1
|
Saati S, Dehghan P, Zamanian M, Faghfouri AH, Maleki P. Effectiveness of different gums on modulating of glycemic indices in adults: a systematic review and meta-analysis. J Diabetes Metab Disord 2025; 24:32. [PMID: 39736929 PMCID: PMC11682031 DOI: 10.1007/s40200-024-01541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/19/2024] [Indexed: 01/01/2025]
Abstract
Background Functional foods have been widely used as the anti-diabetic agents worldwide. Existing studies presented conflicting results of anti-hyperglycemic properties of gums. This systematic review and meta-analysis study evaluated the existing trials and determined the efficacy of different gums on glycemic indices. Method Systematic search was performed on four main databases (PubMed, Scopus, Embase, Web of Science) by November 2023 using medical subject headings. The meta-analyses were conducted on the findings of the studies of guar gum supplementation on glycemic indices including fasting blood glucose (FBG) and HbA1c (hemoglobinA1c) and systematic review studies include the effect of xanthan gum, arabic gum, bitter almond gum, flaxseed gum, oat gum, gellan gum, locust been gum, tragacanth gum, and karaya gum on fasting plasma insulin, postprandial plasma glucose, HbA1c and Homeostatic Model Assessment for Insulin Resistance (HOMA - IR). Results Totally, 42 studies were included in this systematic review. Regarding guar gum, xanthan gum, and Arabic gum, most of included studies in our investigation showed that guar gum can be considered as an anti-hyperglycemic agent. Results on other types of gums including bitter almond gum, flaxseed gum, oat gum, gellan gum, locust been gum, tragacanth gum, and karaya gum are limited and exact interpretation cannot be obtained. In meta-analysis on 17 studies of guar gum, it was identified guar gum had a non-significant decrease of 3.02 mg/dl (Mean difference: -3.02, CI 95%: -7.60, 1.56) on the fasting glucose and 0.23 (Mean difference: -0.23, CI 95%: -0.63, 0.17) on HbA1c. Conclusion Modification of food processing using gums may be a promising strategy to help modulate glycemic indices. More studies with larger sample size are needed, both with acute and long-term interventions to clarify this issue. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01541-0.
Collapse
Affiliation(s)
- Saba Saati
- Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamanian
- Department of epidemiology, School of Health, Arak University of Medical Science, Arak, Iran
| | - Amir Hossein Faghfouri
- Maternal and Childhood Obesity Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Parham Maleki
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Fallah F, Mahdavi R. Modulatory Effects of Multi-species/Multi-strain Synbiotic and L-carnitine Concomitant Supplementation on Atherogenic-Indices, Body Composition, Visceral Obesity, and Appetite in Metabolically Healthy Women with Obesity: A Double-Blind Randomized Controlled Clinical Trial. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10460-2. [PMID: 39921845 DOI: 10.1007/s12602-025-10460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/10/2025]
Abstract
Obesity, a chronic disease with pandemic proportions, is recognized as a major risk factor for cardiometabolic disorders due to its association with atherogenic dyslipidemia, a common characteristic attributed to visceral adiposity in patients with obesity. Atherogenic and visceral-obesity indices have been conceded as surrogate cardiovascular diseases (CVD) indicators surpassing the conventional markers due to stronger predictive power for obesity-induced cardiometabolic risk and CVD mortality rate. Nutraceuticals have been suggested as emerging approaches to counteract obesity-associated cardiometabolic disorders. Considering the evidence addressing the ameliorating effects of either L-carnitine or biotics on metabolic indices, also the reports addressing higher efficacy of concomitant supplementation versus single-therapies, this clinical trial was conducted to assess the effects of L-carnitine + multi-species/multi-strain synbiotic combined supplementation compared to L-carnitine mono-therapy on atherogenic-indices, body composition, visceral obesity, and appetite sensations in 46 metabolically healthy women with obesity, randomly assigned to co-supplementation (L-carnitine-tartrate (2 × 500 mg/dl) + synbiotic (one capsule/day)) or mono-therapy (L-carnitine-tartrate (2 × 500 mg/dl) + maltodextrin (one capsule/day)) groups for 8 weeks. L-carnitine + synbiotic co-supplementation led to a significantly greater reduction in atherogenic-indices including atherogenic-index-of-plasma (AIP), Castelli's-risk-index-I (CRI-I), Castelli's-risk-index-II (CRI-II), atherogenic-coefficient (AC), lipoprotein-combine index (LCI), systolic blood pressure (SBP), fat-mass (FM) weight/percent, visceral-adiposity index (VAI), waste-to-height ratio (WHtR), body-adiposity index (BAI), and appetite sensation scores compared to L-carnitine mono-therapy. L-carnitine + synbiotic combined supplementation was more efficient in improving atherogenic-indices as cardiovascular risk markers, body composition, visceral obesity, and appetite sensations in metabolically healthy women with obesity. Therefore, simultaneous supplementation of L-carnitine + synbiotic might be considered a promising approach to ameliorate cardiometabolic risk factors in healthy individuals with obesity. Further longer period studies are required to confirm these findings. (Iranian Registry of Clinical Trials (IRCT; https://irct.behdasht.gov.ir/trial/28048 ).
