1
|
Björnsson HK, Björnsson ES. Risk factors and prediction for DILI in clinical practice. Expert Opin Drug Metab Toxicol 2025; 21:579-587. [PMID: 39957436 DOI: 10.1080/17425255.2025.2468200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/13/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
INTRODUCTION Drug-induced liver injury is an important adverse effect and can be caused by various medications, including novel therapeutic agents. The risk stratification of patients susceptible to DILI is a growing field. AREAS COVERED The current article highlights new studies on risk stratification regarding risk factors of DILI, prediction of liver injury, and predictors of severe outcomes. Studies on patient demographic and genetic risk factors are discussed, in addition to the potential role of concomitant medications that may affect the risk of DILI. EXPERT OPINION Although much is known about patient risk factors for DILI, a better combination of these factors into risk scores is needed to predict which patients are particularly susceptible. Knowledge of these risk factors might determine drug treatment in the near future, as well as the need for routine monitoring of liver tests.
Collapse
Affiliation(s)
- Helgi Kristinn Björnsson
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Einar Stefan Björnsson
- Division of Gastroenterology and Hepatology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
2
|
Zeng X, Li C, Liu Y, Liu W, Hu Y, Chen L, Huang X, Li Y, Hu K, Ouyang D, Rao T. HLA-B*35:01-mediated activation of emodin-specific T cells contributes to Polygonum multiflorum thunb. -induced liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118523. [PMID: 38969149 DOI: 10.1016/j.jep.2024.118523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE HLA-B*35:01 has been identified as a risk allele for Polygonum multiflorum Thunb.-induced liver injury (PMLI). However, the immune mechanism underlying HLA-B*35:01-mediated PMLI remains unknown. AIM OF THE STUDY To characterize the immune mechanism of HLA-B*35:01-mediated PMLI. MATERIALS AND METHODS Components of P. multiflorum (PM) bound to the HLA-B*35:01 molecule was screened by immunoaffinity chromatography. Both wild-type mice and HLA-B*35:01 transgenic (TG) mice were treated with emodin. The levels of transaminases, histological changes and T-cell response were assessed. Splenocytes from emodin-treated mice were isolated and cultured in vitro. Phenotypes and functions of T cells were characterized upon drug restimulation using flow cytometry or ELISA. Emodin-pulsed antigen-presenting cells (APCs) or glutaraldehyde-fixed APCs were co-cultured with splenocytes from emodin-treated transgenic mice to detect their effect on T-cell activation. RESULTS Emodin, the main component of PM, could non-covalently bind to the HLA-B*35:01-peptide complexes. TG mice were more sensitive to emodin-induced immune hepatic injury, as manifested by elevated aminotransferase levels, infiltration of inflammatory cells, increased percentage of CD8+T cells and release of effector molecules in the liver. However, these effects were not observed in wild-type mice. An increase in percentage of T cells and the levels of interferon-γ, granzyme B, and perforin was detected in emodin-restimulated splenocytes from TG mice. Anti-HLA-I antibodies inhibited the secretion of these effector molecules induced by emodin. Mechanistically, emodin-pulsed APCs failed to stimulate T cells, while fixed APCs in the presence of emodin could elicit the secretion of T cell effector molecules. CONCLUSION The HLA-B*35:01-mediated CD8+ T cell reaction to emodin through the P-I mechanism may contribute to P. multiflorum-induced liver injury.
Collapse
Affiliation(s)
- Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Chaopeng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Yating Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Yuwei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China
| | - Xinyi Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ying Li
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China.
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China; National Clinical Research Center for Geriatric Disorders, Changsha, China.
| |
Collapse
|
3
|
Gong L, Shen X, Huang N, Wu K, Li R, Liu Y, Zhang H, Chen S, Sun R. Research progress on hepatotoxicity mechanism of polygonum multiflorum and its main components. Toxicon 2024; 248:108040. [PMID: 39038664 DOI: 10.1016/j.toxicon.2024.108040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
As a traditional tonic Chinese medicine, Polygonum multiflorum is widely used in clinical practice. However, with the deepening of modern pharmacological research, its drug toxicity, especially hepatotoxicity, has become increasingly prominent. Based on a large number of clinical and experimental evidence, it has been confirmed that Polygonum multiflorum and its main active ingredients such as anthraquinones and diphenylethylene glucoside can cause different degrees of hepatotoxicity. Further studies have shown that the toxicological mechanisms involved in the hepatotoxicity of different extracts and components of Polygonum multiflorum may include oxidative phosphorylation, bile acid excretion, different metabolic pathways, genetic and metabolic factors, immune homeostasis, etc. By sorting out and summarizing the literature related to hepatotoxicity of Polygonum multiflorum in recent years, this paper discussed the hepatotoxicity mechanism of Polygonum multiflorum and its main components and some contradictions in related reports.
