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier (CRD42021251527).
Collapse
Affiliation(s)
- Xiao-Ni Chai
- Xiangya Nursing School, Central South University, Changsha, China
| | - Bing-Qian Zhou
- Xiangya Nursing School, Central South University, Changsha, China
| | - Ni Ning
- Xiangya Nursing School, Central South University, Changsha, China
| | - Ting Pan
- Xiangya Nursing School, Central South University, Changsha, China
| | - Fan Xu
- Xiangya Nursing School, Central South University, Changsha, China
| | - Si-Han He
- School of Nursing, Hunan Traditional Chinese Medical College, Zhuzhou, China
| | - Ni-Ni Chen
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mei Sun
- Xiangya Nursing School, Central South University, Changsha, China
- School of Nursing, Changsha Medical University, Changsha, China
- *Correspondence: Mei Sun,
| |
Collapse
|
22
|
Roeb E, Canbay A, Bantel H, Bojunga J, de Laffolie J, Demir M, Denzer UW, Geier A, Hofmann WP, Hudert C, Karlas T, Krawczyk M, Longerich T, Luedde T, Roden M, Schattenberg J, Sterneck M, Tannapfel A, Lorenz P, Tacke F. [Not Available]. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:1346-1421. [PMID: 36100202 DOI: 10.1055/a-1880-2283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- E Roeb
- Gastroenterologie, Medizinische Klinik II, Universitätsklinikum Gießen und Marburg, Gießen, Deutschland
| | - A Canbay
- Medizinische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Deutschland
| | - H Bantel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - J Bojunga
- Medizinische Klinik I Gastroent., Hepat., Pneum., Endokrin., Universitätsklinikum Frankfurt, Frankfurt, Deutschland
| | - J de Laffolie
- Allgemeinpädiatrie und Neonatologie, Zentrum für Kinderheilkunde und Jugendmedizin, Universitätsklinikum Gießen und Marburg, Gießen, Deutschland
| | - M Demir
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin, Deutschland
| | - U W Denzer
- Klinik für Gastroenterologie und Endokrinologie, Universitätsklinikum Gießen und Marburg, Marburg, Deutschland
| | - A Geier
- Medizinische Klinik und Poliklinik II, Schwerpunkt Hepatologie, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - W P Hofmann
- Gastroenterologie am Bayerischen Platz - Medizinisches Versorgungszentrum, Berlin, Deutschland
| | - C Hudert
- Klinik für Pädiatrie m. S. Gastroenterologie, Nephrologie und Stoffwechselmedizin, Charité Campus Virchow-Klinikum - Universitätsmedizin Berlin, Berlin, Deutschland
| | - T Karlas
- Klinik und Poliklinik für Onkologie, Gastroenterologie, Hepatologie, Pneumologie und Infektiologie, Universitätsklinikum Leipzig, Leipzig, Deutschland
| | - M Krawczyk
- Klinik für Innere Medizin II, Gastroent., Hepat., Endokrin., Diabet., Ern.med., Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - T Longerich
- Pathologisches Institut, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - T Luedde
- Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - M Roden
- Klinik für Endokrinologie und Diabetologie, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland
| | - J Schattenberg
- I. Medizinische Klinik und Poliklinik, Universitätsmedizin Mainz, Mainz, Deutschland
| | - M Sterneck
- Klinik für Hepatobiliäre Chirurgie und Transplantationschirurgie, Universitätsklinikum Hamburg, Hamburg, Deutschland
| | - A Tannapfel
- Institut für Pathologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - P Lorenz
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS), Berlin, Deutschland
| | - F Tacke
- Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum und Campus Charité Mitte, Berlin, Deutschland
| |
Collapse
|
23
|
Authors, Collaborators:. Updated S2k Clinical Practice Guideline on Non-alcoholic Fatty Liver Disease (NAFLD) issued by the German Society of Gastroenterology, Digestive and Metabolic Diseases (DGVS) - April 2022 - AWMF Registration No.: 021-025. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:e733-e801. [PMID: 36100201 DOI: 10.1055/a-1880-2388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
24
|
Stine JG, Schreibman IR, Faust AJ, Dahmus J, Stern B, Soriano C, Rivas G, Hummer B, Kimball SR, Geyer NR, Chinchilli VM, Loomba R, Schmitz K, Sciamanna C, Strine C, Wentzel R, Marlin S, Sica C, Vesek J, Eyster E, Sinoway L, Bentz K, Handley N, Hershey Fell B, Mottilla S, Christ C, George S, Novchich T, Beyer M, Clarke K, Myers T, Glading‐Steinruck M, Krok K, Ma T, Riley T, Thompson E, Tressler H, Broach J, Doan T, Patrick S, Reed S, Hamilton C, Slavoski K, Tregea D. NASHFit: A randomized controlled trial of an exercise training program to reduce clotting risk in patients with NASH. Hepatology 2022; 76:172-185. [PMID: 34890063 PMCID: PMC9184303 DOI: 10.1002/hep.32274] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/04/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS NASH is a common disease associated with increased rates of thromboembolism (TE). Although exercise training can lessen thrombotic risk in patients with vascular disease, whether similar findings are observed in patients with NASH is open for study. APPROACH AND RESULTS We conducted a 20-week randomized controlled clinical trial involving patients with biopsy-confirmed NASH. Patients were randomly assigned (2:1 ratio) to receive either an exercise training program or standard clinical care. The primary endpoint was change in plasminogen activator inhibitor 1 (PAI-1) level, an established thrombotic biomarker. Twenty-eight patients were randomly assigned (18 exercise training and 10 standard clinical care). PAI-1 level was significantly decreased by exercise training when compared to standard clinical care (-40 ± 100 vs. +70 ± 63 ng/ml; p = 0.02). Exercise training decreased MRI proton density fat fraction (MRI-PDFF; -4.7 ± 5.6 vs. 1.2 ± 2.8% absolute liver fat; p = 0.01); 40% of exercise subjects had a ≥30% relative reduction in MRI-PDFF (histological response threshold) compared to 13% for standard of care (p < 0.01). Exercise training improved fitness (VO2 peak, +3.0 ± 5.6 vs. -1.8 ± 5.1 ml/kg/min; p = 0.05) in comparison to standard clinical care. CONCLUSIONS This clinical trial showed that, independent of weight loss or dietary change, exercise training resulted in a significantly greater decrease in thrombotic risk than standard clinical care in patients with NASH, in parallel with MRI-PDFF reduction and improvement in fitness. Future studies are required to determine whether exercise training can directly impact patient outcomes and lower rates of TE.
Collapse
Affiliation(s)
- Jonathan G. Stine
- Division of Gastroenterology and Hepatology, Department of
Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center,
Hershey PA,Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA,Liver Center, The Pennsylvania State University- Milton S.
Hershey Medical Center, Hershey PA,Cancer Institute, The Pennsylvania State University-
Milton S. Hershey Medical Center, Hershey PA
| | - Ian R. Schreibman
- Division of Gastroenterology and Hepatology, Department of
Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center,
Hershey PA,Liver Center, The Pennsylvania State University- Milton S.
