1
|
Hao G, Li Q, Zhang N, Guo W, Wang X, Geng W. Study on ferritin and liver injury in pediatric hemophagocytic lymphohistiocytosis associated with infection. Sci Rep 2025; 15:12662. [PMID: 40221569 PMCID: PMC11993747 DOI: 10.1038/s41598-025-96533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Summarize and analyze the clinical characteristics of children with infection-associated hemophagocytic lymphohistiocytosis (IAHLH) complicated by liver injury, and investigate the correlation between ferritin (FERR) and liver injury indicators. A total of 90 children with IAHLH admitted to Hebei Children's Hospital from November 1, 2017 to September 30, 2024 were selected as the research subjects. The patients were divided into liver injury group and non-liver injury group based on the presence of liver damage. The clinical features and laboratory test differences between the two groups were analyzed, and the correlation between ferritin and liver injury markers was investigated. (1) Among the 90 cases of IAHLH, 61cases (67.8%) were complicated by liver injury. In the liver injury group, FERR and D-dimer (DD) were significantly higher than those in the non-liver injury group (P < 0.05), while fibrinogen (FIB) and albumin were significantly lower (P < 0.05). Moreover, the liver injury group was more likely to develop to multiple organ dysfunction syndrome (MODS) (P = 0.021). (2) FERR was positively correlated with indicators such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and DD (P < 0.05), and negatively correlated with indicators such as albumin (ALB) (P < 0.05). FERR has a certain correlation with liver injury in pediatric hemophagocytic lymphohistiocytosis associated with infection. Monitoring FERR can help evaluate the degree of liver injury and alert to the occurrence of MODS, providing a basis for early clinical intervention.
Collapse
Affiliation(s)
- Gailing Hao
- Department of Emergency, Hebei Children'S Hospital, Shijiazhuang, Hebei Province, China
| | - Quanheng Li
- Department of Emergency, Hebei Children'S Hospital, Shijiazhuang, Hebei Province, China
| | - Nan Zhang
- Department of Emergency, Hebei Children'S Hospital, Shijiazhuang, Hebei Province, China
| | - Weili Guo
- Department of Emergency, Hebei Children'S Hospital, Shijiazhuang, Hebei Province, China
| | - Xiao Wang
- Department of Emergency, Hebei Children'S Hospital, Shijiazhuang, Hebei Province, China
| | - Wenjin Geng
- Department of Emergency, Hebei Children'S Hospital, Shijiazhuang, Hebei Province, China.
| |
Collapse
|
2
|
Chen Y, Tan X, Zhang W, Li Y, Deng X, Zeng J, Huang L, Ma X. Natural products targeting macroautophagy signaling in hepatocellular carcinoma therapy: Recent evidence and perspectives. Phytother Res 2024; 38:1623-1650. [PMID: 38302697 DOI: 10.1002/ptr.8103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
Hepatocellular carcinoma (HCC), presently the second leading cause of global cancer-related mortality, continues to pose significant challenges in the realm of medical oncology, impacting both clinical drug selection and mechanistic research. Recent investigations have unveiled autophagy-related signaling as a promising avenue for HCC treatment. A growing body of research has highlighted the pivotal role of autophagy-modulating natural products in inhibiting HCC progression. In this context, we provide a concise overview of the fundamental autophagy mechanism and delineate the involvement of autophagic signaling pathways in HCC development. Additionally, we review pertinent studies demonstrating how natural products regulate autophagy to mitigate HCC. Our findings indicate that natural products exhibit cytotoxic effects through the induction of excessive autophagy, simultaneously impeding HCC cell proliferation by autophagy inhibition, thereby depriving HCC cells of essential energy. These effects have been associated with various signaling pathways, including PI3K/AKT, MAPK, AMPK, Wnt/β-catenin, Beclin-1, and ferroautophagy. These results underscore the considerable therapeutic potential of natural products in HCC treatment. However, it is important to note that the present study did not establish definitive thresholds for autophagy induction or inhibition by natural products. Further research in this domain is imperative to gain comprehensive insights into the dual role of autophagy, equipping us with a better understanding of this double-edged sword in HCC management.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