Collapse
Affiliation(s)
- Farnoush Fallah
- Student Research Committee, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Cui H, Jin Y, Wang N, Liu H, Shu R, Wang J, Wang X, Jia B, Wang Y, Bian Y, Wen W. Mechanic evaluation of Wu-Mei-Pill on colitis-associated colorectal cancer: An integrated transcriptomics, metabolomics, and experimental validation study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155509. [PMID: 38452403 DOI: 10.1016/j.phymed.2024.155509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Chronic intestinal inflammatory diseases play a crucial role in the onset of colorectal cancer (CRC). Effectively impeding the progression of colitis-associated colorectal cancer (CAC) can be instrumental in hindering CRC development. Wu-Mei-Pill (WMP), a formulation comprising various herbal extracts, is clinically employed for CAC treatment, yet the underlying mechanism of WMP's efficacy in CAC remains unclear. Our study firstly demonstrated the effects and mechanisms of WMP on transcriptional and metabolic levels based on integrated transcriptomics and untargeted metabolomics and relative experimental validations. MATERIALS AND METHODS A CAC mouse model was established through a single injection of azoxymethane (AOM) followed by intermittent dextran sodium sulfate (DSS) intervention, with subsequent WMP administration. Initially, the therapeutic impact of WMP on the CAC model was assessed by observing survival rate, body weight change, colon length, tumor number, tumor load, and pathological changes in the colon tissue of CAC mice post-WMP intervention. Subsequently, differential genes and metabolites in the colorectal tissue of CAC mice following WMP intervention were identified through transcriptomics and non-targeted metabolomics. Finally, the influence of WMP on the peroxisome proliferator activated receptor (PPAR) pathway, Wnt pathway, and CC motif chemokine ligand 3 (CCL3)/ CC motif chemokine receptor 1 (CCR1) axis in CAC mice was verified through western blot, immunofluorescence, and ELISA based on the results of transcriptomics and non-targeted metabolomics. RESULTS WMP intervention enhanced survival, alleviated body weight loss, shortened colon length, tumor occurrence, and pathological changes in the colorectal tissue of CAC mice, such as glandular damage, tumourigenesis, and inflammatory cell infiltration. Transcriptomic and non-targeted metabolomic results revealed that WMP intervention up-regulated the expression of key regulatory mechanisms of fatty acid oxidation PPAR pathway-related genes (Pparg, Ppara, Cpt1a, and Acadm) and metabolites (L-carnitine and L-palmitoylcarnitine). Additionally, it down-regulated Wnt pathway-related genes (Wnt3, Axin2, Tcf7, Mmp7, Lgr5, Wnt5a, Fzd6, Wnt7b, Lef1, and Fzd10 etc.) and pro-inflammatory related genes (Il1b, Il6, Il17a, Ccl3, and Ccr1 etc.). Experimental validation demonstrated that WMP up-regulated PPAR pathway-related proteins [PPARγ, PPARα, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase medium chain (ACADM)] in the colorectal tissue of CAC mice. It also down-regulated Wnt pathway-related proteins [β-catenin, T-cell factor (TCF), lymphoid enhancer-binding factor (LEF), and matrix metallopeptidase 7 (MMP7)], inhibited the nuclear translocation of the key transcription factor β-catenin in the Wnt pathway, and suppressed epithelial-to-mesenchymal transition (EMT) activation induced by the Wnt pathway (up-regulated E-cadherin and down-regulated Vimentin). Furthermore, WMP intervention reduced pro-inflammatory factors [interleukin (IL)-6, IL-1β, and IL-17A] and decreased CCL3/CCR1 axis factors, including CCL3 protein levels and diminished F4/80+CCR1+ positive expressed cells. CONCLUSION WMP significantly inhibits CAC tumorigenesis by up-regulating PPARα-mediated fatty acid oxidation, inhibiting the Wnt signaling pathway-mediated EMT, and suppressing CCL3/CCR1-mediated inflammatory responses.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yutong Jin
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Haizhao Liu
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rongli Shu
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiangling Wang
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Beitian Jia
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yiyang Wang
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China.
| |
Collapse
|
4
|
Parfenov AI. The value of increased intestinal permeability in the pathogenesis of internal diseases. TERAPEVT ARKH 2024; 96:85-90. [DOI: 10.26442/00403660.2024.02.202587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In the process of evolution in the gastrointestinal tract, a system of protection against bacterial and food antigens from getting into the blood was formed. The causes of increased intestinal permeability (IIP) can be microbiota imbalance, use of antibiotics, non-steroidal anti-inflammatory drugs, stress, diet rich in fructose, glucose, sucrose and long-chain fatty acids. The appearance of IIP may be of paramount importance in the pathogenesis of autoimmune diseases. A diet low in fermentable oligodimonosaccharides and polyols, pre- and probiotics, polyphenols, vitamins, short-chain fatty acids, dietary fiber, glutamine contributes to the reduction of IIP. It has been established that the cytoprotector rebamipide strengthens the barrier function throughout the gastrointestinal tract, which is reflected in practical recommendations for its use in diseases accompanied by IIP. The study of this direction will contribute to the emergence of a new strategy for the treatment of internal diseases.
Collapse
|
5
|
Recharla N, Geesala R, Shi XZ. Gut Microbial Metabolite Butyrate and Its Therapeutic Role in Inflammatory Bowel Disease: A Literature Review. Nutrients 2023; 15:2275. [PMID: 37242159 PMCID: PMC10221771 DOI: 10.3390/nu15102275] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Background and objective: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disorder characterized by aberrant immune responses and compromised barrier function in the gastrointestinal tract. IBD is associated with altered gut microbiota and their metabolites in the colon. Butyrate, a gut microbial metabolite, plays a crucial role in regulating immune function, epithelial barrier function, and intestinal homeostasis. In this review, we aim to present an overview of butyrate synthesis and metabolism and the mechanism of action of butyrate in maintaining intestinal homeostasis and to discuss the therapeutic implications of butyrate in IBD. Methods: We searched the literature up to March 2023 through PubMed, Web of Science, and other sources using search terms such as butyrate, inflammation, IBD, Crohn's disease, and ulcerative colitis. Clinical studies in patients and preclinical studies in rodent models of IBD were included in the summary of the therapeutic implications of butyrate. Results: Research in the last two decades has shown the beneficial effects of butyrate on gut immune function and epithelial barrier function. Most of the preclinical and clinical studies have shown the positive effect of butyrate oral supplements in reducing inflammation and maintaining remission in colitis animal models and IBD patients. However, butyrate enema showed mixed effects. Butyrogenic diets, including germinated barley foodstuff and oat bran, are found to increase fecal butyrate concentrations and reduce the disease activity index in both animal models and IBD patients. Conclusions: The current literature suggests that butyrate is a potential add-on therapy to reduce inflammation and maintain IBD remission. Further clinical studies are needed to determine if butyrate administration alone is an effective therapeutic treatment for IBD.