Hershey Medical Center, Hershey PA
| | - Alison J. Faust
- Division of Gastroenterology and Hepatology, Department of
Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center,
Hershey PA
| | - Jessica Dahmus
- Division of Gastroenterology and Hepatology, Department of
Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center,
Hershey PA
| | - Benjamin Stern
- Division of Gastroenterology and Hepatology, Department of
Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center,
Hershey PA
| | - Christopher Soriano
- Division of Gastroenterology and Hepatology, Department of
Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center,
Hershey PA
| | - Gloriany Rivas
- Division of Gastroenterology and Hepatology, Department of
Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center,
Hershey PA
| | - Breianna Hummer
- Division of Gastroenterology and Hepatology, Department of
Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center,
Hershey PA
| | - Scot R. Kimball
- Department of Physiology, The Pennsylvania State
University- College of Medicine, Hershey PA
| | - Nate R. Geyer
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of
Medicine, University of California San Diego, San Diego CA,NAFLD Research Center, University of California San Diego,
San Diego CA
| | - Kathryn Schmitz
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA,Cancer Institute, The Pennsylvania State University-
Milton S. Hershey Medical Center, Hershey PA,Department of Kinesiology, The Pennsylvania State
University- College of Medicine, Hershey PA,Department of Physical Medicine & Rehabilitation,
The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey
PA
| | - Christopher Sciamanna
- Department of Public Health Sciences, The Pennsylvania
State University- College of Medicine, Hershey PA,Cancer Institute, The Pennsylvania State University-
Milton S. Hershey Medical Center, Hershey PA,Department of Medicine, The Pennsylvania State University-
Milton S. Hershey Medical Center, -Hershey PA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Puri P, Kotwal N. An Approach to the Management of Diabetes Mellitus in Cirrhosis: A Primer for the Hepatologist. J Clin Exp Hepatol 2022; 12:560-574. [PMID: 35535116 PMCID: PMC9077234 DOI: 10.1016/j.jceh.2021.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
The management of diabetes in cirrhosis and liver transplantation can be challenging. There is difficulty in diagnosis and monitoring of diabetes as fasting blood sugar values are low and glycosylated hemoglobin may not be a reliable marker. The challenges in the management of diabetes in cirrhosis include the likelihood of cognitive impairment, risk of hypoglycemia, altered drug metabolism, frequent renal dysfunction, risk of lactic acidosis, and associated malnutrition and sarcopenia. Moreover, calorie restriction and an attempt to lose weight in obese diabetics may be associated with a worsening of sarcopenia. Many commonly used antidiabetic drugs may be unsafe or be associated with a high risk of hypoglycemia in cirrhotics. Post-transplant diabetes is common and may be contributed by immunosuppressive medication. There is inadequate clinical data on the use of antidiabetic drugs in cirrhosis, and the management of diabetes in cirrhosis is hampered by the lack of guidelines focusing on this issue. The current review aims at addressing the practical management of diabetes by a hepatologist.
Collapse
Key Words
- ADA, American Diabetes Association
- AGI, Alfa Glucosidase inhibitors
- BMI, Body mass index
- CLD, Chronic liver disease
- CYP-450, Cytochrome P-450
- Dipeptidyl-peptidase 4, DPP-4
- GLP-1, Glucagon-like peptide-1
- HCC, Hepatocellular carcinoma
- HCV, Hepatitis C virus
- HbA1c, Hemoglobin A1c
- IGF, Insulin-like growth factor
- MALA, Metformin-associated lactic acidosis
- NASH, Nonalcoholic steatohepatitis
- NPL, Neutral protamine lispro
- OGTT, Oral glucose tolerance test
- SMBG, Self-monitoring of blood glucose
- Sodium-glucose cotransporter 2, SGLT2
- VEGF, Vascular endothelial growth factor
- antidiabetic agents
- antihyperglycemic drugs
- chronic liver disease
- cirrhosis
- diabetes mellitus
- eGFR, estimated glomerular filtration rates
Collapse
Affiliation(s)
- Pankaj Puri
- Fortis Escorts Liver and Digestive Diseases Institute, New Delhi, 110025, India
| | | |
Collapse
|
26
|
Park JH, Lim NK, Park HY. Protective Effect of Leisure-Time Physical Activity and Resistance Training on Nonalcoholic Fatty Liver Disease: A Nationwide Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042350. [PMID: 35206539 PMCID: PMC8872481 DOI: 10.3390/ijerph19042350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023]
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. The present study aimed to investigate the association of NAFLD with leisure-time physical activity (PA) levels and resistance training (RT). Methods: We used data from large nationwide cohorts in Korea. NAFLD was defined based on the Framingham steatosis index. Participants were categorized into four groups based on RT frequency and adherence to PA guidelines (≥150 min/week of moderate-intensity PA): Low-PA, Low-PA+RT, High-PA, and High-PA+RT. Multiple logistic regression models were used to assess the risk of NAFLD according to leisure-time PA levels and regularity of RT. Results: When compared with Low-PA, High-PA decreased the risk of NAFLD by 17%, and High-PA+RT further decreased the risk by 30%. However, the additional reduction in risk associated with the addition of RT was observed in men (19%), but not in women. In the High-PA group, men had a significantly higher training frequency and period for RT than women. Conclusions: Following the PA guideline may confer protective effects against NAFLD, while adding RT to High-PA can further decrease the risk of NAFLD. Sex-based differences in NAFLD risk in the High-PA+RT group may be due to the differences in the frequency and period of RT.
Collapse
Affiliation(s)
- Jae Ho Park
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 200 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Chungcheongbuk-do, Korea; (J.H.P.); (N.-K.L.)
| | - Nam-Kyoo Lim
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 200 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28160, Chungcheongbuk-do, Korea; (J.H.P.); (N.-K.L.)
| | - Hyun-Young Park
- Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, 187 Osongsaengmyeong2-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28159, Chungcheongbuk-do, Korea
- Correspondence:
| |
Collapse
|
27
|
Fernández T, Viñuela M, Vidal C, Barrera F. Lifestyle changes in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. PLoS One 2022; 17:e0263931. [PMID: 35176096 PMCID: PMC8853532 DOI: 10.1371/journal.pone.0263931] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease is a liver condition that is increasing worldwide and expected to become the number one cause of cirrhosis and hepatocellular carcinoma in the next 5 years. Currently there are no successful or approved pharmacological treatments. Weight loss is the first-line therapy as a 7 to 10% reduction improves steatosis, inflammation, hepatocyte ballooning, and fibrosis. To achieve this, lifestyle interventions including daily exercise and diet must be encouraged. We aimed to assess the effects of diet, exercise, or a combination of both compared to conventional treatment in patients with non-alcoholic fatty liver disease. METHODS AND FINDING A literature search was performed in CENTRAL, EMBASE, and PubMed. Randomized controlled trials comparing lifestyle changes with conventional treatment were included, without date restriction. Two authors searched studies according to eligibility criteria, extracted data, and assessed study quality. Subgroup analysis was made by type of intervention, duration of intervention and supervision. We calculated mean differences between the intervention and the control group with their corresponding 95% confidence intervals. Quality of the evidence was assessed using the Cochrane Risk of bias tool. This study is registered in PROSPERO, number CRD42020184241, and checked with the PRISMA checklist. 30 RCTs met the inclusion criteria. Compared to conventional treatment, combined exercise with diet seems to elicit greater reductions in ALT (MD: -13.27 CI 95% -21.39, -5.16), AST (MD: -7.02 CI 95% -11.26, -2.78) and HOMA-IR (MD: -2.07 CI 95% -2.61, -1.46) than diet (ALT MD: -4.48 CI 95% -1.01, -0.21; HOMA-IR MD: -0.61 CI 95% -1.01, -0.21) and exercise (ALT and AST non-significant; HOMA-IR MD = -0.46 CI 95% -0.8, -0.12) alone. Additionally, exercise improved quality of life, cardiorespiratory fitness, and weight (MD: -2.64 CI 95% -5.18, -0.09). CONCLUSION Lifestyle changes are effective in the treatment of NAFLD. Diet and exercise combined are superior to these interventions alone in improving liver enzymes and HOMA-IR.