Collapse
Affiliation(s)
- Liping Gong
- The Second Hospital of Shandong University, Jinan, 250033, China
| | - Xianhui Shen
- The Second Hospital of Shandong University, Jinan, 250033, China
| | - Nana Huang
- The Second Hospital of Shandong University, Jinan, 250033, China; Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Kaiyi Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Rongrong Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Ying Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Huijie Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Siyi Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Rong Sun
- The Second Hospital of Shandong University, Jinan, 250033, China; Advanced Medical Research Institute, Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Liu W, Zeng X, Wang X, Hu Y, Chen L, Luo N, Ouyang D, Rao T. 2,3,5,4'- tetrahydroxystilbene-2-O-β-D- glucopyranoside (TSG)-Driven immune response in the hepatotoxicity of Polygonum multiflorum. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117865. [PMID: 38369066 DOI: 10.1016/j.jep.2024.117865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG) as the primary constituent of Polygonum multiflorum Thumb. (PM) possesses anti-oxidative, antihypercholesterolemic, anti-tumor and many more biological activities. The root of PM has been used as a tonic medicine for thousands of years. However, cases of PM-induced liver injury are occasionally reported, and considered to be related to the host immune status. AIM OF THE STUDY The primary toxic elements and specific mechanisms PM causing liver damage are still not thoroughly clear. Our study aimed to investigate the influences of TSG on the immune response in idiosyncratic hepatotoxicity of PM. MATERIALS AND METHODS The male C57BL/6 mice were treated with different doses of TSG and the alterations in liver histology, serum liver enzyme levels, proportions of T cells and cytokines secretion were evaluated by hematoxylin and eosin (HE), RNA sequencing, quantitative real time polymerase chain reaction (qRT-PCR), Flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA), respectively. Then, primary spleen cells from drug-naive mice were isolated and cultured with TSG in vitro. T cell subsets proliferation and cytokines secretion after treated with TSG were assessed by CCK8, FCM and ELISA. In addition, mice were pre-treated with anti-CD25 for depleting regulatory T cells (Tregs), and then administered with TSG. Liver functions and immunological alterations were analyzed to evaluate liver injury. RESULTS Data showed that TSG induced liver damage, and immune cells infiltration in the liver tissues. FCM results showed that TSG could activate CD4+T and CD8+T in the liver. Results further confirmed that TSG notably up-regulated the levels of inflammatory cytokines including TNF-α, IFN-γ, IL-18, perforin and granzyme B in the liver tissues. Furthermore, based on transcriptomics profiles, some immune system-related pathways including leukocyte activation involved in inflammatory response, leukocyte cell-cell adhesion, regulation of interleukin-1 beta production, mononuclear cell migration, antigen processing and presentation were altered in TSG treated mice. CD8+T/CD4+T cells were also stimulated by TSG in vitro. Interestingly, increased proportion of Tregs was observed after TSG treatment in vitro and in vivo. Foxp3 and TGF-β1 mRNA expressions were up-regulated in the liver tissues. Depletion of Tregs moderately enhanced TSG induced the secretion of inflammatory cytokines in serum. CONCLUSIONS Our findings showed that TSG could trigger CD4+T and CD8+T cells proliferation, promote cytokines secretion, which revealed that adaptive immune response associated with the mild liver injury cause by TSG administration. Regulatory T cells (Tregs) mainly sustain immunological tolerance, and in this study, the progression of TSG induced liver injury was limited by Tregs. The results of our investigations allow us to preliminarily understand the mechanisms of PM related idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan Province, 410078, China; Department of Clinical Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, 541001, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan Province, 410078, China
| | - Xiangchang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan Province, 410078, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan Province, 410078, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, Hunan Province, 410221, China
| | - Xinfeng Wang
- Department of Human Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi Province, 541199, China
| | - Yuwei Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan Province, 410078, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan Province, 410078, China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, Hunan Province, 410221, China
| | - Naixiang Luo
- Department of Immunology, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi Province, 541199, China.
