1
|
Yang S, Jiang Y, Yang Z. Hypoxia-associated genes as predictors of outcomes in gastric cancer: a genomic approach. Front Immunol 2025; 16:1553477. [PMID: 40129974 PMCID: PMC11931070 DOI: 10.3389/fimmu.2025.1553477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Objective To investigate the effects of hypoxia-related genes in stomach adenocarcinoma (STAD) and construct an excellent prognostic model. Methods RNA expression data and clinical details were retrieved from the TCGA and GEO database dataset. scRNA-seq analysis was conducted on primary gastric cancer samples from GSE183904. Cellular hypoxia status was predicted using the CHPF software. WGCNA and GO-BP/KEGG enrichment of module genes analyses were performed to identify gene modules associated with hypoxia and biological pathway enrichment. A prognostic model was developed employing the LassoCox algorithm. GES-1, AGS, BGC823, and MGC803 cell lines were obtained for qRT-PCR analysis to identify the expression of model genes. Results Single-cell atlas within STAD delineated that most of neoplastic cells, fibroblasts, endothelial cells, and myeloid cells were hypoxic. Further analysis of neoplastic cell subpopulations identified four hypoxic subpopulations (H1-H4) and four non-hypoxic subpopulations (N1-N4), with H1 subpopulation had the highest degree of hypoxia. The prognostic model constructed by five H1-specific transcription factors EHF, EIF1AD, GLA, KEAPI, and MAGED2, was demonstrated efficacy in predicting overall survival (OS), with significantly worse OS in high-risk patients. qRT-PCR analysis determined the higher expression level of five H1-specific transcription factors in gastric cancer cell lines than that in normal gastric epithelial cell line. Conclusion Hypoxia exerts a profound influence on STAD due to the overexpression of hypoxic cellular subpopulations-specific transcription factors EHF, EIF1AD, GLA, KEAPI, and MAGED2. The novel prognostic model developed by these hypoxia-associated genes presents a novel approach to risk stratification, exhibiting an excellent prognostic value for STAD patients.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhao Jiang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Li H, Zhu C, Gu Y, Wei X, Wang X, Yang X, Zhang H. Shared diagnostic biomarkers and underlying mechanisms between endometriosis and recurrent implantation failure. Front Endocrinol (Lausanne) 2025; 16:1490746. [PMID: 40046872 PMCID: PMC11879817 DOI: 10.3389/fendo.2025.1490746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Endometriosis (EMs) is a common condition that causes dysmenorrhea, chronic pelvic pain, and infertility, affecting millions of women worldwide. Despite the use of assisted reproductive technology, EMs patients often experience lower embryo implantation rates and recurrent implantation failure (RIF) due to impaired uterine endometrial receptivity. This study aims to identify shared diagnostic genes and underlying mechanisms between EMs and RIF using integrated transcriptomic analysis and machine learning with Gene Expression Omnibus (GEO) datasets. METHODS We analyzed GSE11691, GSE7305, GSE111974, and GSE103465 as training datasets for EMs and RIF, and GSE25628 and GSE92324 as validation datasets. Differentially expressed genes (DEGs) and Weighted Gene Co-Expression Network Analysis (WGCNA) identified key genes specific to and shared by EMs and RIF. Machine learning algorithms were used to determine the shared diagnostic gene, whose performance was validated in both training and validation datasets. Single-gene Gene Set Enrichment Analysis (GSEA) revealed shared biological processes in EMs and RIF, while CIBERSORT analysis highlighted similarities and differences in immune infiltration between the two conditions. Finally, endometrial samples from healthy controls, EMs, and RIF patients were collected, and qRT-PCR was performed to validate the diagnostic gene. RESULTS We identified 48 shared key genes between EMs and RIF. The diagnostic gene EHF was selected through machine learning algorithms, and its diagnostic performance was validated in both training and validation datasets. ROC curve analysis demonstrated excellent diagnostic accuracy of EHF for both diseases. Gene Set Enrichment Analysis (GSEA) revealed that both conditions shared biological processes, including dysregulated extracellular matrix remodeling and abnormal immune infiltration. Furthermore, we validated the expression of EHF in endometrial samples from healthy controls, EMs, and RIF patients. Additionally, we characterized the immune microenvironment in EMs and RIF, highlighting changes in immune cell components associated with EHF. DISCUSSION The diagnostic gene EHF identified in this study may serve as a key link between EMs and RIF. The shared pathological processes in both conditions involve alterations in the extracellular matrix and subsequent changes in the immune microenvironment. These findings provide novel insights into potential therapeutic strategies for improving infertility treatment in patients with EMs.