You J, Ouyang S, Xie Z, Zhi C, Yu J, Tan X, Li P, Lin X, Ma W, Liu Z, Hou Q, Xie N, Peng T, Chen X, Li L, Xie W. The suppression of hyperlipid diet-induced ferroptosis of vascular smooth muscle cells protests against atherosclerosis independent of p53/SCL7A11/GPX4 axis. J Cell Physiol 2023; 238:1891-1908. [PMID: 37269460 DOI: 10.1002/jcp.31045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 06/05/2023]
Abstract
Ferroptosis as a novel programmed cell death that involves metabolic dysfunction due to iron-dependent excessive lipid peroxidation has been implicated in atherosclerosis (AS) development characterized by disrupted lipid metabolism, but the atherogenic role of ferroptosis in vascular smooth muscle cells (VSMCs), which are principal components of atherosclerotic plaque fibrous cap, remains unclear. The aim of this study was to determine the effects of ferroptosis on AS induced by lipid overload, and the effects of that on VSMCs ferroptosis. We found intraperitoneal injection of Fer-1, a ferroptosis inhibitor, ameliorated obviously high-fat diet-induced high plasma levels of triglycerides, total cholesterol, low-density lipoprotein, glucose and atherosclerotic lesions in ApoE-/- mice. Moreover, in vivo and in vitro, Fer-1 reduced the iron accumulation of atherosclerotic lesions through affecting the expression of TFR1, FTH, and FTL in VSMCs. Interestingly, Fer-1 did augment nuclear factor E2-related factor 2/ferroptosis suppressor protein 1 to enhance endogenous resistance to lipid peroxidation, but not classic p53/SCL7A11/GPX4. Those observations indicated inhibition of VSMCs ferroptosis can improve AS lesions independent of p53/SLC7A11/GPX4, which preliminarily revealed the potential mechanism of ferroptosis in aortic VSMCs on AS and provided new therapeutic strategies and targets for AS.
Collapse
Affiliation(s)
- Jia You
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Siyu Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhongcheng Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chenxi Zhi
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jiang Yu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoqian Tan
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Pin Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Lin
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wentao Ma
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhiyang Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qin Hou
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Nan Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
4
|
Wang H, Jiang C, Yang Y, Li J, Wang Y, Wang C, Gao Y. Resveratrol ameliorates iron overload induced liver fibrosis in mice by regulating iron homeostasis. PeerJ 2022; 10:e13592. [PMID: 35698613 PMCID: PMC9188311 DOI: 10.7717/peerj.13592] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023] Open
Abstract
This study is intended to explore the protective effects of resveratrol (RES) on iron overload-induced liver fibrosis and its mechanism. Iron dextran (50 mg/kg) was injected intraperitoneally in all groups except the control group. Mice in the L-RES, M-RES and H-RES groups were gavaged with RES solution at 25, 50 mg/kg and 100 mg/kg, respectively, 4 h before injection of iron dextran every day; mice in the deferoxamine (DFO) group were injected with DFO intraperitoneally (100 mg/kg); mice in the control group received isovolumetric saline. After seven weeks of RES administration, serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities and liver hydroxyproline (Hyp) levels were reduced; the malondialdehyde (MDA) activities decreased and the levels of superoxide dismutase (SOD) and glutathione (GSH) were raised. Hematoxylin and eosin (H&E), Prussian, and Masson staining indicated that RES treatment could improve cell damage and reduce hepatic iron deposition and collagen deposition in iron-overload mice. The expression of Bcl-2 was increased, the expression levels of Bax and caspase-3 were decreased under RES treatment. Moreover, RES reduced the expression of hepcidin, ferritin (Ft), divalent metal transporter-1 (DMT-1), transferrin receptor-2 (TFR-2), and raised the expression of ferroprotein-1 (FPN-1). In conclusion, RES could ameliorate iron overload-induced liver fibrosis, and the potential mechanisms may be related to antioxidant, anti-inflammatory, anti-apoptotic, and more importantly, regulation of iron homeostasis by reducing iron uptake and increasing iron export.