Collapse
Affiliation(s)
| | | | - Xuan-Zheng Shi
- Department of Internal Medicine, The University of Texas Medical Branch, 301 University Blvd, 4.106 Basic Science Building, Galveston, TX 77555-0655, USA; (N.R.); (R.G.)
| |
Collapse
|
6
|
Fallah F, Mahdavi R. L-Carnitine and synbiotic co-supplementation: beneficial effects on metabolic-endotoxemia, meta-inflammation, and oxidative-stress biomarkers in obese patients: a double blind, randomized, controlled clinical trial. Food Funct 2023; 14:2172-2187. [PMID: 36752775 DOI: 10.1039/d2fo03348h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Obesity, a chronic pandemic disease, is characterized by low-grade chronic inflammation, accompanied by over-expression of pro-inflammatory cytokines, thereby contributing to metabolic disorders pathogenesis. Oxidative-stress, an adverse cellular response to adipocyte hypertrophy, promotes inflammation. Furthermore, gut-microbiota dysbiosis may induce oxidative-stress, low-grade inflammation, and metabolic-endotoxemia as major drivers of obesity. Functional-foods/nutraceuticals have attracted extensive attention due to their plausible anti-inflammatory/anti-oxidative properties; evidence supports the superiority of the nutraceutical combined-supplementation approach versus conventional mono-therapies. Current data suggest the anti-oxidative/anti-inflammatory properties of either L-carnitine or pre/pro/synbiotics. This trial compared the effects of co-supplementing L-carnitine and multi-species/multi-strain synbiotic versusL-carnitine mono-therapy on inflammatory/anti-inflammatory, oxidative-stress, and metabolic-endotoxemia biomarkers in 46 female obese patients, receiving either co-supplementation (L-carnitine-tartrate (2 × 500 mg d-1) + multi-species/multi-strain synbiotic (1 capsule per day)) or mono-therapy (L-carnitine-tartrate (2 × 500 mg d-1) + maltodextrin (1 capsule per day)) for eight weeks. L-Carnitine + synbiotic co-supplementation significantly decreased interleukin-6 (IL-6, -33.98%), high-sensitivity-C-reactive-protein (hs-CRP, -10%), tumor-necrosis-factor-alpha (TNF-α, -18.73%), malondialdehyde (MDA, -21.73%), and lipopolysaccharide (LPS, -10.14%), whereas the increase in interleukin-10 (IL-10, 7.69%) and total-antioxidant-capacity (TAC, 4.13%) levels was not significant. No significant changes were observed for the above-mentioned parameters in the L-carnitine + placebo group, except for a significant reduction in IL-10 (-17.59%) and TNF-α (-14.78%); however, between-group differences did not reach the significant threshold. Co-supplementing L-carnitine + multi-strain synbiotic led to significant amelioration of inflammatory, oxidative, and metabolic-endotoxemia responses in female obese patients; nevertheless, no improving effects were observed in patients receiving single-supplementation, suggesting that L-carnitine + synbiotic co-supplementation might represent an adjuvant approach to improve oxidative-stress/pro-inflammatory indicators in women with obesity, possibly through beneficial effects of the synbiotic alone. Further longer duration studies with higher doses of L-carnitine in a three-group setting are warranted to elucidate the possibility of synergistic or complementary mechanisms.
Collapse
Affiliation(s)
- Farnoush Fallah
- Student Research Committee, Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Mahdavi
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Aleman RS, Moncada M, Aryana KJ. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023; 28:619. [PMID: 36677677 PMCID: PMC9862683 DOI: 10.3390/molecules28020619] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
The human body is in daily contact with potentially toxic and infectious substances in the gastrointestinal tract (GIT). The GIT has the most significant load of antigens. The GIT can protect the intestinal integrity by allowing the passage of beneficial agents and blocking the path of harmful substances. Under normal conditions, a healthy intestinal barrier prevents toxic elements from entering the blood stream. However, factors such as stress, an unhealthy diet, excessive alcohol, antibiotics, and drug consumption can compromise the composition of the intestinal microbiota and the homeostasis of the intestinal barrier function of the intestine, leading to increased intestinal permeability. Intestinal hyperpermeability can allow the entry of harmful agents through the junctions of the intestinal epithelium, which pass into the bloodstream and affect various organs and systems. Thus, leaky gut syndrome and intestinal barrier dysfunction are associated with intestinal diseases, such as inflammatory bowel disease and irritable bowel syndrome, as well as extra-intestinal diseases, including heart diseases, obesity, type 1 diabetes mellitus, and celiac disease. Given the relationship between intestinal permeability and numerous conditions, it is convenient to seek an excellent strategy to avoid or reduce the increase in intestinal permeability. The impact of dietary nutrients on barrier function can be crucial for designing new strategies for patients with the pathogenesis of leaky gut-related diseases associated with epithelial barrier dysfunctions. In this review article, the role of functional ingredients is suggested as mediators of leaky gut-related disorders.