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan Province, 410078, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan Province, 410078, China; Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, Hunan Province, 410221, China.
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan Province, 410078, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan Province, 410078, China.
| |
Collapse
|
5
|
Krantz MS, Marks ME, Phillips EJ. The clinical application of genetic testing in DILI, are we there yet? Clin Liver Dis (Hoboken) 2024; 23:e0218. [PMID: 38872778 PMCID: PMC11168851 DOI: 10.1097/cld.0000000000000218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/15/2024] Open
Affiliation(s)
- Matthew S. Krantz
- Division of Allergy, Department of Medicine, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeline E. Marks
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth J. Phillips
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
6
|
Björnsson HK, Björnsson ES. Review of human risk factors for idiosyncratic drug-induced liver injury: latest advances and future goals. Expert Opin Drug Metab Toxicol 2023; 19:969-977. [PMID: 37997265 DOI: 10.1080/17425255.2023.2288260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Idiosyncratic drug-induced liver injury (DILI) is a common cause of acute liver injury and can lead to death from acute liver failure or require liver transplantation. Although the total burden of liver injury is high, the frequency of DILI caused by specific agents is often low. As the liver injury is by per definition idiosyncratic, the prediction of which patients will develop liver injury from specific drugs is currently a very difficult challenge. AREAS COVERED The current paper highlights the most important studies on prediction of DILI published in 2019-2023, including studies on genetic, metabolomic, and demographic risk factors, concomitant medication, and the role of comorbid liver diseases. Risk stratification using demographic, metabolomic, and multigenetic risk factors is discussed. EXPERT OPINION Great advances have been made in identifying genetic risk factors for DILI. Combining these risk factors with demographic information and other biomarkers into multigenetic risk models might become highly useful in risk stratifying patients exposed to DILI. However, a more detailed mapping of genetic risk factors is needed. Results of these studies need to be validated in the selected ethnic groups before applicability and cost-effectiveness can be determined.
Collapse
Affiliation(s)
- Helgi Kristinn Björnsson
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Einar Stefan Björnsson
- Division of Gastroenterology and Hepatology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
7
|
Ma ZT, Shi Z, Xiao XH, Wang JB. New Insights into Herb-Induced Liver Injury. Antioxid Redox Signal 2023; 38:1138-1149. [PMID: 36401515 PMCID: PMC10259609 DOI: 10.1089/ars.2022.0134] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Significance: Herbs are widely used worldwide. However, inappropriate use of some of the herbs can lead to herb-induced liver injury (HILI). Intriguingly, HILI incidents are on the rise, and our understanding of the underlying etiologies is in progress, and hence, an update on the current status of incidents as well as our understanding on the etiologies of HILI is appropriate. Recent Advances: HILI reports due to the use of some herbs that are traditionally considered to be safe are also on the rise. Furthermore, HILI due to the use of certain herbs in combination with other herbs (herb-herb interaction [HHI]) or non-herb components (herb-drug interaction [HDI]) has also been reported, suggesting a potentially important new type of inappropriate use of herbs. Critical Issues: Updated overviews focus on the epidemiology, etiology, phenotypes, and risk factors of HILI, as well as HDI and HHI, and analysis on several types of newly reported "toxic" effects of herbs based on types of hepatotoxicity and the HILI mechanisms. Future Directions: HILI will continue to be a significant public health challenge in the near future. In the light of the lack of broadly available guidelines and regulations for proper and safe uses of herbs worldwide, raising the public awareness of HILI will remain one of the most effective measures. In particular, it should include a better understanding of the contributing factors; a more detail subclassification and description of HILI, better characterization of the components/substances that could induce HILI; and development of HILI diagnosis based on the Roussel Uclaf Causality Assessment Method (RUCAM). Antioxid. Redox Signal. 38, 1138-1149.