Collapse
Affiliation(s)
- Hua Wang
- Hebei University of Chinese Medicine, Department of Preventive Medicine, Shijiazhuang, Hebei, China
| | - Chuan Jiang
- Hebei University of Chinese Medicine, Department of Preventive Medicine, Shijiazhuang, Hebei, China
| | - Yakun Yang
- Hebei University of Chinese Medicine, School of Pharmacy, Shijiazhuang, Hebei, China
| | - Jinghan Li
- Hebei University of Chinese Medicine, Department of Preventive Medicine, Shijiazhuang, Hebei, China
| | - Yihan Wang
- Hebei University of Chinese Medicine, Collge of Basic Medicine, Shijiazhuang, Hebei, China
| | - Chaonan Wang
- Hebei University of Chinese Medicine, Department of Preventive Medicine, Shijiazhuang, Hebei, China
| | - Yonggang Gao
- Hebei University of Chinese Medicine, Department of Preventive Medicine, Shijiazhuang, Hebei, China,Hebei Key laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Bouvier ML, Fehsel K, Schmitt A, Meisenzahl-Lechner E, Gaebel W, von Wilmsdorff M. Sex-dependent effects of long-term clozapine or haloperidol medication on red blood cells and liver iron metabolism in Sprague Dawley rats as a model of metabolic syndrome. BMC Pharmacol Toxicol 2022; 23:8. [PMID: 35033194 PMCID: PMC8760835 DOI: 10.1186/s40360-021-00544-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Patients with liver diseases often have some form of anemia. Hematological dyscrasias are known side effects of antipsychotic drug medication and the occurrence of agranulocytosis under clozapine is well described. However, the sex-dependent impact of clozapine and haloperidol on erythrocytes and symptoms like anemia, and its association with hepatic iron metabolism has not yet been completely clarified. Therefore, in the present study, we investigated the effect of both antipsychotic drugs on blood parameters and iron metabolism in the liver of male and female Sprague Dawley rats. METHODS After puberty, rats were treated orally with haloperidol or clozapine for 12 weeks. Blood count parameters, serum ferritin, and liver transferrin bound iron were determined by automated counter. Hemosiderin (Fe3+) was detected in liver sections by Perl's Prussian blue staining. Liver hemoxygenase (HO-1), 5'aminolevulinate synthase (ALAS1), hepcidin, heme-regulated inhibitor (HRI), cytochrome P4501A1 (CYP1A1) and 1A2 (CYP1A2) were determined by Western blotting. RESULTS We found anemia with decreased erythrocyte counts, associated with lower hemoglobin and hematocrit, in females with haloperidol treatment. Males with clozapine medication showed reduced hemoglobin and increased red cell distribution width (RDW) without changes in erythrocyte numbers. High levels of hepatic hemosiderin were found in the female clozapine and haloperidol medicated groups. Liver HRI was significantly elevated in male clozapine medicated rats. CYP1A2 was significantly reduced in clozapine medicated females. CONCLUSIONS The characteristics of anemia under haloperidol and clozapine medication depend on the administered antipsychotic drug and on sex. We suggest that anemia in rats under antipsychotic drug medication is a sign of an underlying liver injury induced by the drugs. Changing hepatic iron metabolism under clozapine and haloperidol may help to reduce these effects of liver diseases.
