1
|
Wu T, Yang M, Jin L, Yu H, Huang H, Wu Y, Li B, Tu Y, Wan X, Liu J. Theaflavin-3,3'-digallate (TF3) attenuated constipation by promoting gastrointestinal motility and modulating the gut microbiota: A comparative study of TF3 and the anti-constipation drug mosapride in mice. Food Chem 2025; 465:142048. [PMID: 39571432 DOI: 10.1016/j.foodchem.2024.142048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
TF3 is a functional pigment formed during the process of black tea. This study aims to explore the anti-constipation effects of TF3 and compare its efficacy with the anti-constipation drug mosapride. Result showed that both TF3 and mosapride increased fecal water content and promoted gastrointestinal (GI) motility, but TF3 was more effective in restoring excitatory neurotransmitters like gastrin (Gas), motilin (MTL), and substance P (SP). TF3 uniquely altered the gut microbiota profile and restored the bacterial community at the phylum level. TF3 targeted specific bacteria such as Alloprevotella, Bacteroides, and Parabacteroides, while mosapride affected different bacterial groups. Significant changes in Bacteroides and Prevotellaceae UCG-001 were linked to constipation improvement. Importantly, TF3 did not synergize with mosapride in alleviating constipation. These findings highlight TF3's unique role in modulating gut microbiota to relieve constipation and suggest great potential to develop functional foods with anti-constipation properties using tea-derived polyphenols.
Collapse
Affiliation(s)
- Tingbo Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Mingxue Yang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Leyi Jin
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Haonan Yu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Haitao Huang
- Tea Research Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, Zhejiang, PR China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Youying Tu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Junsheng Liu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
2
|
Li Y, Zhou X, Du Y, An M, Wan S, Sun Z, Zhong Q. Hesperidin facilitating gastrointestinal motility by "Gut-brain axis" and "SCF/C-Kit signaling pathways". Poult Sci 2024; 103:104390. [PMID: 39437558 PMCID: PMC11532765 DOI: 10.1016/j.psj.2024.104390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Hesperidin shows promising results as a potential feed additive for enhancing gastrointestinal motility in animals. Gastrointestinal function plays a pivotal role in animal growth and the digestibility of dietary nutrients, with gastrointestinal motor function serving as a crucial component. However, limited research has been conducted on the application of hesperidin as a feed additive to promote gastrointestinal motility. The present study aims to assess the efficacy of Hesperidin as a feed additive in promoting gastrointestinal motility and elucidating its underlying mechanism. A total of 200 newly hatched (1-day-old) broilers with similar body weight were randomly allocated into 4 groups as follows: the control group receiving only the basal diet, and the other 3 groups supplemented with 50, 100, and 150 mg of hesperidin per kg of the basal diet, respectively. Each group consisted of 5 replicates with ten broilers per replicate, and the feeding trial lasted for a duration of 21 d. At 21 d of age, a 5% w/v Evans Blue solution in distilled water was utilized to measure intestinal transit rates (ITR). Gastric emptying (GE) was evaluated by administering a phenol red solution at a concentration of 0.05% w/v (1 mL/broiler). Fifteen broilers from each group were euthanized and immediately dissected to obtain gizzard, hypothalamus, duodenum, and jugular blood samples. Jugular blood samples were collected for brain-gut peptide content analysis, while gizzard, hypothalamus, and duodenum samples were used for immunohistochemical analysis. Real-time qPCR was performed on gizzard samples. The results demonstrated a significant improvement in the GE and ITR of broilers in all treatment groups compared to the control group (P < 0.05), particularly in the 100mg/Kg and 150mg/Kg hesperidin group. Incorporation of hesperidin into the broilers' diet significantly enhances serum levels of ghrelin, encompassing serotonin (5-HT), motilin (MTL), cholecystokinin (CCK), and Stem Cell Factor (SCF) as well as substance P (SP) in the gizzard and duodenal tissues while reducing vasoactive intestinal peptide (VIP) levels (P < 0.05). The group administered a dosage of 150mg/Kg exhibited the most pronounced effect.Immunohistochemistry analysis revealed that hesperidin supplementation up-regulated SP protein content and down-regulated VIP protein content in the hypothalamus, gizzard, and duodenum of broilers (P < 0.05), with the most pronounced effect illustrated in the 150mg/Kg hesperidin group. Furthermore, addition of hesperidin to broiler feed resulted in a significant up-regulation of protein expression and gene expression related to SCF and The protein expression of Receptor tyrosine kinase (C-Kit) was significantly upregulated in the 150mg/Kg group, while the gene expression of C-Kit was significantly upregulated in the 50 mg/Kg group (P < 0.05). In conclusion, hesperidin exhibits promising potential as a feed additive for broilers, as its dietary supplementation of hesperidin improves gastrointestinal motility through modulation of both "gut-brain axis" signaling pathways and "SCF/C-Kit signaling pathways" within broiler chicken's digestive system. Notably, basal diet supplemented with 150mg/Kg hesperidin demonstrates superior efficacy.