Collapse
Affiliation(s)
- Tiziana Fernández
- Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Viñuela
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Vidal
- Departamento de Ortopedia y Traumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Barrera
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
28
|
von Loeffelholz C, Roth J, Coldewey SM, Birkenfeld AL. The Role of Physical Activity in Nonalcoholic and Metabolic Dysfunction Associated Fatty Liver Disease. Biomedicines 2021; 9:biomedicines9121853. [PMID: 34944668 PMCID: PMC8698784 DOI: 10.3390/biomedicines9121853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Sedentary behavior constitutes a pandemic health threat contributing to the pathophysiology of obesity and type 2 diabetes (T2D). Sedentarism is further associated with liver disease and particularly with nonalcoholic/metabolic dysfunction associated fatty liver disease (NAFLD/MAFLD). Insulin resistance (IR) represents an early pathophysiologic key element of NAFLD/MAFLD, prediabetes and T2D. Current treatment guidelines recommend regular physical activity. There is evidence, that physical exercise has impact on a variety of molecular pathways, such as AMP-activated protein kinase and insulin signaling as well as glucose transporter 4 translocation, modulating insulin action, cellular substrate flow and in particular ectopic lipid and glycogen storage in a positive manner. Therefore, physical exercise can lead to substantial clinical benefit in persons with diabetes and/or NAFLD/MAFLD. However, experience from long term observational studies shows that the patients’ motivation to exercise regularly appears to be a major limitation. Strategies to integrate everyday physical activity (i.e., nonexercise activity thermogenesis) in lifestyle treatment schedules might be a promising approach. This review aggregates evidence on the impact of regular physical activity on selected molecular mechanisms as well as clinical outcomes of patients suffering from IR and NAFLD/MAFLD.
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (J.R.); (S.M.C.)
- Correspondence: ; Tel.: +49-3641-9323-177; Fax: +49-3641-9323-102
| | - Johannes Roth
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (J.R.); (S.M.C.)
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany; (J.R.); (S.M.C.)
- Septomics Research Center, Jena University Hospital, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, Internal Medicine IV, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany;
- Division of Translational Diabetology, Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Department of Diabetes, School of Life Course Science and Medicine, Kings College London, London WC2R 2LS, UK
| |
Collapse
|
29
|
Roeb E. Diagnostic and Therapy of Nonalcoholic Fatty Liver Disease: A Narrative Review. Visc Med 2021; 38:126-132. [PMID: 35614896 PMCID: PMC9082206 DOI: 10.1159/000519611] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
<b><i>Background:</i></b> The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing and strongly associated with the metabolic syndrome, especially with obesity. A subtype, nonalcoholic steatohepatitis (NASH), might progress to advanced fibrosis and cirrhosis. NASH patients have an increased all-cause mortality. First and foremost are malignancies, followed by cardiovascular diseases. <b><i>Summary:</i></b> The NAFLD fibrosis score and noninvasive liver stiffness measurement (transient hepatic elastography) are essential components for the diagnostic risk assessment of NAFLD patients. Other steatoses (alcohol, genetic disorders, drugs, toxins, malnutrition, etc.) must be considered in the differential diagnosis. So far, there is no approved liver-specific drug therapy with a proven effect on NAFLD for patients without diabetes mellitus. Obeticholic acid (FXR agonist), cenicriviroc (a dual inhibitor of the chemokine receptors (CCR), CCR2 and CCR5), acetyl-CoA carboxylase inhibitors, and several thyroid hormone analogs are the most advanced substances in clinical development in ongoing phase 2 and 3 studies. <b><i>Key Messages:</i></b> Weight loss, physical training, and the screening and treatment of risk factors represent the cornerstones of NAFLD therapy. Treatment with glucagon-like peptide 1 analogs (e.g., liraglutide, semaglutide) and sodium-dependent glucose transporter 2 inhibitors can be recommended in patients with diabetes and NASH.
Collapse
|
30
|
Babu AF, Csader S, Lok J, Gómez-Gallego C, Hanhineva K, El-Nezami H, Schwab U. Positive Effects of Exercise Intervention without Weight Loss and Dietary Changes in NAFLD-Related Clinical Parameters: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13093135. [PMID: 34579012 PMCID: PMC8466505 DOI: 10.3390/nu13093135] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022] Open
Abstract
One of the focuses of non-alcoholic fatty liver disease (NAFLD) treatment is exercise. Randomized controlled trials investigating the effects of exercise without dietary changes on NAFLD-related clinical parameters (liver parameters, lipid metabolism, glucose metabolism, gut microbiota, and metabolites) were screened using the PubMed, Scopus, Web of Science, and Cochrane databases on 13 February 2020. Meta-analyses were performed on 10 studies with 316 individuals who had NAFLD across three exercise regimens: aerobic exercise, resistance training, and a combination of both. No studies investigating the role of gut microbiota and exercise in NAFLD were found. A quality assessment via the (RoB)2 tool was conducted and potential publication bias, statistical outliers, and influential cases were identified. Overall, exercise without significant weight loss significantly reduced the intrahepatic lipid (IHL) content (SMD: −0.76, 95% CI: −1.04, −0.48) and concentrations of alanine aminotransaminase (ALT) (SMD: −0.52, 95% CI: −0.90, −0.14), aspartate aminotransaminase (AST) (SMD: −0.68, 95% CI: −1.21, −0.15), low-density lipoprotein cholesterol (SMD: −0.34, 95% CI: −0.66, −0.02), and triglycerides (TG) (SMD: −0.59, 95% CI: −1.16, −0.02). The concentrations of high-density lipoprotein cholesterol, total cholesterol (TC), fasting glucose, fasting insulin, and glycated hemoglobin were non-significantly altered. Aerobic exercise alone significantly reduced IHL, ALT, and AST; resistance training alone significantly reduced TC and TG; a combination of both exercise types significantly reduced IHL. To conclude, exercise overall likely had a beneficial effect on alleviating NAFLD without significant weight loss. The study was registered at PROSPERO: CRD42020221168 and funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 813781.
Collapse
Affiliation(s)
- Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211 Kuopio, Finland
| | - Susanne Csader
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
| | - Carlos Gómez-Gallego
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- Afekta Technologies Ltd., Yliopistonranta 1L, 70211 Kuopio, Finland
- Department of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, 20500 Turku, Finland
| | - Hani El-Nezami
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Ursula Schwab
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200 Kuopio, Finland; (A.F.B.); (S.C.); (J.L.); (C.G.-G.); (K.H.); (H.E.-N.)
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70210 Kuopio, Finland
- Correspondence: ; Tel.: +358-403552791
| |
Collapse
|
31
|
Battista F, Ermolao A, van Baak MA, Beaulieu K, Blundell JE, Busetto L, Carraça EV, Encantado J, Dicker D, Farpour-Lambert N, Pramono A, Bellicha A, Oppert JM. Effect of exercise on cardiometabolic health of adults with overweight or obesity: Focus on blood pressure, insulin resistance, and intrahepatic fat-A systematic review and meta-analysis. Obes Rev 2021; 22 Suppl 4:e13269. [PMID: 33960110 PMCID: PMC8365642 DOI: 10.1111/obr.13269] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 12/17/2022]
Abstract
This systematic review examined the impact of exercise intervention programs on selected cardiometabolic health indicators in adults with overweight or obesity. Three electronic databases were explored for randomized controlled trials (RCTs) that included adults with overweight or obesity and provided exercise-training interventions. Effects on blood pressure, insulin resistance (homeostasis model of insulin resistance, HOMA-IR), and magnetic resonance measures of intrahepatic fat in exercise versus control groups were analyzed using random effects meta-analyses. Fifty-four articles matched inclusion criteria. Exercise training reduced systolic and diastolic blood pressure (mean difference, MD = -2.95 mmHg [95% CI -4.22, -1.68], p < 0.00001, I2 = 63% and MD = -1.93 mmHg [95% CI -2.73, -1.13], p < 0.00001, I2 = 54%, 60 and 58 study arms, respectively). Systolic and diastolic blood pressure decreased also when considering only subjects with hypertension. Exercise training significantly decreased HOMA-IR (standardized mean difference, SMD = -0.34 [-0.49, -0.18], p < 0.0001, I2 = 48%, 37 study arms), with higher effect size in subgroup of patients with type 2 diabetes (SMD = -0.50 [95% CI: -0.83, -0.17], p = 0.003, I2 = 39%). Intrahepatic fat decreased significantly after exercise interventions (SMD = -0.59 [95% CI: -0.78, -0.41], p < 0.00001, I2 = 0%), with a larger effect size after high-intensity interval training. In conclusion, exercise training is effective in improving cardiometabolic health in adults with overweight or obesity also when living with comorbitidies.