Collapse
Affiliation(s)
- Marie-Luise Bouvier
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629, Düsseldorf, Germany.
| | - Karin Fehsel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nußbaumstrasse 7, 80336, Munich, Germany.,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, São Paulo, SP, 05453-010, Brazil
| | - Eva Meisenzahl-Lechner
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| | - Wolfgang Gaebel
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| | - Martina von Wilmsdorff
- Department of Psychiatry and Psychotherapy, Medical Faculty, Heinrich-Heine-University, Bergische Landstraße 2, 40629, Düsseldorf, Germany
| |
Collapse
|
6
|
Perez-Diaz-Del-Campo N, Marin-Alejandre BA, Cantero I, Monreal JI, Elorz M, Herrero JI, Benito-Boillos A, Riezu-Boj JI, Milagro FI, Tur JA, Martinez JA, Abete I, Zulet MA. Differential response to a 6-month energy-restricted treatment depending on SH2B1 rs7359397 variant in NAFLD subjects: Fatty Liver in Obesity (FLiO) Study. Eur J Nutr 2021; 60:3043-3057. [PMID: 33474638 DOI: 10.1007/s00394-020-02476-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is worldwide recognized as the most common cause of chronic liver disease. Current NAFLD clinical management relies on lifestyle change, nevertheless, the importance of the genetic make-up on liver damage and the possible interactions with diet are still poorly understood. The aim of the study was to evaluate the influence of the SH2B1 rs7359397 genetic variant on changes in body composition, metabolic status and liver health after 6-month energy-restricted treatment in overweight/obese subjects with NAFLD. In addition, gene-treatment interactions over the course of the intervention were examined. METHODS The SH2B1 genetic variant was genotyped in 86 overweight/obese subjects with NAFLD from the FLiO study (Fatty Liver in Obesity study). Subjects were metabolically evaluated at baseline and at 6-months. Liver assessment included ultrasonography, Magnetic Resonance Imaging, elastography, a lipidomic test (OWL®-test) and specific blood liver biomarkers. Additionally, body composition, general biochemical markers and dietary intake were determined. RESULTS Both genotypes significantly improved their body composition, general metabolic status and liver health after following an energy-restricted strategy. Liver imaging techniques showed a greater decrease in liver fat content (- 44.3%, p < 0.001) and in serum ferritin levels (p < 0.001) in the carriers of the T allele after the intervention. Moreover, lipidomic analysis, revealed a higher improvement in liver status when comparing risk vs. no-risk genotype (p = 0.006 vs. p = 0.926, respectively). Gene-treatment interactions showed an increase in fiber intake and omega-3 fatty acid in risk genotype (p interaction = 0.056 and p interaction = 0.053, respectively), while a significant increase in MedDiet score was observed in both genotype groups (p = 0.020). Moreover, no-risk genotype presented a relevant decrease in hepatic iron as well as in MUFA intake (p = 0.047 and p = 0.034, respectively). CONCLUSION Subjects carrying the T allele of the rs7359397 polymorphism may benefit more in terms of hepatic health and liver status when prescribed an energy-restricted treatment, where a Mediterranean dietary pattern rich in fiber and other components such as omega-3 fatty acids might boost the benefits. TRIAL REGISTRATION The Fatty Liver in Obesity was approved by the Research Ethics Committee of the University of Navarra and retrospectively registered (NCT03183193; www.clinicaltrials.gov ); June 2017.
Collapse
Affiliation(s)
- Nuria Perez-Diaz-Del-Campo
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Bertha Araceli Marin-Alejandre
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - Irene Cantero
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
| | - J Ignacio Monreal
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Clinical Chemistry Department, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Mariana Elorz
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - José Ignacio Herrero
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Liver Unit, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - Alberto Benito-Boillos
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Josep A Tur
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands & Balearic Islands Institute for Health Research (IDISBA), 07122, Palma, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Itziar Abete
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - M Angeles Zulet
- Department of Nutrition, Food Sciences and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Centre for Nutrition Research, Faculty of Pharmacy and Nutrition, University of Navarra, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), 31008, Pamplona, Spain.