Collapse
Affiliation(s)
- Zhi-Tao Ma
- Department of Pharmaceutics of Chinese Materia Medica, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zhuo Shi
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Department of Pharmaceutics of Chinese Materia Medica, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Tan K, Yang W, Pang L, Hou F. Differences in clinical characteristics among 726 patients with Chinese herbal medicine- or Western medicine-induced liver injury. Medicine (Baltimore) 2022; 101:e29909. [PMID: 35960048 PMCID: PMC9371566 DOI: 10.1097/md.0000000000029909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The differences between Chinese herbal medicine (CHM)- and Western medicine (WM)-induced liver injury have rarely been reported. Our aim was to investigate the clinical features of patients with drug-induced liver injury (DILI) caused by CHM or WM. The medical records of 726 DILI patients were retrospectively collected at Peking University First Hospital from January 1995 through August 2019. The number of inpatients with DILI in our hospital showed an increasing trend over time. The incidence of DILI caused by CHM exhibited a linear trend toward an increase with time (P = .0012). Of the 726 DILI patients, females accounted for 65.8%. There were 353 cases (48.6%) caused by CHM and 225 cases (40.0%) caused by WM. The 3 most common causative CHMs were Polygonum multiflorum (38 cases), Fructus Psoraleae (35 cases), and Epimedium (26 cases). The proportions of female patients, alanine aminotransferase (ALT) levels, aspartate aminotransferase (AST) levels, total bilirubin (TBIL) levels and antinuclear antibody (ANA) positivity rates among cases caused by CHM were higher than those of cases caused by WM (P < .05). There were more patients with severe cases caused by CHM than with severe cases caused by WM (P < .05). The clinical characteristics of DILI caused by CHM differ from those caused by WM. The incidence of DILI caused by CHM is increasing yearly. The medication time of DILI caused by CHM is longer than that of DILI caused by WM, and the severity is greater. Therefore, it is necessary to scientifically and rationally use traditional CHM and monitor liver function. For DILI caused by CHM, the CHM prescription should be recorded in detail to provide detailed clinical data for scientific research on the liver toxicity of CHM.
Collapse
Affiliation(s)
- Kangan Tan
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Wanna Yang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lili Pang
- Department of Gastroenterology, Amht Group Aerospace 731 Hospital, Beijing China
| | - Fengqin Hou
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
- Department of Infectious Diseases, Peking University International Hospital, Beijing, China
- *Correspondence: Fengqin Hou, No. 8, XiShiKu Street, XiCheng District, 100034 Beijing, China (e-mail: )
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Datasets of well characterized drug or herbal and dietary supplement-associated liver injury has provided a rich resource to identify genetic variants associated with hepatic injury that further supports the role of immune activation in drug-induced liver injury (DILI). RECENT FINDINGS Using DNA microarrays, whole genome sequencing, HLA-restricted DNA sequencing with appropriate ethnically matched population controls have identified HLA-specific genetic variants for drugs or botanical compounds with the same HLA variant associated with different agents. In addition to HLAs, two genes involved with immune signaling were also identified: a functional PTPN22 variant associated with increased DILI risk to any agent or clinical presentation and a variant in ERAP2 hepatic gene expression that trims peptide in preparation for presentation in the HLA cleft increased the risk for DILI in amoxicillin-clavulanate DILI when present with known HLA risk alleles. SUMMARY Variants in HLA and other genes involved in immune regulations further supports immune system activation in DILI. In the future, identifying these variants before exposure may minimize the risk for DILI events, help with assessment of drug causality for causing DILI and with greater understanding of DILI mechanisms, has important implication for future drug development.
Collapse
Affiliation(s)
- Andrew Stolz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Zhang L, Niu M, Wei AW, Tang JF, Li PY, Song D, Bai ZF, Liu YP, Xiao XH, Wang JB. Clinical correlation between serum cytokines and the susceptibility to Polygonum multiflorum-induced liver injury and an experimental study. Food Funct 2022; 13:825-833. [PMID: 34985089 DOI: 10.1039/d1fo03489h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polygonum multiflorum (PM), a popular functional food, and a herbal and dietary supplement, is widely used as a tonic in China and East Asia. In recent years, it has attracted great concern for its ability to cause idiosyncratic drug-induced liver injury (IDILI). However, identifying individuals susceptible to IDILI remains challenging. This is a prospective study. For 6 patients whose serum alanine aminotransferase (ALT) levels after consuming PM were abnormally elevated (susceptible group), 15 patients with normal levels of liver injury markers were matched (tolerant group) based on similar baseline characteristics. ProcartaPlex immunoassays were adopted to quantitatively detect 33 serum cytokines in the two groups of patients before consuming PM, to characterize the cytokine profile and screen differential cytokines. Subsequently, the susceptibility of a potential biomarker to regulate PM-induced liver injury was validated in animal models. There were significant differences in the cytokine profiles between the susceptible and tolerant groups, wherein the susceptible patients showed immune perturbation characterized by high expression of multiple inflammatory cytokines, especially the proinflammatory cytokine TNF-α (P = 0.006). Among them, the cytokine TNF-α had the strongest correlation with ALT, where the correlation coefficient was greater than 0.6, and the area under the receiver operating characteristic curve was more than 0.8. Animal experiments revealed that both PM water extract and its susceptibility component of liver injury, cis-stilbene glucoside, could cause liver injury in the mice pre-stimulated using TNF-α. Conversely, administration of the same dose of drugs on control mice did not show any hepatotoxicity. In conclusion, immune perturbation mainly mediated by TNF-α may regulate the susceptibility to PM-induced liver injury. This provides a new perspective for the study of susceptibility to IDILI.