Collapse
Affiliation(s)
- Ricardo Santos Aleman
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| | - Marvin Moncada
- Department of Food, Bioprocessing & Nutrition Sciences and the Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 27599, USA
| | - Kayanush J. Aryana
- School of Nutrition and Food Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 28081, USA
| |
Collapse
|
8
|
Microbiota Dysbiosis and Gut Barrier Dysfunction Associated with Non-Alcoholic Fatty Liver Disease Are Modulated by a Specific Metabolic Cofactors' Combination. Int J Mol Sci 2022; 23:ijms232213675. [PMID: 36430154 PMCID: PMC9692973 DOI: 10.3390/ijms232213675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
The gut is a selective barrier that not only allows the translocation of nutrients from food, but also microbe-derived metabolites to the systemic circulation that flows through the liver. Microbiota dysbiosis occurs when energy imbalances appear due to an unhealthy diet and a sedentary lifestyle. Dysbiosis has a critical impact on increasing intestinal permeability and epithelial barrier deterioration, contributing to bacterial and antigen translocation to the liver, triggering non-alcoholic fatty liver disease (NAFLD) progression. In this study, the potential therapeutic/beneficial effects of a combination of metabolic cofactors (a multi-ingredient; MI) (betaine, N-acetylcysteine, L-carnitine, and nicotinamide riboside) against NAFLD were evaluated. In addition, we investigated the effects of this metabolic cofactors' combination as a modulator of other players of the gut-liver axis during the disease, including gut barrier dysfunction and microbiota dysbiosis. Diet-induced NAFLD mice were distributed into two groups, treated with the vehicle (NAFLD group) or with a combination of metabolic cofactors (NAFLD-MI group), and small intestines were harvested from all animals for histological, molecular, and omics analysis. The MI treatment ameliorated gut morphological changes, decreased gut barrier permeability, and reduced gene expression of some proinflammatory cytokines. Moreover, epithelial cell proliferation and the number of goblet cells were increased after MI supplementation. In addition, supplementation with the MI combination promoted changes in the intestinal microbiota composition and diversity, as well as modulating short-chain fatty acids (SCFAs) concentrations in feces. Taken together, this specific combination of metabolic cofactors can reverse gut barrier disruption and microbiota dysbiosis contributing to the amelioration of NAFLD progression by modulating key players of the gut-liver axis.
Collapse
|
9
|
Ahmed O, Farid A, Elamir A. Dual role of melatonin as an anti-colitis and anti-extra intestinal alterations against acetic acid-induced colitis model in rats. Sci Rep 2022; 12:6344. [PMID: 35428860 PMCID: PMC9012815 DOI: 10.1038/s41598-022-10400-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The available ulcerative colitis drugs exhibit limited outcomes and adverse side effects. Therefore, our study aimed to investigate the therapeutic efficacy of melatonin in acetic acid (AA)-induced colitis to establish a possible treatment for colitis and its impacts on vital organs. Following colitis induction (2 ml 5% AA, rectally), rats were orally received melatonin (5 mg/kg) once per day for 6 days after colitis induction. Then, histopathological examination of colon, kidney, liver, and spleen was conducted, interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), myeloperoxidase (MPO), malondialdehyde (MDA), glutathione (GSH), and total antioxidant capacity (TAC) levels were assessed in colon tissue. Colitis induction in untreated rats caused necrotic effects in colon tissues, a significant increase in colonic IL-1β, TNF-α, MPO, and MDA levels, and a remarkable decrease in GSH and TAC levels in colon tissue in comparison to the control group. Meanwhile, melatonin treatment reversed these parameters by improving the microscopic and macroscopic colitis features and extra-intestinal (kidney, liver, and spleen) changes in all treated rats compared to the colitis control group. These results denote a reduction in colitis severity due to the anti-inflammatory and anti-oxidative effects of melatonin and its positive impact on the vital organs.
Collapse
Affiliation(s)
- Osama Ahmed
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Alyaa Farid
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Azza Elamir
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
10
|
Ahmed O, Abdel-Halim M, Farid A, Elamir A. Taurine loaded chitosan-pectin nanoparticle shows curative effect against acetic acid-induced colitis in rats. Chem Biol Interact 2022; 351:109715. [PMID: 34695389 DOI: 10.1016/j.cbi.2021.109715] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/29/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Owing to the poor outcomes and adverse side effects of existing ulcerative colitis drugs, the study aimed to develop an alternative nano-based treatment approach. The study was designed to characterize the in vitro and in vivo properties of taurine, taurine-loaded chitosan pectin nanoparticles (Tau-CS-PT-NPs) and chitosan pectin nanoparticles (CS-PT-NPs) in the therapy of acetic acid (AA)-induced colitis in rats. CS-PT-NPs and Tau-CS-PT-NPs were prepared by ionic gelation method then in vitro characterized, including transmission electron microscopy (TEM), polydispersity index (PDI), zeta potential, Fourier transform infrared (FTIR) spectroscopy, encapsulation efficiency (EE), and drug release profile. Following colitis induction, rats were orally administrated with free taurine, Tau-CS-PT-NPs, and CS-PT-NPs once per day for six days. The sizes of Tau-CS-PT-NPs and CS-PT-NPs were 74.17 ± 2.88 nm and 42.22 ± 2.41 nm, respectively. EE was about 69.09 ± 1.58%; furthermore, 60% of taurine was released in 4 h in simulated colon content. AA-induced colitis in untreated rats led to necrosis of colon tissues and a significant increase in interleukin-1beta (IL-1β), Tumor Necrosis Factor-alpha (TNF-α), myeloperoxidase (MPO), and malondialdehyde (MDA) levels associated with a remarkable reduction in glutathione (GSH) level in colon tissue in comparison to control group. Treatment with taurine, Tau-CS-PT-NPs, and CS-PT-NPs partly reversed these effects. The present study demonstrated that the administration of free taurine, CS-PT-NPs, and Tau-CS-PT-NPs exerted beneficial effects in acetic acid-induced colitis by their anti-inflammatory and antioxidant activities. The best therapeutic effect was observed in animals treated with taurine-loaded chitosan pectin nanoparticles.