Collapse
Affiliation(s)
- Francesca Battista
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padua, Italy
| | - Andrea Ermolao
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padua, Italy
| | - Marleen A van Baak
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Kristine Beaulieu
- Appetite Control and Energy Balance Research Group (ACEB), School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - John E Blundell
- Appetite Control and Energy Balance Research Group (ACEB), School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Luca Busetto
- Obesity Management Task Force (OMTF), European Association for the Study of obesity (EASO).,Department of Medicine, University of Padova, Padua, Italy
| | - Eliana V Carraça
- Faculdade de Educação Física e Desporto, CIDEFES, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| | - Jorge Encantado
- APPsyCI - Applied Psychology Research Center Capabilities & Inclusion, ISPA - University Institute, Lisbon, Portugal
| | - Dror Dicker
- Obesity Management Task Force (OMTF), European Association for the Study of obesity (EASO).,Department of Internal Medicine D, Hasharon Hospital, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nathalie Farpour-Lambert
- Obesity Management Task Force (OMTF), European Association for the Study of obesity (EASO).,Obesity Prevention and Care Program Contrepoids, Service of Endocrinology, Diabetology, Nutrition and Patient Education, Department of Internal Medicine, University Hospitals of Geneva and University of Geneva, Geneva, Switzerland
| | - Adriyan Pramono
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Human Biology, Maastricht University, Maastricht, The Netherlands
| | - Alice Bellicha
- INSERM, Nutrition and Obesities: Systemic Approaches (NutriOmics), Sorbonne University, Paris, France.,UFR SESS-STAPS, University Paris-Est Créteil, Créteil, France
| | - Jean-Michel Oppert
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière hospital, Department of Nutrition, Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| |
Collapse
|
32
|
Buzzetti E, Linden A, Best LM, Madden AM, Roberts D, Chase TJG, Freeman SC, Cooper NJ, Sutton AJ, Fritche D, Milne EJ, Wright K, Pavlov CS, Davidson BR, Tsochatzis E, Gurusamy KS. Lifestyle modifications for nonalcohol-related fatty liver disease: a network meta-analysis. Cochrane Database Syst Rev 2021; 6:CD013156. [PMID: 34114650 PMCID: PMC8193812 DOI: 10.1002/14651858.cd013156.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The prevalence of nonalcohol-related fatty liver disease (NAFLD) varies between 19% and 33% in different populations. NAFLD decreases life expectancy and increases the risks of liver cirrhosis, hepatocellular carcinoma, and requirement for liver transplantation. There is uncertainty surrounding the relative benefits and harms of various lifestyle interventions for people with NAFLD. OBJECTIVES To assess the comparative benefits and harms of different lifestyle interventions in the treatment of NAFLD through a network meta-analysis, and to generate rankings of the different lifestyle interventions according to their safety and efficacy. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, Science Citation Index Expanded, Conference Proceedings Citation Index - Science, World Health Organization International Clinical Trials Registry Platform, and trials registers until February 2021 to identify randomised clinical trials in people with NAFLD. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or status) in people with NAFLD, whatever the method of diagnosis, age, and diabetic status of participants, or presence of non-alcoholic steatohepatitis (NASH). We excluded randomised clinical trials in which participants had previously undergone liver transplantation. DATA COLLECTION AND ANALYSIS We planned to perform a network meta-analysis with OpenBUGS using Bayesian methods and to calculate the differences in treatments using hazard ratios (HRs), odds ratios (ORs), and rate ratios (RaRs) with 95% credible intervals (CrIs) based on an available-participant analysis, according to National Institute of Health and Care Excellence Decision Support Unit guidance. However, the data were too sparse for the clinical outcomes. We therefore performed only direct comparisons (head-to-head comparisons) with OpenBUGS using Bayesian methods. MAIN RESULTS We included a total of 59 randomised clinical trials (3631 participants) in the review. All but two trials were at high risk of bias. A total of 33 different interventions, ranging from advice to supervised exercise and special diets, or a combination of these and no additional intervention were compared in these trials. The reference treatment was no active intervention. Twenty-eight trials (1942 participants) were included in one or more comparisons. The follow-up ranged from 1 month to 24 months. The remaining trials did not report any of the outcomes of interest for this review. The follow-up period in the trials that reported clinical outcomes was 2 months to 24 months. During this short follow-up period, clinical events related to NAFLD such as mortality, liver cirrhosis, liver decompensation, liver transplantation, hepatocellular carcinoma, and liver-related mortality were sparse. This is probably because of the very short follow-up periods. It takes a follow-up of 8 years to 28 years to detect differences in mortality between people with NAFLD and the general population. It is therefore unlikely that differences by clinical outcomes will be noted in trials with less than 5 years to 10 years of follow-up. In one trial, one participant developed an adverse event. There were no adverse events in any of the remaining participants in this trial, or in any of the remaining trials, which seemed to be directly related to the intervention. AUTHORS' CONCLUSIONS The evidence indicates considerable uncertainty about the effects of the lifestyle interventions compared with no additional intervention (to general public health advice) on any of the clinical outcomes after a short follow-up period of 2 months to 24 months in people with nonalcohol-related fatty liver disease. Accordingly, high-quality randomised clinical trials with adequate follow-up are needed. We propose registry-based randomised clinical trials or cohort multiple randomised clinical trials (a study design in which multiple interventions are trialed within large longitudinal cohorts of participants to gain efficiencies and align trials more closely to standard clinical practice), comparing aerobic exercise and dietary advice versus standard of care (exercise and dietary advice received as part of national health promotion). The reason for the choice of aerobic exercise and dietary advice is the impact of these interventions on indirect outcomes which may translate to clinical benefit. The outcomes in such trials should be mortality, health-related quality of life, decompensated liver cirrhosis, liver transplantation, and resource use measures including costs of intervention and decreased healthcare use after a minimum follow-up of eight years, to find meaningful differences in the clinically important outcomes.
Collapse
Affiliation(s)
- Elena Buzzetti
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Audrey Linden
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Lawrence Mj Best
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Angela M Madden
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Danielle Roberts
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Thomas J G Chase
- Department of General Surgery, Homerton University Hospital NHS Foundation Trust, London, UK
| | - Suzanne C Freeman
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nicola J Cooper
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Alex J Sutton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | | | - Kathy Wright
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Chavdar S Pavlov
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Brian R Davidson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Emmanuel Tsochatzis
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Kurinchi Selvan Gurusamy
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
33
|
Vivero A, Ruz M, Rivera M, Miranda K, Sacristán C, Espinosa A, Codoceo J, Inostroza J, Vásquez K, Pérez Á, García-Díaz D, Arredondo M. Zinc Supplementation and Strength Exercise in Rats with Type 2 Diabetes: Akt and PTP1B Phosphorylation in Nonalcoholic Fatty Liver. Biol Trace Elem Res 2021; 199:2215-2224. [PMID: 32939643 DOI: 10.1007/s12011-020-02324-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus (T2D) is a metabolic disorder caused by chronic hyperglycemia due to a deficiency in the secretion and/or action of insulin. Zinc (Zn) supplementation and strength exercise increases insulin signaling. We evaluate the effect of Zn supplementation and strength exercise on insulin resistance in the liver of rats with diet-induced T2D through the study of phosphorylation of Akt and protein tyrosine phosphatase 1B (PTP1B). Rats were fed with a high-fat diet (HFD) for 18 weeks to induce T2D and then assigned in four experimental groups: HFD, HFD-Zn (Zn), HFD-strength exercise (Ex), and HFD-Zn/strength exercise (ZnEx) and treated during 12 weeks. Serum Zn, lipid profile, transaminases, glucose, and insulin were measured. In the liver with/without insulin stimuli, total and phosphorylated Akt (pAktSer473) and PTP1B (pPTP1BSer50) were determined by western blot. Hepatic steatosis was evaluated by histological staining with red oil and intrahepatic triglyceride (IHTG) content. There were no differences in biochemical and body-related variables. The ZnEx group showed a higher level of pAkt, both with/without insulin. The ZnEx group also showed higher levels of pPTP1B with respect to HFD and Zn groups. The ZnEx group had higher levels of pPTP1B than groups treated with insulin. Liver histology showed a better integrity and less IHTG in Ex and ZnEx with respect to the HFD group. The Ex and ZnEx groups had lower IHTG with respect to the HFD group. Our results showed that Zn supplementation and strength exercise together improved insulin signaling and attenuated nonalcoholic liver disease in a T2D rat model.