Collapse
Affiliation(s)
- Le Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ming Niu
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ai-Wu Wei
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jin-Fa Tang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Peng-Yan Li
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Di Song
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhao-Fang Bai
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - You-Ping Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiao-He Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China. .,Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Woo SM, Davis WD, Aggarwal S, Clinton JW, Kiparizoska S, Lewis JH. Herbal and dietary supplement induced liver injury: Highlights from the recent literature. World J Hepatol 2021; 13:1019-1041. [PMID: 34630872 PMCID: PMC8473494 DOI: 10.4254/wjh.v13.i9.1019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
Herbal-induced liver injury (HILI) is an important and increasingly concerning cause of liver toxicity, and this study presents recent updates to the literature. An extensive literature review was conducted encompassing September 2019 through March 2021. Studies with clinically significant findings were analyzed and included in this review. We emphasized those studies that provided a causality assessment methodology, such as Roussel Uclaf Causality Assessment Method scores. Our review includes reports of individual herbals, including Garcinia cambogia, green tea extract, kratom as well as classes such as performance enhancing supplements, Traditional Chinese medicine, Ayurvedic medicine and herbal contamination. Newly described herbals include ashwagandha, boldo, skyfruit, and 'Thermo gun'. Several studies discussing data from national registries, including the United States Drug-Induced Liver Injury (DILI) Network, Spanish DILI Registry, and Latin American DILI Network were incorporated. There has also been a continued interest in hepatoprotection, with promising use of herbals to counter hepatotoxicity from anti-tubercular medications. We also elucidated the current legal conversation surrounding use of herbals by presenting updates from the Federal Drug Administration. The highlights of the literature over the past year indicate interest in HILI that will continue as the supplement industry in the United States grows.
Collapse
Affiliation(s)
- Stephanie M Woo
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States.
| | - William D Davis
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Soorya Aggarwal
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Joseph W Clinton
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - Sara Kiparizoska
- Department of Internal Medicine, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| | - James H Lewis
- Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC 20007, United States
| |
Collapse
|
12
|
Zhai XR, Zou ZS, Wang JB, Xiao XH. Herb-Induced Liver Injury Related to Reynoutria multiflora (Thunb.) Moldenke: Risk Factors, Molecular and Mechanistic Specifics. Front Pharmacol 2021; 12:738577. [PMID: 34539416 PMCID: PMC8443768 DOI: 10.3389/fphar.2021.738577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Herbal medicine is widely used in Asia as well as the west. Hepatotoxicity is one of the most severe side effects of herbal medicine which is an increasing concern around the world. Reynoutria multiflora (Thunb.) Moldenke (Polygonum multiflorum Thunb., PM) is the most common herb that can cause herb-induced liver injury (HILI). The recent scientific and technological advancements in clinical and basic research are paving the way for a better understanding of the molecular aspects of PM-related HILI (PM-HILI). This review provides an updated overview of the clinical characteristics, predisposing factors, hepatotoxic components, and molecular mechanisms of PM-HILI. It can also aid in a better understanding of HILI and help in further research on the same.
Collapse
Affiliation(s)
- Xing-Ran Zhai
- Peking University 302 Clinical Medical School, Beijing, China
| | - Zheng-Sheng Zou
- Peking University 302 Clinical Medical School, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiao-He Xiao
- Senior Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
- China Military Institute of Chinese Medicine, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Yang CX, Yao DM. Research advances in pathogenesis and diagnostic markers of drug-induced liver injury. Shijie Huaren Xiaohua Zazhi 2021; 29:726-732. [DOI: 10.11569/wcjd.v29.i13.726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of drug-induced liver injury (DILI) is complex, involving a variety of factors; so far, it has not been very clear yet. In recent years, scholars have carried out many studies on the pathogenesis of DILI. The diversity of clinical manifestations and the lack of specific and unified diagnostic criteria for DILI increase the complexity of diagnosis and treatment of DILI. In order to strengthen the understanding of DILI, this paper summarizes the recent research progress on the pathogenesis and diagnostic markers of DILI.