Collapse
Affiliation(s)
- Osama Ahmed
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Mohammad Abdel-Halim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University, Cairo, 11835, Egypt
| | - Alyaa Farid
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Azza Elamir
- Zoology Dep., Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
11
|
Kushkevych I, Martínková K, Vítězová M, Rittmann SKMR. Intestinal Microbiota and Perspectives of the Use of Meta-Analysis for Comparison of Ulcerative Colitis Studies. J Clin Med 2021; 10:462. [PMID: 33530381 PMCID: PMC7865400 DOI: 10.3390/jcm10030462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Meta-analysis is a statistical process summarizing comparable data from a number of scientific papers. The use of meta-analysis in microbiology allows decision-making that has an impact on public health policy. It can happen that the primary researches come to different conclusions, although these are targeted with the same research question. It is, therefore, inevitable to have the means to systematically evaluate information and compare research results. Ulcerative colitis together with Crohn's disease are among the two main inflammatory bowel diseases. This chronic disease of the gastrointestinal tract, with an as yet unclear etiology, is presented by an uncontrolled inflammatory immune response in genetically predisposed individuals to as yet undefined environmental factors in interaction with the intestinal microbiota itself. In patients with ulcerative colitis (UC), changes in the composition and relative abundance of microorganisms could be observed. Sulfate-reducing bacteria (SRB), which commonly occur in the large intestine as part of the commensal microbiota of animals and humans involved in the pathogenesis of the disease, have been shown to occur. SRB are anaerobic organisms affecting short-chain fatty acid metabolism. This work outlines the perspectives of the use of meta-analysis for UC and changes in the representation of intestinal organisms in these patients.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (K.M.); (M.V.)
| | - Kristýna Martínková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (K.M.); (M.V.)
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; (K.M.); (M.V.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology and Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria
| |
Collapse
|
12
|
Couto MR, Gonçalves P, Magro F, Martel F. Microbiota-derived butyrate regulates intestinal inflammation: Focus on inflammatory bowel disease. Pharmacol Res 2020; 159:104947. [DOI: 10.1016/j.phrs.2020.104947] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/04/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
|
13
|
Ahn SI, Cho S, Choi NJ. Effect of dietary probiotics on colon length in an inflammatory bowel disease-induced murine model: A meta-analysis. J Dairy Sci 2019; 103:1807-1819. [PMID: 31785874 DOI: 10.3168/jds.2019-17356] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022]
Abstract
We investigated the effect of probiotic supplementation on inflammatory bowel disease (IBD) by meta-analysis. We included 30 studies to assess the effect of probiotic administration. We estimated the effect size using standardized mean difference, and we evaluated the statistical heterogeneity of the effect size using Cochran's Q test, followed by meta-ANOVA and meta-regression analysis to explain the heterogeneity of the effect size using a mixed-effects model. We conducted Egger's linear regression test to evaluate publication bias. Among the factors evaluated, colon length and myeloperoxidase showed the greatest Q statistic and I2 index, respectively. Colon length, transforming growth factor-β, IL-10, superoxide dismutase, and glutathione showed positive effect sizes in the fixed- and random-effects models. The others (spleen weight, tumor necrosis factor α, IL-1β, IL-6, IL-12, IL-17, IFN-γ, disease activity index, thiobarbituric acid reactive substances, nitric oxide, myeloperoxidase, malondialdehyde, histological score, and macroscopic inflammatory score) showed negative effect sizes in the fixed- and random-effects models. Probiotics showed a significant effect on all investigated factors, except IL-10. In meta-ANOVA and meta-regression analysis, Lactobacillus paracasei was the most effective probiotic for colon length. Lactobacillus paracasei, Lactobacillus reuteri, Lactobacillus fermentum, and a mixture of Lactobacillus bulgaricus and Saccharomyces boulardii (LC + SB) were effective for colon length, tumor necrosis factor α, IL-6, IL-10, IFN-γ, and disease activity index. Lactobacillus rhamnosus was most effective for IL-10 and IFN-γ. Dietary probiotics are effective in improving the symptoms of IBD. Although the results of this meta-analysis had some limitations due to a lack of animal experiments, they will be meaningful to people with IBD.
Collapse
Affiliation(s)
- Sung-Il Ahn
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Sangbuem Cho
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Nag-Jin Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Korea.
| |
Collapse
|
14
|
Moeinian M, Abdolghaffari AH, Nikfar S, Momtaz S, Abdollahi M. Effects of alpha lipoic acid and its derivative "andrographolid-lipoic acid-1" on ulcerative colitis: A systematic review with meta-analysis of animal studies. J Cell Biochem 2018; 120:4766-4782. [PMID: 30362597 DOI: 10.1002/jcb.27807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022]
Abstract
We aimed to review and meta-analyze the inflammatory and oxidative factors following alpha lipoic acid (ALA) and its derivative "andrographolid-lipoic acid-1" (AL-1) in ulcerative colitis (UC). ALA plays an important role in scavenging intracellular radicals and inflammatory elements. AL-1 is found in herbal medicines with potent anti-inflammatory properties. Data were collected from the Google Scholar, PubMed, Scopus, Evidence-based medicine/clinical trials, and Cochrane library database until 2017, which finally resulted in 22 animal studies (70 rats and 162 mice). The beneficial effects of ALA or AL-1 on the most important parameters of UC were reviewed; also, studies were considered separately in mice and rats. Administration of ALA and AL-1 significantly reduced the tumor necrosis factor-α level compared with the controls, while data were not noteworthy in the meta-analysis (mean differences = -18.57 [95% CI = -42.65 to 5.51], P = 0.13). In spite of insignificant decrease in meta-analysis outcomes (differences = 6.92 [95% CI = -39.33 to 53.16], P = 0.77), a significant reduction in myeloperoxidase activity was shown following ALA or AL-1 treatment compared with the controls. Despite significant differences in each study, we had to exclude some studies to homogenize data for meta-analyzing as they showed insignificant results. Interleukin 6, cyclooxygenase-2, glutathione, malondialdehyde, superoxide dismutase, histopathological score, macroscopic and microscopic scores, disease activity index, body weight change, and colon length were also reviewed. Most studies have emphasized on significant positive effects of ALA and AL-1. Comprehensive clinical trials are obligatory to determine the precious position of ALA or AL-1 in the management of UC.