Collapse
Affiliation(s)
- Ariel Vivero
- Micronutrient Laboratory, Human Nutrition Unit, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Matías Rivera
- Micronutrient Laboratory, Human Nutrition Unit, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Karen Miranda
- Micronutrient Laboratory, Human Nutrition Unit, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Camila Sacristán
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Medical Technology Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juana Codoceo
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Jorge Inostroza
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Karla Vásquez
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Álvaro Pérez
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Diego García-Díaz
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Miguel Arredondo
- Micronutrient Laboratory, Human Nutrition Unit, Institute of Nutrition and Food Technology, University of Chile, El Líbano 5524, Macul, Santiago, Chile.
| |
Collapse
|
34
|
Maier S, Wieland A, Cree-Green M, Nadeau K, Sullivan S, Lanaspa MA, Johnson RJ, Jensen T. Lean NAFLD: an underrecognized and challenging disorder in medicine. Rev Endocr Metab Disord 2021; 22:351-366. [PMID: 33389543 PMCID: PMC8893229 DOI: 10.1007/s11154-020-09621-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Classically, Non-Alcoholic Fatty Liver Disease (NAFLD) has been thought to be driven by excessive weight gain and obesity. The overall greater awareness of this disorder has led to its recognition in patients with normal body mass index (BMI). Ongoing research has helped to better understand potential causes of Lean NAFLD, the risks for more advanced disease, and potential therapies. Here we review the recent literature on prevalence, risk factors, severity of disease, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sheila Maier
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Amanda Wieland
- Division of Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Melanie Cree-Green
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kristen Nadeau
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shelby Sullivan
- Division of Gastroenterology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Miguel A Lanaspa
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| | - Richard J Johnson
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Jensen
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, CO, USA.
- Division of Endocrinology, University of Colorado, Denver, Denver, CO, USA.
| |
Collapse
|
35
|
Lonardo A, Arab JP, Arrese M. Perspectives on Precision Medicine Approaches to NAFLD Diagnosis and Management. Adv Ther 2021; 38:2130-2158. [PMID: 33829368 PMCID: PMC8107169 DOI: 10.1007/s12325-021-01690-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Precision medicine defines the attempt to identify the most effective approaches for specific subsets of patients based on their genetic background, clinical features, and environmental factors. Nonalcoholic fatty liver disease (NAFLD) encompasses the alcohol-like spectrum of liver disorders (steatosis, steatohepatitis with/without fibrosis, and cirrhosis and hepatocellular carcinoma) in the nonalcoholic patient. Recently, disease renaming to MAFLD [metabolic (dysfunction)-associated fatty liver disease] and positive criteria for diagnosis have been proposed. This review article is specifically devoted to envisaging some clues that may be useful to implementing a precision medicine-oriented approach in research and clinical practice. To this end, we focus on how sex and reproductive status, genetics, intestinal microbiota diversity, endocrine and metabolic status, as well as physical activity may interact in determining NAFLD/MAFLD heterogeneity. All these factors should be considered in the individual patient with the aim of implementing an individualized therapeutic plan. The impact of considering NAFLD heterogeneity on the development of targeted therapies for NAFLD subgroups is also extensively discussed.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria, Ospedale Civile di Baggiovara, 1135 Via Giardini, 41126, Modena, Italy.
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
36
|
Su H, Liu D, Shao J, Li Y, Wang X, Gao Q. Aging Liver: Can Exercise be a Better Way to Delay the Process than Nutritional and Pharmacological Intervention? Focus on Lipid Metabolism. Curr Pharm Des 2021; 26:4982-4991. [PMID: 32503400 DOI: 10.2174/1381612826666200605111232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Nowadays, the world is facing a common problem that the population aging process is accelerating. How to delay metabolic disorders in middle-aged and elderly people, has become a hot scientific and social issue worthy of attention. The liver plays an important role in lipid metabolism, and abnormal lipid metabolism may lead to liver diseases. Exercise is an easily controlled and implemented intervention, which has attracted extensive attention in improving the health of liver lipid metabolism in the elderly. This article reviewed the body aging process, changes of lipid metabolism in the aging liver, and the mechanism and effects of different interventions on lipid metabolism in the aging liver, especially focusing on exercise intervention. METHODS A literature search was performed using PubMed-NCBI, EBSCO Host and Web of Science, and also a report from WHO. In total, 143 studies were included from 1986 to 15 February 2020. CONCLUSION Nutritional and pharmacological interventions can improve liver disorders, and nutritional interventions are less risky relatively. Exercise intervention can prevent and improve age-related liver disease, especially the best high-intensity interval training intensity and duration is expected to be one of the research directions in the future.
Collapse
Affiliation(s)
- Hao Su
- The School of Sport Science, Beijing Sport University, Beijing, China
| | - Dongsen Liu
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jia Shao
- The Graduate School, Beijing Sport University, Beijing, China
| | - Yinuo Li
- The Graduate School, Beijing Sport University, Beijing, China
| | - Xiaoxia Wang
- The School of Physical Education and Art Education, Beijing Technology and Business University, Beijing, China
| | - Qi Gao
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
37
|
Gonzalez A, Valero-Breton M, Huerta-Salgado C, Achiardi O, Simon F, Cabello-Verrugio C. Impact of exercise training on the sarcopenia criteria in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Transl Myol 2021; 31. [PMID: 33709647 PMCID: PMC8056167 DOI: 10.4081/ejtm.2021.9630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/07/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcopenia is a highly prevalent complication of non-alcoholic fatty liver disease (NAFLD). We aimed to conduct a systematic review and meta-analyses to elucidate the exercise training (ET)'s efficacy on NAFLD adult patients' sarcopenia criteria. We identified relevant randomized controlled trials (RCT) in electronic databases PubMed, CINAHL, and Scopus. We selected seven RCT from 66 screened studies. The ET programs included endurance or combined (endurance and resistance) training. No study performed resistance training alone. The physical function improved with endurance or combined training (mean differences [MD] 8.26 mL/Kg*min [95% CI 5.27 to 11.24 mL/Kg*min], p < 0.0001); Muscle mass showed no evidence of the beneficial effects of endurance or combined training (MD 1.01 Kg [95% CI -1.78 to 3.80 Kg], p = 0.48). None of the selected studies evaluated muscle strength. Endurance and combined training increase physical function criteria but do not improve muscle mass criteria on sarcopenia in NAFLD patients. These results must be interpreted with caution for the small number of patients included in the RCTs analyzed, the different characteristics of the ET carried out, the non-use of resistance training, which prevents assess its effect on sarcopenia despite the evidence that recommends it and does not assessment muscle strength criteria in RCT include. Future research should include muscle strength assessments and resistance training to evaluate the effects in this condition. Exercise training is beneficial for sarcopenia in NAFLD but is necessary more experimental evidence to define the best type of training that positively affects the three criteria of sarcopenia. PROSPERO reference number CRD42020191471.