- Biochemical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
7
|
Adverse effects of iron deficiency anemia on pregnancy outcome and offspring development and intervention of three iron supplements. Sci Rep 2021; 11:1347. [PMID: 33446747 PMCID: PMC7809104 DOI: 10.1038/s41598-020-79971-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/15/2020] [Indexed: 11/09/2022] Open
Abstract
Iron deficiency anemia (IDA) is a common micronutrient deficiency among pregnant women with severe consequences including impaired immuno-inflammatory system, premature birth, fetal death etc. The present study aimed to investigate the effects of three iron supplements on IDA female rats and their offspring. The IDA female rat model was established with low iron diet and the rats were then mated. After pregnancy, rats were fed diets containing different iron supplements (iron polysaccharide complex, iron protein succinylate and ferrous sulfate) until their offspring were 42 days old. Pregnancy outcomes, haematological, iron metabolism, physical and neurological development indexes were determined. The results showed that all three iron supplements improved the levels of hematological parameters of both mother and offspring rats. After iron supplementation, serum iron, transferrin saturation and serum ferritin levels were increased compared with the IDA group. The level of ferritin light chain in the liver and spleen of both mother and offspring rats in iron supplemented groups was significantly higher than that of the IDA group. The average number of born alive per litter in the iron treatment groups was significantly higher than that in the IDA group. Iron supplements also improved the physical growth and neurobehavioral development of offspring rats. It was also found that iron supplementation improved the expression of ferritin light chain and the synaptic growth associated proteins in the brain and hippocampus. No significant difference was found in the efficacy of three iron supplements. These results suggest that pregnant and postpartum IDA affects pregnancy outcomes, offspring physical development and causes neural impairment. Sufficient iron supplementation can significantly improve IDA and its adverse effects on both mother and offspring.
Collapse
|
8
|
RESTREPO-GALLEGO M, DÍAZ LE, OSPINA-VILLA JD, CHINCHILLA-CÁRDENAS D. Vitamin A deficiency regulates the expression of ferritin in young male Wistar rats. REV NUTR 2021. [DOI: 10.1590/1678-9865202134e200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Objective Iron deficiency and vitamin A deficiency are two of the main micronutrient deficiencies. Both micronutrients are essential for human life and children's development. This study aimed to investigate the effects of vitamin A deficiency on ferritin and transferrin receptors' expression and its relationship with iron deficiency. Methods Five diets with different vitamin A-to-iron ratios were given to thirty five 21-day-old male Wistar rats (separated in groups of seven animals each). The animals received the diet for six weeks before being euthanized. Serum iron and retinol levels were measured as biochemical parameters. Their duodenums, spleens, and livers were analyzed for the expression of ferritin and transferrin receptors by Western Blotting. Results Regarding biochemical parameters, the results show that when both vitamin A and iron are insufficient, the serum iron content (74.74µg/dL) is significantly lower than the control group (255.86µg/dL). The results also show that vitamin A deficiency does not influence the expression of the transferrin receptor, but only of the ferritin one. Conclusion Vitamin A deficiency regulates the expression of ferritin in young male Wistar rats.
Collapse
|
9
|
Restrepo-Gallego M, Díaz LE. Vitamin A does not influence mRNA expression of hormone hepcidin but other biomarkers of iron homeostasis in young male Wistar rats. INT J VITAM NUTR RES 2020; 92:223-230. [PMID: 32672503 DOI: 10.1024/0300-9831/a000666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of an adequate supply of vitamin A and iron, in comparison with diets low or absent in vitamin A and low in iron, on the mRNA expression of some biomarkers of iron homeostasis as hepcidin (Hamp), transferrin receptor-1 (Tfrc), iron regulatory protein-2 (Ireb2) and ferritin (Fth1) in rats were investigated. 35 male Wistar rats were randomly divided into 5 dietary groups: control, sufficient in iron and insufficient in vitamin A (FesvAi), sufficient in iron and depleted in vitamin A (FesvAd), insufficient in iron and sufficient in vitamin A (FeivAs) and insufficient in both iron and vitamin A (FeivAi). After 6 weeks rats showed no significant effects of variations in vitamin A on the expression of Hamp relative to the control group (FesvAi: 1.37-fold; FesvAd: 1.22-fold); however, iron deficiency showed significant reduction on it relative to the control group (FeivAs: 71.4-fold, P = 0.0004; FeivAi: 16.1-fold, P = 0.0008). Vitamin A deficiency (FesvAd) affects expression of Fth1 independent of low dietary iron in spleen (0.29-fold, P = 0.002) and duodenum (5.15-fold, P = 0.02). Variations of dietary iron and vitamin A showed significant effects relative to the control group for expression of Tfrc in spleen (FesvAd: 0.18-fold, P = 0.01; FeivAs: 0.24-fold, P < 0.0001; FeivAi: 0.42-fold, P = 0.014), Ireb2 in spleen (FeivAs: 3.7-fold, P < 0.0001; FeivAi: 2.9-fold, P < 0.0001) and Ireb2 in duodenum (FeivAs: 2.68-fold, P = 0.012; FeivAi: 2.60-fold, P = 0.014). These results show that vitamin A and iron must be supplied together to regulate some of the main biomarkers of iron metabolism as a strategy to reduce prevalence of iron deficiency anemia.