Collapse
Affiliation(s)
- Mahsa Moeinian
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.,Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shekoufeh Nikfar
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
McNabney SM, Henagan TM. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance. Nutrients 2017; 9:E1348. [PMID: 29231905 PMCID: PMC5748798 DOI: 10.3390/nu9121348] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Increased dietary fiber consumption has been associated with many beneficial effects, including amelioration of obesity and insulin resistance. These effects may be due to the increased production of short chain fatty acids, including propionate, acetate and butyrate, during fermentation of the dietary fiber in the colon. Indeed, oral and dietary supplementation of butyrate alone has been shown to prevent high fat-diet induced obesity and insulin resistance. This review focuses on sources of short chain fatty acids, with emphasis on sources of butyrate, mechanisms of fiber and butyrate metabolism in the gut and its protective effects on colon cancer and the peripheral effects of butyrate supplementation in peripheral tissues in the prevention and reversal of obesity and insulin resistance.
Collapse
Affiliation(s)
- Sean M McNabney
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Tara M Henagan
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
16
|
van der Beek CM, Dejong CHC, Troost FJ, Masclee AAM, Lenaerts K. Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutr Rev 2017; 75:286-305. [PMID: 28402523 DOI: 10.1093/nutrit/nuw067] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Short-chain fatty acids (SCFAs), mainly acetate, propionate, and butyrate, produced by microbial fermentation of undigested food substances are believed to play a beneficial role in human gut health. Short-chain fatty acids influence colonic health through various mechanisms. In vitro and ex vivo studies show that SCFAs have anti-inflammatory and anticarcinogenic effects, play an important role in maintaining metabolic homeostasis in colonocytes, and protect colonocytes from external harm. Animal studies have found substantial positive effects of SCFAs or dietary fiber on colonic disease, but convincing evidence in humans is lacking. Most human intervention trials have been conducted in the context of inflammatory bowel disease. Only a limited number of those trials are of high quality, showing little or no favorable effect of SCFA treatment over placebo. Opportunities for future research include exploring the use of combination therapies with anti-inflammatory drugs, prebiotics, or probiotics; the use of prodrugs in the setting of carcinogenesis; or the direct application of SCFAs to improve mucosal healing after colonic surgery.
Collapse
Affiliation(s)
- Christina M van der Beek
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Cornelis H C Dejong
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Freddy J Troost
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ad A M Masclee
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Kaatje Lenaerts
- C.M. van der Beek, C.H.C. Dejong, F.J. Troost, A.A.M. Masclee, and K. Lenaerts are with Top Institute Food and Nutrition, Wageningen, the Netherlands. C.M. van der Beek, C.H.C. Dejong, and K. Lenaerts are with the Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands. C.H.C. Dejong is with the School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht, the Netherlands. F.J. Troost and A.A.M. Masclee are with the Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
17
|
Moderate Exercise Has Limited but Distinguishable Effects on the Mouse Microbiome. mSystems 2017; 2:mSystems00006-17. [PMID: 28845459 PMCID: PMC5566786 DOI: 10.1128/msystems.00006-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/25/2017] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome is known to have a complex yet vital relationship with host health. While both exercise and the gut microbiome have been shown to impact human health independently, the direct effects of moderate exercise on the intestinal microbiota remain unclear. In this study, we compared gut microbial diversity and changes in inflammatory markers associated with exercise over an 8-week period in mice that performed either voluntary exercise (VE) (n = 10) or moderate forced exercise (FE) (n = 11) and mice that did not perform any exercise (n = 21). VE mice, but not FE mice, had increased food intake and lean body mass compared to sedentary mice. The levels of inflammatory markers associated with exercise were similar for mice in all three groups. Traditional microbial profiles comparing operational taxonomic units (OTUs) in samples (P > 0.1) and multivariate analysis of beta diversity via Adonis testing (P > 0.1) did not identify significantly altered taxonomic profiles in the voluntary or forced exercise group compared to the sedentary controls. However, a random forests machine learning model, which takes into account the relationships between bacteria in a community, classified voluntary exercisers and nonexercisers with 97% accuracy at 8 weeks. The top bacteria used by the model allowed us to identify known taxa (Bacteroides, S24-7, and Lactobacillus) and novel taxa (Rikenellaceae and Lachnospiraceae) associated with exercise. Although aerobic exercise in mice did not result in significant changes of abundance in gut microbes or in host inflammatory response, more sophisticated computational methods could identify some microbial shifts. More study is needed on the effects of various exercise intensities and their impact on the gut microbiome. IMPORTANCE The bacteria that live in our gut have a complex yet vital relationship with our health. Environmental factors that influence the gut microbiome are of great interest, as recent research demonstrates that these microbes, mostly bacteria, are important for normal host physiology. Diseases such as obesity, diabetes, inflammatory bowel disease, and colon cancer have also been linked to shifts in the microbiome. Exercise is known to have beneficial effects on these diseases; however, much less is known about its direct impact on the gut microbiome. Our results illustrate that exercise has a moderate but measurable effect on gut microbial communities in mice. These methods can be used to provide important insight into other factors affecting the microbiome and our health.