Collapse
Affiliation(s)
- Yunfei Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xinying Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yusong Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Mingyuan An
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Shasha Wan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zewei Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun 130118, China; Jilin Key Laboratory of Animal Nutrition and Feed Sciene, Jilin Agricultural University, Changchun 130118, China.
| | - Qingzhen Zhong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Changchun 130118, China; Jilin Key Laboratory of Animal Nutrition and Feed Sciene, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
3
|
Choi NR, Lee K, Seo M, Ko SJ, Choi WG, Kim SC, Kim J, Park JW, Kim BJ. Network Pharmacological Analysis and Experimental Validation of the Effect of Smilacis Glabrae Rhixoma on Gastrointestinal Motility Disorder. PLANTS (BASEL, SWITZERLAND) 2023; 12:1509. [PMID: 37050134 PMCID: PMC10096900 DOI: 10.3390/plants12071509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Gastrointestinal motility disorder (GMD) is a disease that causes digestive problems due to inhibition of the movement of the gastrointestinal tract and is one of the diseases that reduce the quality of life of modern people. Smilacis Glabrae Rhixoma (SGR) is a traditional herbal medicine for many diseases and is sometimes prescribed to improve digestion. As a network pharmacological approach, we searched the TCMSP database for SGR, reviewed its constituents and target genes, and analyzed its relevance to gastrointestinal motility disorder. The effects of the SGR extract on the pacemaker activity in interstitial cells of Cajal (ICC) and gastric emptying were investigated. In addition, using the GMD mouse model through acetic acid (AA), we investigated the locomotor effect of SGR on the intestinal transit rate (ITR). As a result of network pharmacology analysis, 56 compounds out of 74 candidate compounds of SGR have targets, the number of targets is 390 targets, and there are 904 combinations. Seventeen compounds of SGR were related to GMD, and as a result of comparing the related genes with the GMD-related genes, 17 genes (active only) corresponded to both. When looking at the relationship network between GMD and SGR, it was confirmed that quercetin, resveratrol, SCN5A, TNF, and FOS were most closely related to GMD. In addition, the SGR extract regulated the pacemaker activity in ICC and recovered the delayed gastric emptying. As a result of feeding the SGR extract to AA-induced GMD mice, it was confirmed that the ITR decreased by AA was restored by the SGR extract. Through network pharmacology, it was confirmed that quercetin, resveratrol, SCN5A, TNF, and FOS were related to GMD in SGR, and these were closely related to intestinal motility. Based on these results, it is suggested that SGR in GMD restores digestion through the recovery of intestinal motility.
Collapse
Affiliation(s)
- Na-Ri Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| | - Kangwook Lee
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
| | - Mujin Seo
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| | - Seok-Jae Ko
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo-Gyun Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| | - Sang-Chan Kim
- College of Oriental Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
| | - Jinsung Kim
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Woo Park
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea; (K.L.); (S.-J.K.); (J.K.)