Collapse
Affiliation(s)
- Andrea Gonzalez
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences. Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago.
| | - Mayalen Valero-Breton
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences. Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago.
| | - Camila Huerta-Salgado
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences. Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago.
| | - Oscar Achiardi
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso.
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile; Laboratory of Integrative Physiopathology, Department of Biological Sciences, Faculty of Life Sciences. Universidad Andres Bello, Santiago.
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences. Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile; Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago.
| |
Collapse
|
38
|
Gonzalez A, Valero-Breton M, Huerta-Salgado C, Achiardi O, Simon F, Cabello-Verrugio C. Impact of exercise training on the sarcopenia criteria in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Eur J Transl Myol 2021. [DOI: 10.4081/ejtm.2020.9630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is a highly prevalent complication of non-alcoholic fatty liver disease (NAFLD). We aimed to conduct a systematic review and meta-analyses to elucidate the exercise training (ET)'s efficacy on NAFLD adult patients' sarcopenia criteria. We identified relevant randomized controlled trials (RCT) in electronic databases PubMed, CINAHL, and Scopus. We selected seven RCT from 66 screened studies. The ET programs included endurance or combined (endurance and resistance) training. No study performed resistance training alone. The physical function improved with endurance or combined training (mean differences [MD] 8.26 mL/Kg*min [95% CI 5.27 to 11.24 mL/Kg*min], p < 0.0001); Muscle mass showed no evidence of the beneficial effects of endurance or combined training (MD 1.01 Kg [95% CI -1.78 to 3.80 Kg], p = 0.48). None of the selected studies evaluated muscle strength. Endurance and combined training increase physical function criteria but do not improve muscle mass criteria on sarcopenia in NAFLD patients. These results must be interpreted with caution for the small number of patients included in the RCTs analyzed, the different characteristics of the ET carried out, the non-use of resistance training, which prevents assess its effect on sarcopenia despite the evidence that recommends it and does not assessment muscle strength criteria in RCT include. Future research should include muscle strength assessments and resistance training to evaluate the effects in this condition. Exercise training is beneficial for sarcopenia in NAFLD but is necessary more experimental evidence to define the best type of training that positively affects the three criteria of sarcopenia. PROSPERO reference number CRD42020191471.
Collapse
|
39
|
Garcêz LS, Avelar CR, Fonseca NSS, Costa PRF, Lyra AC, Cunha CM, Jesus RP, Oliveira LPM. Effect of dietary carbohydrate and lipid modification on clinical and anthropometric parameters in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Nutr Rev 2021; 79:1321-1337. [PMID: 33515021 DOI: 10.1093/nutrit/nuaa146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CONTEXT Nonalcoholic fatty liver disease (NAFLD) is estimated to affect approximately 25% of the adult population, making it one of the most common chronic liver diseases worldwide and a major public health problem. Still, there is no consensus on the most appropriate nutritional intervention for disease treatment. OBJECTIVE To systematize and synthesize the results of randomized controlled trials that have evaluated the effect of dietary interventions with different, quantitative, macronutrient compositions on hepatic steatosis attenuation, serum levels of alanine aminotransferase, aspartate aminotransferase, lipid profile, glucose metabolism markers, and anthropometric parameters of adults and the elderly (age ≥ 60 years) with NAFLD. DATA SOURCES MEDLINE databases via PubMed, Embase, Science Direct, LILACS, Web of Science, ClinicalTrials.gov, and Cochrane Library were searched. Randomized controlled trials that compared interventions as diets with values ≤ 45% or 20% of the total daily energy intake from carbohydrates or lipids, respectively, compared with dietary reference intakes, were included. DATA EXTRACTION Risk of bias was assessed through the Cochrane Collaboration tool. The meta-analysis was only performed to evaluate the effect of carbohydrate-modified diets on the outcome variables. The number of participants and mean values and respective standard deviations of the outcome variables were extracted and used to calculate weighted mean differences and their respective 95%CIs. RESULTS The search strategy resulted in 21 146 studies, of which 10 were retained for qualitative analysis and 6 were included in the meta-analysis. From the analysis of 10 studies were identified 8 articles in which low-calorie diets were evaluated and 3 interventions that used an isocaloric diet. Only 3 studies were classified as having low risk of bias. CONCLUSION The observed effects on hepatic steatosis, serum alanine aminotransferase and aspartate aminotransferase levels, parameters of lipid and glucose metabolism, and anthropometric variables were mostly related to a hypocaloric diet. The use of reduced macronutrient interventions had no efficacy. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42018088824.
Collapse
Affiliation(s)
- Lais S Garcêz
- Nutrition and Health Post-Graduation Programme, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Camila R Avelar
- Nutrition and Health Post-Graduation Programme, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Nedja S S Fonseca
- Science Nutrition Department, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Priscila R F Costa
- Nutrition and Health Post-Graduation Programme, Federal University of Bahia, Salvador, Bahia, Brazil
| | - André C Lyra
- Gastro-Hepatology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Carla M Cunha
- Nutrition and Health Post-Graduation Programme, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Rosangela P Jesus
- Nutrition and Health Post-Graduation Programme, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Lucivalda P M Oliveira
- Nutrition and Health Post-Graduation Programme, Federal University of Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
40
|
Perez-Diaz-Del-Campo N, Marin-Alejandre BA, Cantero I, Monreal JI, Elorz M, Herrero JI, Benito-Boillos A, Riezu-Boj JI, Milagro FI, Tur JA, Martinez JA, Abete I, Zulet MA. Differential response to a 6-month energy-restricted treatment depending on SH2B1 rs7359397 variant in NAFLD subjects: Fatty Liver in Obesity (FLiO) Study. Eur J Nutr 2021; 60:3043-3057. [PMID: 33474638 DOI: 10.1007/s00394-020-02476-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is worldwide recognized as the most common cause of chronic liver disease. Current NAFLD clinical management relies on lifestyle change, nevertheless, the importance of the genetic make-up on liver damage and the possible interactions with diet are still poorly understood. The aim of the study was to evaluate the influence of the SH2B1 rs7359397 genetic variant on changes in body composition, metabolic status and liver health after 6-month energy-restricted treatment in overweight/obese subjects with NAFLD. In addition, gene-treatment interactions over the course of the intervention were examined. METHODS The SH2B1 genetic variant was genotyped in 86 overweight/obese subjects with NAFLD from the FLiO study (Fatty Liver in Obesity study). Subjects were metabolically evaluated at baseline and at 6-months. Liver assessment included ultrasonography, Magnetic Resonance Imaging, elastography, a lipidomic test (OWL®-test) and specific blood liver biomarkers. Additionally, body composition, general biochemical markers and dietary intake were determined. RESULTS Both genotypes significantly improved their body composition, general metabolic status and liver health after following an energy-restricted strategy. Liver imaging techniques showed a greater decrease in liver fat content (- 44.3%, p < 0.001) and in serum ferritin levels (p < 0.001) in the carriers of the T allele after the intervention. Moreover, lipidomic analysis, revealed a higher improvement in liver status when comparing risk vs. no-risk genotype (p = 0.006 vs. p = 0.926, respectively). Gene-treatment interactions showed an increase in fiber intake and omega-3 fatty acid in risk genotype (p interaction = 0.056 and p interaction = 0.053, respectively), while a significant increase in MedDiet score was observed in both genotype groups (p = 0.020). Moreover, no-risk genotype presented a relevant decrease in hepatic iron as well as in MUFA intake (p = 0.047 and p = 0.034, respectively). CONCLUSION Subjects carrying the T allele of the rs7359397 polymorphism may benefit more in terms of hepatic health and liver status when prescribed an energy-restricted treatment, where a Mediterranean dietary pattern rich in fiber and other components such as omega-3 fatty acids might boost the benefits. TRIAL REGISTRATION The Fatty Liver in Obesity was approved by the Research Ethics Committee of the University of Navarra and retrospectively registered (NCT03183193; www.clinicaltrials.gov ); June 2017.