Collapse
|
18
|
Baeeri M, Momtaz S, Navaei-Nigjeh M, Niaz K, Rahimifard M, Ghasemi-Niri SF, Sanadgol N, Hodjat M, Sharifzadeh M, Abdollahi M. Molecular evidence on the protective effect of ellagic acid on phosalone-induced senescence in rat embryonic fibroblast cells. Food Chem Toxicol 2017; 100:8-23. [PMID: 27965107 DOI: 10.1016/j.fct.2016.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/02/2016] [Accepted: 12/10/2016] [Indexed: 01/09/2023]
Abstract
Salient evidence testifies the link between organophosphorus (OPs) exposure and the formation of free radical oxidants; and it is well accepted that free radicals are one of the basic concerns of senescence. To show the oxidative features of phosalone (PLN) as a key member of OPs, to induce senescence in rat embryonic fibroblast (REF) cells and to demonstrate the beneficial effects of the known antioxidant ellagic acid (EA) in diminishing the PLN-induced toxic effects, the levels of cell viability, oxidative stress markers, inflammatory cytokines, telomerase activity, and the expression of the genes related to senescence were investigated. Our results lend support to the hypothesis that PLN enhances the entire premature senescence parameters of REF cells. This accounts for the mechanistic approval of the role of OPs in induction of senescence in rat fibroblasts. Moreover, incorporation of EA diminished PLN toxicity mainly through suppression of p38 and p53 at gene and protein levels, and tempered the inflammation factors (TNF-α, IL-1β, IL-6 and NF-κB), which further affected cell division. Analysis of cell cycle showed that the percentage of G0/G1 arrest, in REF cells treated by EA was elevated as compared to control and PLN treated cells.
Collapse
Affiliation(s)
- Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Mona Navaei-Nigjeh
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farnaz Ghasemi-Niri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Sanadgol
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Group, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
19
|
Inflammatory Bowel Diseases. GASTROINTESTINAL TISSUE 2017. [DOI: 10.1016/b978-0-12-805377-5.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin Sci (Lond) 2016; 130:2073-2082. [PMID: 27439969 DOI: 10.1042/cs20160263] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/20/2016] [Indexed: 12/25/2022]
Abstract
Gut microbial-derived short-chain fatty acids (SCFA) are believed to affect host metabolism and cardiometabolic risk factors. The present study aim was to investigate the effects of proximal and distal colonic infusions with the SCFA acetate on fat oxidation and other metabolic parameters in men. In this randomized, double-blind crossover trial, six overweight/obese men [body mass index (BMI) 25-35 kg/m2] underwent two experimental periods: one with distal and one with proximal colonic sodium acetate infusions. A feeding catheter was endoscopically positioned at the beginning of each period and remained in the colon for three consecutive test days, enabling colonic acetate (100 or 180 mmol/l) or placebo infusion during fasting conditions and after an oral glucose load (postprandial). Fat oxidation and energy expenditure were measured using an open-circuit ventilated hood system and blood samples were repeatedly collected for 2 h during fasting and postprandial conditions. Distal colonic 180 mmol/l acetate infusions increased fasting fat oxidation (1.78±0.28 compared with -0.78±0.89 g fat 2 h-1, P=0.015), fasting peptide YY (PYY, P=0.01) and postprandial glucose and insulin concentrations (P<0.05), and tended to increase fasting plasma acetate (P=0.069) compared with placebo. Distal 100 mmol/l acetate administration tended to decrease fasting tumour necrosis factor-α (TNF-α; P=0.067) compared with placebo. In contrast, proximal colonic acetate infusions showed no effects on substrate metabolism, circulating hormones or inflammatory markers. In conclusion distal colonic acetate infusions affected whole-body substrate metabolism, with a pronounced increase in fasting fat oxidation and plasma PYY. Modulating colonic acetate may be a nutritional target to treat or prevent metabolic disorders.
Collapse
|
21
|
Ghasemi-Niri SF, Maqbool F, Baeeri M, Gholami M, Abdollahi M. Phosalone-induced inflammation and oxidative stress in the colon: Evaluation and treatment. World J Gastroenterol 2016; 22:4999-5011. [PMID: 27275092 PMCID: PMC4886375 DOI: 10.3748/wjg.v22.i21.4999] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/08/2016] [Accepted: 05/04/2016] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the side effects of phosalone on intestinal cells and to evaluate benefits of ellagic acid (EA) as a remedy. METHODS In order to conduct an in vivo study, a rat model was used. The rats were divided into ten groups based on the materials used in the experiment and their dosage. The first group was fed normally. The second group was administered EA through gavage. Next Four groups were given (1/3, 1/5, 1/10, 1/20) LD50 phosalone; an organophosphorus compound. The last four groups received (1/3, 1/5, 1/10, 1/20) LD50 phosalone and of EA. After one month, the rats were sacrificed and their colon cells were examined to evaluate the level of inflammation, proteins and oxidative stress markers. RESULTS The results of this research show that phosalone elevates oxidative stress and changes the level of tumor necrosis factor-a (TNF-α), interlukin-6β (IL-6β) and nuclear factor (NF)-κB proteins. EA administration reduced phosalone toxicity and changed oxidative stress and inflammatory markers for all phosalone doses. Overall changes in reduction of TNF-α (230.47 ± 16.55 pg/mg protein vs 546.43 ± 45.24 pg/mg protein, P < 0.001), IL-6β (15.85 ± 1.03 pg/mg protein vs 21.55 ± 1.3 pg/mg protein, P < 0.05), and NF-κB (32.47 ± 4.85 pg/mg protein vs 51.41 ± 0.71 pg/mg protein, P < 0.05) manifest that the efficacy of EA is more viable for 1/3 LD50 dose of phosalone. Furthermore, EA is effective to counteract the negative outcomes of oxidative stress. When EA was used to treat 1/3 LD50 of phosalone's side effects, it improved the level of AChE activity (48.5% ± 6% vs 25% ± 7%, P < 0.05), TTM (0.391 ± 0.008 mmol/L vs 0.249 ± 0.032 mmol/L, P < 0.05), FRAP (46.04 ± 5.005 μmol/L vs 18.22 ± 1.9 μmol/L, P < 0.01) and MPO (0.222 ± 0.019 U/mg protein vs 0.387 ± 0.04 U/mg protein, P < 0.05). CONCLUSION This research highlights that EA is effective to alleviate the side effects of phosalone by reducing the level of oxidative stress and inflammatory proteins.