Collapse
Affiliation(s)
- Mauricio Restrepo-Gallego
- Doctorate Program in Bioscience, La Sabana University, Campus Puente del Común, Km. 7, Autopista Norte, Bogotá, Chía, Cundinamarca, Colombia
| | - Luis E Díaz
- Doctorate Program in Bioscience, La Sabana University, Campus Puente del Común, Km. 7, Autopista Norte, Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
10
|
Zhang X, Morikawa K, Mori Y, Zong C, Zhang L, Garner E, Huang C, Wu W, Chang J, Nagashima D, Sakurai T, Ichihara S, Oikawa S, Ichihara G. Proteomic analysis of liver proteins of mice exposed to 1,2-dichloropropane. Arch Toxicol 2020; 94:2691-2705. [PMID: 32435916 DOI: 10.1007/s00204-020-02785-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
Abstract
1,2-Dichloropropane (1,2-DCP) is recognized as the causative agent for cholangiocarcinoma among offset color proof-printing workers in Japan. The aim of the present study was to characterize the molecular mechanisms of 1,2-DCP-induced hepatotoxic effects by proteomic analysis. We analyzed quantitatively the differential expression of proteins in the mouse liver and investigated the role of P450 in mediating the effects of 1,2-DCP. Male C57BL/6JJcl mice were exposed to 0, 50, 250, or 1250 ppm 1,2-DCP and treated with either 1-aminobenzotriazole (1-ABT), a nonselective P450 inhibitor, or saline, for 8 h/day for 4 weeks. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF/MS) was used to detect and identify proteins affected by the treatment. PANTHER overrepresentation test on the identified proteins was conducted. 2D-DIGE detected 61 spots with significantly different intensity between 0 and 250 ppm 1,2-DCP groups. Among them, 25 spots were identified by MALDI-TOF/TOF/MS. Linear regression analysis showed significant trend with 1,2-DCP level in 17 proteins in mice co-treated with 1-ABT. 1-ABT mitigated the differential expression of these proteins. The gene ontology enrichment analysis showed overrepresentation of proteins functionally related to nickel cation binding, carboxylic ester hydrolase activity, and catalytic activity. The results demonstrated that exposure to 1,2-DCP altered the expression of proteins related with catalytic and carboxylic ester hydrolase activities, and that such effect was mediated by P450 enzymatic activity.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan.,Department of Toxicology, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510300, People's Republic of China
| | - Kota Morikawa
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yurie Mori
- Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Lingyi Zhang
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Edwin Garner
- Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Chinyen Huang
- Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Wenting Wu
- Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jie Chang
- Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Daichi Nagashima
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Sahoko Ichihara
- Jichi Medical University School of Medicine, Shimotsuke, 329-0498, Japan
| | - Shinji Oikawa
- Mie University Graduate School of Medicine, Tsu, 514-8507, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan.