Collapse
Affiliation(s)
- Chen-Xi Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Dong-Mei Yao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
14
|
Teka T, Wang L, Gao J, Mou J, Pan G, Yu H, Gao X, Han L. Polygonum multiflorum: Recent updates on newly isolated compounds, potential hepatotoxic compounds and their mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113864. [PMID: 33485980 DOI: 10.1016/j.jep.2021.113864] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thunb.(PM), (known as Heshouwu () in China) is one of the most important and well mentioned Chinese medicinal herbs in the literature for its use in blackening hair, nourishing liver and kidney, anti-aging, anti-hyperlipidemia, antioxidant, anti-inflammatory, anticancer, hepatoprotection, cardio-protection and improving age-related cognitive dysfunction. The purpose of this review is to give a comprehensive and recent update on PM: new compounds or isolated for the first time, potential hepatotoxic compounds and their mechanisms. Moreover, future perspectives and challenges in the future study of this plant are conversed which will make a new base for further study on PM. MATERIALS AND METHODS A comprehensive review of relevant published literature on PM using the scientific databases SCOPUS, PubMed, and Science Direct was done. RESULTS PM is broadly produced in many provinces of China and well known in other Eastern Asian Countries for its ethno-medical uses. Previous phytochemical investigation of PM had led to the isolation of more than 175 compounds including recently isolated 70 new compounds. Most of the new compounds isolated after 2015 are majorly dianthrone glycosides and stilbene glycosides. Processing has also a significant effect on chemical composition, pharmacological activities, and toxicity of PM. PM-induced liver injury is increasing after the first report in Hong Kong in 1996. Hepatotoxicity of PM was constantly reported in Japan, Korea, China, Australia, Britain, Italy, and other countries although its toxicity is related to idiosyncratic hepatotoxicity. More interestingly, although there is indispensable interest to predict idiosyncratic hepatotoxicity of PM and understand its mechanisms, the responsible hepatotoxic compounds and mechanisms of liver damage induced by PM are still not clear. There is a big controversy on the identification of the most responsible constituent. Anthraquinone and stilbene compounds in PM, mainly emodine and TSG are mentioned in the literature to be the main responsible hepatotoxic compounds. However, comparing the two compounds, which one is the more critical toxic agent for PM-induced hepatotoxicity is not well answered. Affecting different physiological and metabolic pathways such as oxidative phosphorylation and TCA cycle pathway, metabolic pathways, bile acid excretion pathway and genetic polymorphisms are among the mechanisms of hepatotoxicity of PM. CONCLUSION Deeper and effective high throughput experimental studies are still research hotspots to know the most responsible constituent and the mechanism of PM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China; Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Ethiopia
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jian Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Jiajia Mou
- Department of Medicinal Chemistry, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 69 Zengchan Road, Hebei District, Tianjin, 300250, PR China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, PR China.
| |
Collapse
|
15
|
Tu C, Niu M, Wei AW, Tang JF, Zhang L, Jing J, Xiao XH, Wang JB. Susceptibility-Related Cytokine Panel for Prediction of Polygonum multiflorum-Induced Hepatotoxicity in Humans. J Inflamm Res 2021; 14:645-655. [PMID: 33692634 PMCID: PMC7939510 DOI: 10.2147/jir.s299892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Drug-induced liver injury is a common adverse effect in clinical practice, with severe cases resulting in liver failure and even death. Identification and prediction of individuals susceptible to idiosyncratic DILI continues to remain a challenge. METHODS In this study, we report that cytokines in human serum can be used to identify and predict individuals susceptible to Polygonum multiflorum-induced DILI (PM-DILI) in retrospective and prospective cohort studies. FINDINGS In the retrospective pilot study, we compared serum cytokine expression profiles of the PM-DILI group (n=10) and the PM-Tolerant group (n=12) and found 10 cytokines with significant differences. In the replication cohort study, differences in the 10 cytokines between PM-DILI (n =11) and PM-Tolerant (n=13) groups were verified. Among them, 6 cytokines showed no significant differences at two time points, including liver injury and recovery stage of PM-DILI, suggesting that these 6 cytokines have no correlation with PM-DILI, however, they may be related to susceptibility. Furthermore, all the retrospective cohorts were combined, and a PM-DILI susceptibility prediction model was built by screening the 6 cytokines. The combination of (TNF-α and CCL-2) or VEGF showed the highest sensitivity and specificity. Finally, the efficacy of the above 3 cytokine combination models in predicting PM-DILI-susceptible individuals was verified before PM exposure in another independent prospective cohort (n=24), with sensitivity and specificity of 66.7% and 83.3%, respectively. CONCLUSION This proof-of-concept study demonstrates that the serum cytokine combination reflecting dysimmunity could be used as a new method to predict PM-DILI, thus providing a new perspective for improving the clinical management of IDILI.