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byung-Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (M.S.); (W.-G.C.)
| |
Collapse
|
4
|
Boeing T, de Souza P, da Silva LM, Gasparotto Junior A. Herbal Medicines in the Treatment of Dyspepsia: An Overview. PLANTA MEDICA 2022; 88:664-677. [PMID: 34474492 DOI: 10.1055/a-1580-7782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This review focuses on the efficacy of herbal medicines for managing dyspepsia in humans and animals. Searches were conducted on the PubMed, Science Direct, and Medline databases, for publications in the last 3 years. In each database, the search terms used consisted of the 2 key terms describing the disorder and subtypes plus each of the terms relating to the therapy. The key terms used were "natural product" and "medicinal plant" in a cross-over with "dyspepsia" and "functional dyspepsia" (i.e., gastroprotection, Helicobacter pylori infection, prokinetic). We included all human and animal studies on the effects of herbal medicines reporting the key outcome of dyspepsia symptoms. Preclinical studies using critically validated models showed that most medicinal plants with gastroprotective action had antioxidant, anti-inflammatory, anti-apoptotic, and antisecretory effects. Moreover, several species displayed anti Helicobacter pylori and prokinetic efficacy. The data availability of controlled clinical studies is currently minimal. The use of different methodologies and the minimal number of patients raise doubts about the effects of these preparations. Only adequate clinical trials with scientifically validated methods can determine whether different herbal medicines can be used as viable alternatives to the conventional pharmacological treatments used to control dyspepsia symptoms.
Collapse
Affiliation(s)
- Thaise Boeing
- Pharmaceutical Sciences Graduate Program, University of Vale do Itajaí, Itajaí, Brazil
| | - Priscila de Souza
- Pharmaceutical Sciences Graduate Program, University of Vale do Itajaí, Itajaí, Brazil
| | - Luisa Mota da Silva
- Pharmaceutical Sciences Graduate Program, University of Vale do Itajaí, Itajaí, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFac), Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS, Brazil
| |
Collapse
|
5
|
Sebai H, Rtibi K, Selmi S, Jridi M, Balti R, Marzouki L. Modulating and opposite actions of two aqueous extracts prepared from Cinnamomum cassia L. bark and Quercus ilex L. on the gastrointestinal tract in rats. RSC Adv 2019; 9:21695-21706. [PMID: 35518898 PMCID: PMC9066441 DOI: 10.1039/c9ra02429h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/02/2019] [Indexed: 12/23/2022] Open
Abstract
Cinnamon bark and evergreen oak acorns, natural sources of functional ingredients, are effective for those suffering from diarrhea, constipation and irritable bowel syndrome. This study aimed to evaluate the dissimilar phytochemical composition and the opposite potential actions of Cinnamomum cassia bark (ACCE) and Quercus ilex aqueous extracts (GIAE) on gastrointestinal (GI)-physiological activities and disruptions. An HPLC-PDA/ESI-MS assay was used to identify the distinctive qualitative and quantitative profiles of phenolic compounds. The GI-physiological action of both extracts on gastric emptying (GE) and gastrointestinal transit time (GIT) were evaluated using the phenol-red colorimetric method and a test meal containing charcoal/gum arabic in water. Loperamide (LOP)-induced colonic constipation and delayed emptying of the stomach were used to explore the reverse effects of ACCE/GIAE on GI disorders. HPLC-PDA/ESI-MS showed that the main phenolic compounds detected in ACCE are trans-cinnamic acid, quinic acid, protocatechuic acid and rosmarinic acid, while gallic acid, quinic acid and protocatechuic acid are the major chemical constituents found in GIAE. GIAE at two doses (150 and 300 mg kg-1) exerted a reduction of GE (66.40% and 60.87%, respectively) compared to a control group (70.25%). However, ACCE at the same concentrations induced contradictory actions on GE/GIT in comparison to GIAE and antagonistic synthetic pharmacological drugs in rats. The protective effect of CCAE against constipation induced by LOP in rats was accompanied by a strong antioxidant property related to moderation of intracellular-mediator disorders. An absence of toxic actions was revealed in the case of the hematological profile and biochemical parameters. Hence, in-depth investigations of these nutrients of both extracts may help future researchers to derive the underlying mechanisms and potential molecular targets for the development of physiologically functional foods and future therapies.