| |
Collapse
|
11
|
Iron-Induced Liver Injury: A Critical Reappraisal. Int J Mol Sci 2019; 20:ijms20092132. [PMID: 31052166 PMCID: PMC6539962 DOI: 10.3390/ijms20092132] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is implicated in the pathogenesis of a number of human liver diseases. Hereditary hemochromatosis is the classical example of a liver disease caused by iron, but iron is commonly believed to contribute to the progression of other forms of chronic liver disease such as hepatitis C infection and nonalcoholic fatty liver disease. In this review, we present data from cell culture experiments, animal models, and clinical studies that address the hepatotoxicity of iron. These data demonstrate that iron overload is only weakly fibrogenic in animal models and rarely causes serious liver damage in humans, calling into question the concept that iron overload is an important cause of hepatotoxicity. In situations where iron is pathogenic, iron-induced liver damage may be potentiated by coexisting inflammation, with the resulting hepatocyte necrosis an important factor driving the fibrogenic response. Based on the foregoing evidence that iron is less hepatotoxic than is generally assumed, claims that assign a causal role to iron in liver injury in either animal models or human liver disease should be carefully evaluated.
Collapse
|
12
|
Malik G, Wilting J, Hess CF, Ramadori G, Malik IA. PECAM-1 modulates liver damage induced by synergistic effects of TNF-α and irradiation. J Cell Mol Med 2019; 23:3336-3344. [PMID: 30761739 PMCID: PMC6484309 DOI: 10.1111/jcmm.14224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
The mechanisms of radiation‐induced liver damage are poorly understood. We investigated if tumour necrosis factor (TNF)‐α acts synergistically with irradiation, and how its activity is influenced by platelet endothelial cell adhesion molecule‐1 (PECAM‐1). We studied murine models of selective single‐dose (25 Gy) liver irradiation with and without TNF‐α application (2 μg/mouse; i.p.). In serum of wild‐type (wt)‐mice, irradiation induced a mild increase in hepatic damage marker aspartate aminotransferase (AST) in comparison to sham‐irradiated controls. AST levels further increased in mice treated with both irradiation and TNF‐α. Accordingly, elevated numbers of leucocytes and increased expression of the macrophage marker CD68 were observed in the liver of these mice. In parallel to hepatic damage, a consecutive decrease in expression of hepatic PECAM‐1 was found in mice that received radiation or TNF‐α treatment alone. The combination of radiation and TNF‐α induced an additional significant decline of PECAM‐1. Furthermore, increased expression of hepatic lipocalin‐2 (LCN‐2), a hepatoprotective protein, was detected at mRNA and protein levels after irradiation or TNF‐α treatment alone and the combination of both. Signal transducer and activator of transcription‐3 (STAT‐3) seems to be involved in the signalling cascade. To study the involvement of PECAM‐1 in hepatic damage more deeply, the liver of both wt‐ and PECAM‐1‐knock‐out‐mice were selectively irradiated (25 Gy). Thereby, ko‐mice showed higher liver damage as revealed by elevated AST levels, but also increased hepatoprotective LCN‐2 expression. Our studies show that TNF‐α has a pivotal role in radiation‐induced hepatic damage. It acts in concert with irradiation and its activity is modulated by PECAM‐1, which mediates pro‐ and anti‐inflammatory signalling.