Collapse
Affiliation(s)
- Nuria Perez-Diaz-Del-Campo
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Bertha Araceli Marin-Alejandre
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Irene Cantero
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - J Ignacio Monreal
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Clinical Chemistry Department, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - José Ignacio Herrero
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Josep A Tur
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & Balearic Islands Institute for Health Research (IDISBA), 07122, Palma, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - M Angeles Zulet
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
41
|
Machado MV. Aerobic Exercise in the Management of Metabolic Dysfunction Associated Fatty Liver Disease. Diabetes Metab Syndr Obes 2021; 14:3627-3645. [PMID: 34408459 PMCID: PMC8364841 DOI: 10.2147/dmso.s304357] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Sedentarism is the pandemic of modern times. It is associated with several medical conditions including obesity, type 2 diabetes mellitus, cardiovascular diseases and also liver disease, particularly metabolic dysfunction associated fatty liver disease (MAFLD). In an era when MAFLD is the most prevalent chronic liver disease worldwide, whilst no pharmacological therapy has been approved for it, exercise has proved to be effective in improving liver steatosis. Interestingly, exercise decreases liver fat even in the absence of weight loss. The challenge for the clinician is to motivate the obese patient with MAFLD, and associated co-morbidities, who has crystallized a sedentary behavior, at times when every need is at the distance of a click on the Internet, and the entire world can be visited behind a screen. In this review, the aggregate evidence on the mechanisms and effects of exercise in the management of MAFLD is summarized, with simple recommendations for everyday clinical practice.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Serviço de Gastrenterologia, Hospital de Vila Franca de Xira, Vila Franca de Xira, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Correspondence: Mariana Verdelho Machado Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, 1649-035, PortugalTel +35 1912620306 Email
| |
Collapse
|
42
|
Bischoff SC, Bernal W, Dasarathy S, Merli M, Plank LD, Schütz T, Plauth M. ESPEN practical guideline: Clinical nutrition in liver disease. Clin Nutr 2020; 39:3533-3562. [PMID: 33213977 DOI: 10.1016/j.clnu.2020.09.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Practical guideline is based on the current scientific ESPEN guideline on Clinical Nutrition in Liver Disease. METHODS It has been shortened and transformed into flow charts for easier use in clinical practice. The guideline is dedicated to all professionals including physicians, dieticians, nutritionists and nurses working with patients with chronic liver disease. RESULTS A total of 103 statements and recommendations are presented with short commentaries for the nutritional and metabolic management of patients with (i) acute liver failure, (ii) alcoholic steatohepatitis, (iii) non-alcoholic fatty liver disease, (iv) liver cirrhosis, and (v) liver surgery/transplantation. The disease-related recommendations are preceded by general recommendations on the diagnostics of nutritional status in liver patients and on liver complications associated with medical nutrition. CONCLUSION This practical guideline gives guidance to health care providers involved in the management of liver disease to offer optimal nutritional care.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Department for Clinical Nutrition, University of Hohenheim, Stuttgart, Germany.
| | - William Bernal
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Srinivasan Dasarathy
- Division of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Manuela Merli
- Gastroenterology and Hepatology Unit, Sapienza University of Rome, Rome, Italy
| | - Lindsay D Plank
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Tatjana Schütz
- IFB Adiposity Diseases, Leipzig University Medical Centre, Leipzig, Germany
| | - Mathias Plauth
- Department of Internal Medicine, Municipal Hospital of Dessau, Dessau, Germany
| |
Collapse
|
43
|
Kang S, Moon MK, Kim W, Koo BK. Association between muscle strength and advanced fibrosis in non-alcoholic fatty liver disease: a Korean nationwide survey. J Cachexia Sarcopenia Muscle 2020; 11:1232-1241. [PMID: 32638541 PMCID: PMC7567158 DOI: 10.1002/jcsm.12598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND We investigated the association between muscle strength and the prevalence of advanced fibrosis among individuals with non-alcoholic fatty liver disease (NAFLD) using a nationwide cross-sectional survey. METHODS Individuals, 20 to 79 years of age, from the Korean National Health and Nutrition Examination Surveys (KNHANES) from 2014 to 2016 were selected (N = 14 861), with sample weights applied. Muscle strength was quantified as the handgrip strength divided by the body mass index (BMI); low muscle strength (LMS) was defined as the lowest quartile (Q1 ) of the handgrip strength/BMI for our sample population. NAFLD was defined as hepatic steatosis index >36. Advanced fibrosis was defined as a fibrosis-4 index score ≥1.30 (FibrosisFIB4 ). RESULTS The mean age of the study population was 45.6 ± 0.2 years, and 42.4% were male. As muscle strength increased, the mean BMI and age decreased accordingly, and the proportions of diabetes, dyslipidaemia, hypertension, and obesity decreased significantly (P < 0.001 for all). In a crude analysis, the LMS was associated with an increased prevalence of NAFLD (odds ratio [OR] 3.62, 95% confidence interval [CI] 3.25-4.03, P < 0.001), which remained significant even after adjustment for age, sex, obesity, insulin resistance, diabetes, hypertension, dyslipidaemia, and high-sensitivity C-reactive protein (OR 1.66, 95% CI 1.28-2.16, P < 0.001). In this logistic regression model, the prevalence of NAFLD decreased by 24% with each quartile increment in muscle strength (OR 0.76, 95% CI 0.68-0.85, P < 0.001). Among individuals with NAFLD (n = 2092), LMS was significantly associated with the presence of advanced fibrosis (FibrosisFIB4 ) independently of age, sex, obesity, diabetes, hypertension, dyslipidaemia, and high-sensitivity C-reactive protein (OR 1.66, 95% CI 1.01-2.49, P = 0.015), which lost its statistical significance after additional adjustment for insulin resistance. CONCLUSIONS Low muscle strength is independently associated with NAFLD. The significant association between LMS and advanced fibrosis in NAFLD may be mediated through insulin resistance.
Collapse
Affiliation(s)
- Sunyoung Kang
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
- Department of Internal MedicineSeoul National University HospitalSeoulKorea
| | - Min Kyong Moon
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
- Division of Endocrinology, Department of Internal MedicineSeoul Metropolitan Government Seoul National University Boramae Medical CenterSeoulKorea
| | - Won Kim
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
- Division of Gastroenterology and Hepatology, Department of Internal MedicineSeoul Metropolitan Government Seoul National University Boramae Medical CenterSeoulKorea
| | - Bo Kyung Koo
- Department of Internal MedicineSeoul National University College of MedicineSeoulKorea
- Division of Endocrinology, Department of Internal MedicineSeoul Metropolitan Government Seoul National University Boramae Medical CenterSeoulKorea
| |
Collapse
|
44
|
Houttu V, Boulund U, Grefhorst A, Soeters MR, Pinto-Sietsma SJ, Nieuwdorp M, Holleboom AG. The role of the gut microbiome and exercise in non-alcoholic fatty liver disease. Therap Adv Gastroenterol 2020; 13:1756284820941745. [PMID: 32973925 PMCID: PMC7495942 DOI: 10.1177/1756284820941745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/08/2020] [Indexed: 02/04/2023] Open
Abstract
In recent years, the human gut microbiome has been found to influence a multitude of non-communicable diseases such as cardiovascular disease and metabolic syndrome, with its components type 2 diabetes mellitus and obesity. It is recognized to be mainly influenced by environmental factors, such as lifestyle, but also genetics may play a role. The interaction of gut microbiota and obesity has been widely studied, but in regard to non-alcoholic fatty liver disease (NAFLD) as a manifestation of obesity and insulin resistance, the causal role of the gut microbiome has not been fully established. The mechanisms by which the gut microbiome influences lipid accumulation, inflammatory responses, and occurrence of fibrosis in the liver are a topic of active research. In addition, the influence of exercise on gut microbiome composition is also being investigated. In clinical trials, exercise reduced hepatic steatosis independently of weight reduction. Other studies indicate that exercise may modulate the gut microbiome. This puts forward the question whether exercise could mediate its beneficial effects on NAFLD via changes in gut microbiome. Yet, the specific mechanisms underlying this potential connection are largely unknown. Thus, associative evidence from clinical trials, as well as mechanistic studies in vivo are called for to elucidate the relationship between exercise and the gut microbiome in NAFLD. Here, we review the current literature on exercise and the gut microbiome in NAFLD.