Collapse
Affiliation(s)
- Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-resources, Higher Institute of Biotechnology of Beja, University of Jendouba B. P. 382 9000 Beja Tunisia +216 72 590 566 +216 97 479 135
| | - Kaïs Rtibi
- Laboratory of Functional Physiology and Valorization of Bio-resources, Higher Institute of Biotechnology of Beja, University of Jendouba B. P. 382 9000 Beja Tunisia +216 72 590 566 +216 97 479 135
| | - Slimen Selmi
- Laboratory of Functional Physiology and Valorization of Bio-resources, Higher Institute of Biotechnology of Beja, University of Jendouba B. P. 382 9000 Beja Tunisia +216 72 590 566 +216 97 479 135
| | - Mourad Jridi
- Laboratory of Enzymatic Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax B. P. 1173 3038 Sfax Tunisia
| | - Rafik Balti
- Laboratory of Functional Physiology and Valorization of Bio-resources, Higher Institute of Biotechnology of Beja, University of Jendouba B. P. 382 9000 Beja Tunisia +216 72 590 566 +216 97 479 135
| | - Lamjed Marzouki
- Laboratory of Functional Physiology and Valorization of Bio-resources, Higher Institute of Biotechnology of Beja, University of Jendouba B. P. 382 9000 Beja Tunisia +216 72 590 566 +216 97 479 135
| |
Collapse
|
6
|
Sohn E, Kim YJ, Lim HS, Kim BY, Jeong SJ. Hwangryunhaedok-Tang Exerts Neuropreventive Effect on Memory Impairment by Reducing Cholinergic System Dysfunction and Inflammatory Response in a Vascular Dementia Rat Model. Molecules 2019; 24:molecules24020343. [PMID: 30669383 PMCID: PMC6358959 DOI: 10.3390/molecules24020343] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 01/02/2023] Open
Abstract
Hwangryunhaedok-tang (HRT) is a traditional oriental herbal formula used in Asian countries for treating inflammatory diseases and controlling fever. Our present study aimed to determine whether HRT has therapeutic effects for patients with vascular dementia (VaD) using a bilateral common carotid artery occlusion (BCCAO) rat model and assessing spatial memory impairment and activation of neuroinflammation. BCCAO was performed in male Sprague Dawley rats to induce VaD, and oral HRT was administered daily for 30 d. Our data showed that HRT ameliorated BCCAO-induced memory and cognitive impairment in behavioral tests. In addition, HRT reversed cholinergic dysfunction and neuronal damage in the hippocampus of BCCAO rats. Furthermore, HRT attenuated microglial activation and reduced the phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) induced by BCCAO. Simultaneous high-performance liquid chromatography analysis of HRT using index compounds from the herbal composition revealed that both HRT ethanol extract and commercial HRT granules primarily comprise geniposide, baicalin, and berberine. Our study showed that HRT administration resulted in the prevention of neuronal injury induced by BCCAO through improvement of cholinergic dysfunction and inhibition of neuroinflammatory responses, suggesting that HRT may have potential as a treatment for VaD.