Collapse
Affiliation(s)
- Gesa Malik
- Clinic for Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Clemens Friedrich Hess
- Clinic for Radiotherapy and Radiooncology, University Medical Center Göttingen, Göttingen, Germany
| | - Giuliano Ramadori
- Clinic for Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Ihtzaz Ahmed Malik
- Clinic for Gastroenterology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany.,Department of Anatomy and Cell Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Protective Role of Histidine Supplementation Against Oxidative Stress Damage in the Management of Anemia of Chronic Kidney Disease. Pharmaceuticals (Basel) 2018; 11:ph11040111. [PMID: 30347874 PMCID: PMC6315830 DOI: 10.3390/ph11040111] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Anemia is a major health condition associated with chronic kidney disease (CKD). A key underlying cause of this disorder is iron deficiency. Although intravenous iron treatment can be beneficial in correcting CKD-associated anemia, surplus iron can be detrimental and cause complications. Excessive generation of reactive oxygen species (ROS), particularly by mitochondria, leads to tissue oxidation and damage to DNA, proteins, and lipids. Oxidative stress increase in CKD has been further implicated in the pathogenesis of vascular calcification. Iron supplementation leads to the availability of excess free iron that is toxic and generates ROS that is linked, in turn, to inflammation, endothelial dysfunction, and cardiovascular disease. Histidine is indispensable to uremic patients because of the tendency toward negative plasma histidine levels. Histidine-deficient diets predispose healthy subjects to anemia and accentuate anemia in chronic uremic patients. Histidine is essential in globin synthesis and erythropoiesis and has also been implicated in the enhancement of iron absorption from human diets. Studies have found that L-histidine exhibits antioxidant capabilities, such as scavenging free radicals and chelating divalent metal ions, hence the advocacy for its use in improving oxidative stress in CKD. The current review advances and discusses evidence for iron-induced toxicity in CKD and the mechanisms by which histidine exerts cytoprotective functions.
Collapse
|
14
|
Ahmad S, Cameron S, Naz N, Moriconi F. Mediators of hypoxia in a rat model of sterile-induced acute liver injury. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11471-11479. [PMID: 31966502 PMCID: PMC6966030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/15/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND The liver plays a key role in iron homeostasis during injury and hypoxia. METHODS For induction of liver injury, thioacetamide (TAA) was administered intraperitoneally to male Sprague Dawley rats. Animals were sacrificed at 0, 1, 3, 6, 12, 24, 48, 72 and 96 h. Serum, liver, spleen and heart tissues were collected from control and TAA-treated rats. Tissue sections were prepared for immunohistochemical studies. Nuclear and cytoplasmic proteins were isolated for Western blot analysis. RESULTS Hypoxia inducible factor (HIF)-1α and ED1 positive cells accumulated around the portal field and the interlobular space within 12 hours after TAA administration. Accordingly, Western blot analysis of liver tissue showed an early increase of HIF1α followed by a decrease at 48 h to 96 h. For Erythropoietin (EPO), as well as for HIF1- and -2α, a time-dependent translocation was observed from the cytoplasmic to the nuclear compartment. CONCLUSION Our data suggest that the TAA-induced acute liver damage generates HIF-1α dependent rescue mechanisms with translocation of EPO from the cytoplasmic to the nuclear compartment. Enhanced iron transport into the liver could be necessary for increased metabolic activities during repair processes.
Collapse
Affiliation(s)
- Shakil Ahmad
- Department of Gastroenterology and Endocrinology, University Medical Center, Georg-August UniversityRobert-Koch-Str. 40, D-37075 Goettingen, Germany
- Current address: Department of Cardiology and Pneumology, University Medical Center, Georg-August UniversityRobert-Koch-Str. 42a, D-37075 Goettingen, Germany
| | - Silke Cameron
- Department of Gastroenterology and Endocrinology, University Medical Center, Georg-August UniversityRobert-Koch-Str. 40, D-37075 Goettingen, Germany
| | - Naila Naz
- Department of Gastroenterology and Endocrinology, University Medical Center, Georg-August UniversityRobert-Koch-Str. 40, D-37075 Goettingen, Germany
- Current address: Faculty of Life Sciences, The University of ManchesterOxford Road, Manchester M13 9PT, United Kingdom
| | - Federico Moriconi
- Department of Gastroenterology and Endocrinology, University Medical Center, Georg-August UniversityRobert-Koch-Str. 40, D-37075 Goettingen, Germany
- Current address: Department of Gastroenterology and Hepatology, Triemli Hospital ZürichBirmensdorferstrasse 497, CH-8063 Zürich, Switzerland
| |
Collapse
|