Collapse
Affiliation(s)
- Can Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Ming Niu
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Ai-Wu Wei
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Jin-Fa Tang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450000, People’s Republic of China
| | - Le Zhang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Jing Jing
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, People’s Republic of China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
16
|
Jan A, Saeed M, Afridi MH, Khuda F, Shabbir M, Khan H, Ali S, Hassan M, Akbar R. Association of HLA-B Gene Polymorphisms with Type 2 Diabetes in Pashtun Ethnic Population of Khyber Pakhtunkhwa, Pakistan. J Diabetes Res 2021; 2021:6669731. [PMID: 34258292 PMCID: PMC8254654 DOI: 10.1155/2021/6669731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/20/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022] Open
Abstract
Human leukocyte antigen (HLA) system is the most polymorphic and gene dense region of human DNA that has shown many disease associations. It has been further divided into HLA classes I, II, and III. Polymorphism in HLA class II genes has been reported to play an important role in the pathogenesis of type 1 diabetes (T1D). It also showed association with T2D in different ethnic populations. However, a little is known about the relationship of HLA class I gene polymorphism and T2D. This study has evaluated the association of HLA-B (class I gene) variants with T2D in Pashtun ethnic population of Khyber Pakhtunkhwa. In the first phase of the study, whole exome sequencing (WES) of 2 pooled DNA samples was carried out, and DNA pools used were constructed from 100 diabetic cases and 100 control subjects. WES results identified a total of n = 17 SNPs in HLA-B gene. In the next phase, first 5 out of n = 17 reported SNPs were genotyped using MassARRAY® system in order to validate WES results and to confirm association of selected SNPs with T2D. Minor allele frequencies (MAFs) and selected SNPs×T2D association were determined using chi-square test and logistic regression analysis. The frequency of minor C allele was significantly higher in the T2D group as compared to control group (45.0% vs. 13.0%) (p = 0.006) for rs2308655 in HLA-B gene. No significant difference in MAF distribution between cases and controls was observed for rs1051488, rs1131500, rs1050341, and rs1131285 (p > 0.05). Binary logistic regression analyses showed significant results for SNP rs2308655 (OR = 2.233, CI (95%) = 1.223-4.077, and p = 0.009), while no considerable association was observed for the other 4 SNPs. However, when adjusted for these variants, the association of rs2308655 further strengthened significantly (adjusted OR = 7.485, CI (95%) = 2.353-23.812, and p = 0.001), except for rs1131500, which has no additive effect. In conclusion, the finding of this study suggests rs2308655 variant in HLA-B gene as risk variant for T2D susceptibility in Pashtun population.
Collapse
Affiliation(s)
- Asif Jan
- Department of Pharmacy, University of Peshawar, Pakistan
| | - Muhammad Saeed
- Department of Pharmacy, University of Peshawar, Pakistan
| | | | - Fazli Khuda
- Department of Pharmacy, University of Peshawar, Pakistan
| | - Muhammad Shabbir
- Internal Medicine, College of Medicine, Shaqra University, Saudi Arabia
| | - Hamayun Khan
- Department of Pharmacy, University of Peshawar, Pakistan
| | - Sajid Ali
- Department of Biotechnology, Abdul Wali Khan University, Mardan, Pakistan
| | | | - Rani Akbar
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| |
Collapse
|
17
|
Stephens C, Lucena MI, Andrade RJ. Genetic risk factors in the development of idiosyncratic drug-induced liver injury. Expert Opin Drug Metab Toxicol 2020; 17:153-169. [DOI: 10.1080/17425255.2021.1854726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Camilla Stephens
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| | - Raúl J Andrade
- Unidad de Gestión Clínica de Aparato Digestivo y Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, Málaga, Spain
| |
Collapse
|