Collapse
Affiliation(s)
- Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Hye-Sun Lim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Bu-Yeo Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.
| |
Collapse
|
7
|
Meng FC, Wu ZF, Yin ZQ, Lin LG, Wang R, Zhang QW. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med 2018. [PMID: 29541156 PMCID: PMC5842587 DOI: 10.1186/s13020-018-0171-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Coptidis rhizoma (CR) is the dried rhizome of Coptis chinensis Franch., C. deltoidea C. Y. Cheng et Hsiao or C. teeta Wall. (Ranunculaceae) and is commonly used in Traditional Chinese Medicine for the treatment of various diseases including bacillary dysentery, typhoid, tuberculosis, epidemic cerebrospinal meningitis, empyrosis, pertussis, and other illnesses. Methods A literature survey was conducted via SciFinder, ScieneDirect, PubMed, Springer, and Wiley databases. A total of 139 selected references were classified on the basis of their research scopes, including chemical investigation, quality evaluation and pharmacological studies. Results Many types of secondary metabolites including alkaloids, lignans, phenylpropanoids, flavonoids, phenolic compounds, saccharides, and steroids have been isolated from CR. Among them, protoberberine-type alkaloids, such as berberine, palmatine, coptisine, epiberberine, jatrorrhizine, columamine, are the main components of CR. Quantitative determination of these alkaloids is a very important aspect in the quality evaluation of CR. In recent years, with the advances in isolation and detection technologies, many new instruments and methods have been developed for the quantitative and qualitative analysis of the main alkaloids from CR. The quality control of CR has provided safety for pharmacological applications. These quality evaluation methods are also frequently employed to screen the active components from CR. Various investigations have shown that CR and its main alkaloids exhibited many powerful pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetic, neuroprotective, cardioprotective, hypoglycemic, anti-Alzheimer and hepatoprotective activities. Conclusion This review summarizes the recent phytochemical investigations, quality evaluation methods, the biological studies focusing on CR as well as its main alkaloids.
Collapse
Affiliation(s)
- Fan-Cheng Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zheng-Feng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Zhi-Qi Yin
- 2Department of Traditional Chinese Medicines Pharmaceuticals, China Pharmaceutical University, Nanjing, 210009 People's Republic of China
| | - Li-Gen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, People's Republic of China
| |
Collapse
|
8
|
Kim HJ, Lee GS, Kim H, Kim BJ. Hwangryunhaedok-tang induces the depolarization of pacemaker potentials through 5-HT 3 and 5-HT 4 receptors in cultured murine small intestine interstitial cells of Cajal. World J Gastroenterol 2017; 23:5313-5323. [PMID: 28839431 PMCID: PMC5550780 DOI: 10.3748/wjg.v23.i29.5313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/18/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the effects of a water extract of Hwangryunhaedok-tang (HHTE) on the pacemaker potentials of mouse interstitial cells of Cajal (ICCs). METHODS We dissociated ICCs from small intestines and cultured. ICCs were immunologically identified using an anti-c-kit antibody. We used the whole-cell patch-clamp configuration to record the pacemaker potentials generated by cultured ICCs under the current clamp mode (I = 0). All experiments were performed at 30 °C-32 °C. RESULTS HHTE dose-dependently depolarized ICC pacemaker potentials. Pretreatment with a 5-HT3 receptor antagonist (Y25130) or a 5-HT4 receptor antagonist (RS39604) blocked HHTE-induced pacemaker potential depolarizations, whereas pretreatment with a 5-HT7 receptor antagonist (SB269970) did not. Intracellular GDPβS inhibited HHTE-induced pacemaker potential depolarization and pretreatment with a Ca2+-free solution or thapsigargin abolished the pacemaker potentials. In the presence of a Ca2+-free solution or thapsigargin, HHTE did not depolarize ICC pacemaker potentials. In addition, HHTE-induced pacemaker potential depolarization was unaffected by a PKC inhibitor (calphostin C) or a Rho kinase inhibitor (Y27632). Of the four ingredients of HHT, Coptidis Rhizoma and Gardeniae Fructus more effectively inhibited pacemaker potential depolarization. CONCLUSION These results suggest that HHTE dose-dependently depolarizes ICC pacemaker potentials through 5-HT3 and 5-HT4 receptors via external and internal Ca2+ regulation and via G protein-, PKC- and Rho kinase-independent pathways.
Collapse
|