Collapse
|
22
|
Gholami M, Ghasemi-Niri SF, Maqbool F, Baeeri M, Memariani Z, Pousti I, Abdollahi M. Experimental and Pathalogical study of Pistacia atlantica, butyrate, Lactobacillus casei and their combination on rat ulcerative colitis model. Pathol Res Pract 2016; 212:500-8. [PMID: 26972417 DOI: 10.1016/j.prp.2016.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 02/07/2023]
Abstract
This study evaluated the effects of Pistacia atlantica (P. atlantica), butyrate, Lactobacillus casei (L. casei) and especially their combination therapy on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced rat colitis model. Rats were divided into seven groups. Four groups received oral P. atlantica, butyrate, L. casei and the combination of three agents for 10 consecutive days. The remaining groups were negative and positive controls and a sham group. Macroscopic and histopathological examinations were carried out along with determination of the specific biomarker of colonic oxidative stress, the myeloperoxidase (MPO). Compared with controls, the combination therapy exhibited a significant alleviation of colitis in terms of pathological scores and reduction of MPO activity (55%, p=0.0009). Meanwhile, the macroscopic appearance such as stool consistency, tissue and histopathological scores (edema, necrosis and neutrophil infiltration) were improved. Although single therapy by each P. atlantica, butyrate, and L. casei was partially beneficial in reduction of colon oxidative stress markers, the combination therapy was much more effective. In conclusion, the combination therapy was able to reduce the severity of colitis that is clear from biochemical markers. Future studies have to focus on clinical effects of this combination in management of human ulcerative colitis. Further molecular and signaling pathway studies will help to understand the mechanisms involved in the treatment of colitis and inflammatory diseases.
Collapse
Affiliation(s)
- Mahdi Gholami
- Department of Anatomy, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Seyedeh Farnaz Ghasemi-Niri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Faheem Maqbool
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran; International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zahra Memariani
- Department of Traditional Pharmacy, Faculty of Traditional Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Pousti
- Department of Anatomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran; International Campus, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Poisoning Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Intestinal Permeability in Inflammatory Bowel Disease: Pathogenesis, Clinical Evaluation, and Therapy of Leaky Gut. Mediators Inflamm 2015; 2015:628157. [PMID: 26582965 PMCID: PMC4637104 DOI: 10.1155/2015/628157] [Citation(s) in RCA: 478] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is multifactorial with data suggesting the role of a disturbed interaction between the gut and the intestinal microbiota. A defective mucosal barrier may result in increased intestinal permeability which promotes the exposition to luminal content and triggers an immunological response that promotes intestinal inflammation. IBD patients display several defects in the many specialized components of mucosal barrier, from the mucus layer composition to the adhesion molecules that regulate paracellular permeability. These alterations may represent a primary dysfunction in Crohn's disease, but they may also perpetuate chronic mucosal inflammation in ulcerative colitis. In clinical practice, several studies have documented that changes in intestinal permeability can predict IBD course. Functional tests, such as the sugar absorption tests or the novel imaging technique using confocal laser endomicroscopy, allow an in vivo assessment of gut barrier integrity. Antitumor necrosis factor-α (TNF-α) therapy reduces mucosal inflammation and restores intestinal permeability in IBD patients. Butyrate, zinc, and some probiotics also ameliorate mucosal barrier dysfunction but their use is still limited and further studies are needed before considering permeability manipulation as a therapeutic target in IBD.
Collapse
|
24
|
Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol 2015; 6:617-639. [PMID: 26520808 PMCID: PMC4637335 DOI: 10.1016/j.redox.2015.10.006] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) is considered as one of the etiologic factors involved in several signals and symptoms of inflammatory bowel diseases (IBD) that include diarrhea, toxic megacolon and abdominal pain. This systematic review discusses approaches, challenges and perspectives into the use of nontraditional antioxidant therapy on IBD, including natural and synthetic compounds in both human and animal models. One hundred and thirty four papers were identified, of which only four were evaluated in humans. Some of the challenges identified in this review can shed light on this fact: lack of standardization of OS biomarkers, absence of safety data and clinical trials for the chemicals and biological molecules, as well as the fact that most of the compounds were not repeatedly tested in several situations, including acute and chronic colitis. This review hopes to stimulate researchers to become more involved in this fruitful area, to warrant investigation of novel, alternative and efficacious antioxidant-based therapies. Major biomarkers used for evaluation of antioxidant therapy were MPO, TBARS/MDA and glutathione levels. Challenges were identified for the yet poor use of antioxidant therapy in IBD. This review stimulates the investigation of alternative and efficacious antioxidant therapies.
Collapse
|