Collapse
Affiliation(s)
- Veera Houttu
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan G. Holleboom
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Thorp A, Stine JG. Exercise as Medicine: The Impact of Exercise Training on Nonalcoholic Fatty Liver Disease. ACTA ACUST UNITED AC 2020; 19:402-411. [PMID: 33767944 DOI: 10.1007/s11901-020-00543-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose of review Nonalcoholic fatty liver disease (NAFLD) is a leading cause of global liver disease. Because current pharmacologic treatments are ineffective, lifestyle change centered on exercise remains the most effective NAFLD treatment. The aim of this systematic review is to summarize and evaluate the current evidence supporting the use of exercise training as a medical treatment for adult patients with NAFLD. Recent findings At least 150 minutes each week of moderate intensity exercise of any type can improve NAFLD, both with and without modest weight loss. Exercise training reduces hepatic steatosis and liver inflammation, favorably changes body composition, improves vascular endothelial function, increases cardiorespiratory fitness and can lead to histologic response. To date, exercise-based NAFLD trials are limited by small sample size and significant heterogeneity. Summary While several key questions remain unanswered, exercise training will always be an important part of the medical management of patients with NAFLD.
Collapse
Affiliation(s)
- Audrey Thorp
- Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA, USA
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA, USA
- Department of Public Health Sciences, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA, USA
- Liver Center, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA, USA
- Cancer Institute, The Pennsylvania State University- Milton S. Hershey Medical Center, Hershey PA, USA
| |
Collapse
|
46
|
Xu Y, Guan Y, Jin W, Ding L, Wu J. WITHDRAWN: Higher appendicular skeletal muscle mass percentage is an independent protective factor for non-alcoholic steatohepatitis and significant fibrosis in male with NAFLD. GASTROENTEROLOGIA Y HEPATOLOGIA 2020:S0210-5705(20)30253-3. [PMID: 32893039 DOI: 10.1016/j.gastrohep.2020.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/31/2019] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Yilun Xu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang province, China
| | - Yaqi Guan
- Wenzhou Medical University, Faculty of Nursing, Wenzhou 325000, Zhejiang province, China
| | - Wenyi Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang province, China
| | - Li Ding
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang province, China
| | - Jinming Wu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang province, China.
| |
Collapse
|
47
|
Fougerat A, Montagner A, Loiseau N, Guillou H, Wahli W. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2020; 9:E1638. [PMID: 32650421 PMCID: PMC7408116 DOI: 10.3390/cells9071638] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Fougerat
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Alexandra Montagner
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institute of Metabolic and Cardiovascular Diseases, UMR1048 Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, UMR1048 Toulouse, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Walter Wahli
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
48
|
Physical activity intervention for non-diabetic patients with non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. BMC Gastroenterol 2020; 20:66. [PMID: 32164541 PMCID: PMC7066783 DOI: 10.1186/s12876-020-01204-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease nowadays. Changes in diet and lifestyle have led to a dramatic increase in the prevalence of NAFLD around the world. This meta-analysis is to investigate the efficacy of physical activity intervention on liver-specific endpoints in the population with NAFLD, including hepatic enzyme, serum lipid, glucose metabolism and intra-hepatic lipid. Methods PubMed and China National Knowledge Infrastructure (CNKI) databases were searched for randomized clinical trials of physical activity intervention on NAFLD patients through April 20th, 2019. Effect sizes were reported as standardized mean difference (SMD) and 95% confidence intervals (CI). Quality of included studies was assessed according to the Cochrane risk of bias tool. Meta-analyses were conducted using random-effect or fixed-effect models depending on the significance of heterogeneity. Subgroup analyses according to types and duration of physical activity were conducted to investigate clinical variability. Results Nine studies with a cumulative total of 951 participants met selection criteria. Physical activity was found associated with small reductions in hepatic enzyme parameters: ALT (SMD -0.17, 95% CI:-0.30 to − 0.05), AST (SMD -0.25, 95% CI: − 0.38, − 0.13) and GGT (SMD -0.22, 95% CI: − 0.36, − 0.08). Significant small improvements were also found in serum lipid parameters including TC (SMD = − 0.22, 95% CI: − 0.34, − 0.09), TG (SMD = − 0.18, 95% CI: − 0.31 to − 0.06) and LDL-C (SMD = − 0.26, 95% CI: − 0.39 to − 0.13). Significant improvement was also found in intra-hepatic lipid content (SMD = − 0.21, 95% CI: − 0.36 to − 0.06) There was no difference between physical intervention group and control group in HDL and three glucose metabolism parameters. Subgroup analysis suggested both aerobic exercise alone and resistance exercise alone can improve most liver function and longer period of exercise generally had better improvement effect. Conclusions Our findings suggest that physical activity alone can only slightly improve hepatic enzyme levels, most serum lipid levels and intra-hepatic lipid content in non-diabetic patients with NAFLD.
Collapse
|
49
|
Marjot T, Moolla A, Cobbold JF, Hodson L, Tomlinson JW. Nonalcoholic Fatty Liver Disease in Adults: Current Concepts in Etiology, Outcomes, and Management. Endocr Rev 2020; 41:5601173. [PMID: 31629366 DOI: 10.1210/endrev/bnz009] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disease, extending from simple steatosis to inflammation and fibrosis with a significant risk for the development of cirrhosis. It is highly prevalent and is associated with significant adverse outcomes both through liver-specific morbidity and mortality but, perhaps more important, through adverse cardiovascular and metabolic outcomes. It is closely associated with type 2 diabetes and obesity, and both of these conditions drive progressive disease toward the more advanced stages. The mechanisms that govern hepatic lipid accumulation and the predisposition to inflammation and fibrosis are still not fully understood but reflect a complex interplay between metabolic target tissues including adipose and skeletal muscle, and immune and inflammatory cells. The ability to make an accurate assessment of disease stage (that relates to clinical outcome) can also be challenging. While liver biopsy is still regarded as the gold-standard investigative tool, there is an extensive literature on the search for novel noninvasive biomarkers and imaging modalities that aim to accurately reflect the stage of underlying disease. Finally, although no therapies are currently licensed for the treatment of NAFLD, there are interventions that appear to have proven efficacy in randomized controlled trials as well as an extensive emerging therapeutic landscape of new agents that target many of the fundamental pathophysiological processes that drive NAFLD. It is highly likely that over the next few years, new treatments with a specific license for the treatment of NAFLD will become available.
Collapse
Affiliation(s)
- Thomas Marjot
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ahmad Moolla
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jeremy F Cobbold
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
50
|
Ranjbar K, Matin Homaie H, Azarbayjani MA, Piri M. The Effect of Gallic Acid Supplement and Resistance Exercise on the Bio-markers of Liver in Intoxicated Male Rats of Anabolic Steroid. MEDICAL LABORATORY JOURNAL 2020. [DOI: 10.29252/mlj.14.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|