Collapse
Affiliation(s)
- Hui Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenxu Zhu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yingjie Gu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojiao Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaowen Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Carouge E, Burnichon C, Figeac M, Sebda S, Vanpouille N, Vinchent A, Truong M, Duterque‐Coquillaud M, Tulasne D, Chotteau‐Lelièvre A. Functional interaction between receptor tyrosine kinase MET and ETS transcription factors promotes prostate cancer progression. Mol Oncol 2025; 19:474-495. [PMID: 39374163 PMCID: PMC11793009 DOI: 10.1002/1878-0261.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 10/09/2024] Open
Abstract
Prostate cancer, the most common malignancy in men, has a relatively favourable prognosis. However, when it spreads to the bone, the survival rate drops dramatically. The development of bone metastases leaves patients with aggressive prostate cancer, the leading cause of death in men. Moreover, bone metastases are incurable and very painful. Hepatocyte growth factor receptor (MET) and fusion of genes encoding E26 transformation-specific (ETS) transcription factors are both involved in the progression of the disease. ETS gene fusions, in particular, have the ability to induce the migratory and invasive properties of prostate cancer cells, whereas MET receptor, through its signalling cascades, is able to activate transcription factor expression. MET signalling and ETS gene fusions are intimately linked to high-grade prostate cancer. However, the collaboration of these factors in prostate cancer progression has not yet been investigated. Here, we show, using cell models of advanced prostate cancer, that ETS translocation variant 1 (ETV1) and transcriptional regulator ERG (ERG) transcription factors (members of the ETS family) promote tumour properties, and that activation of MET signalling enhances these effects. By using a specific MET tyrosine kinase inhibitor in a humanised hepatocyte growth factor (HGF) mouse model, we also establish that MET activity is required for ETV1/ERG-mediated tumour growth. Finally, by performing a comparative transcriptomic analysis, we identify target genes that could play a relevant role in these cellular processes. Thus, our results demonstrate for the first time in prostate cancer models a functional interaction between ETS transcription factors (ETV1 and ERG) and MET signalling that confers more aggressive properties and highlight a molecular signature characteristic of this combined action.
Collapse
Affiliation(s)
- Elisa Carouge
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Clémence Burnichon
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Martin Figeac
- US 41 – UAR 2014 – PLBSInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Shéhérazade Sebda
- US 41 – UAR 2014 – PLBSInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Nathalie Vanpouille
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Audrey Vinchent
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Marie‐José Truong
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Martine Duterque‐Coquillaud
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - David Tulasne
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Anne Chotteau‐Lelièvre
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| |
Collapse
|
4
|
Sun M, Huang X, Ruan X, Shang X, Zhang M, Liu L, Wang P, An P, Lin Y, Yang J, Xue Y. Cpeb4-mediated Dclk2 promotes neuronal pyroptosis induced by chronic cerebral ischemia through phosphorylation of Ehf. J Cereb Blood Flow Metab 2024; 44:1655-1673. [PMID: 38513137 PMCID: PMC11418732 DOI: 10.1177/0271678x241240590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 03/23/2024]
Abstract
Chronic cerebral ischemia (CCI) is a clinical syndrome characterised by brain dysfunction due to decreased chronic cerebral perfusion. CCI initiates several inflammatory pathways, including pyroptosis. RNA-binding proteins (RBPs) play important roles in CCI. This study aimed to explore whether the interaction between RBP-Cpeb4 and Dclk2 affected Ehf phosphorylation to regulate neuronal pyroptosis. HT22 cells and mice were used to construct oxygen glucose deprivation (OGD)/CCI models. We found that Cpeb4 and Dclk2 were upregulated in OGD-treated HT22 cells and CCI-induced hippocampal CA1 tissues. Cpeb4 upregulated Dclk2 expression by increasing Dclk2 mRNA stability. Knockdown of Cpeb4 or Dclk2 inhibited neuronal pyroptosis in OGD-treated HT22 cells and CCI-induced hippocampal CA1 tissues. By binding to the promoter regions of Caspase1 and Caspase3, the transcription factor Ehf reduced their promoter activities and inhibited the transcription. Dclk2 phosphorylated Ehf and changed its nucleoplasmic distribution, resulting in the exit of p-Ehf from the nucleus and decreased Ehf levels. It promoted the expression of Caspase1 and Caspase3 and stimulated neuronal pyroptosis of HT22 cells induced by OGD. Cpeb4/Dclk2/Ehf pathway plays an important role in the regulation of cerebral ischemia-induced neuronal pyroptosis.
Collapse
Affiliation(s)
- Miao Sun
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xin Huang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuelei Ruan
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengyang Zhang
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Libo Liu
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Yang Lin
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| | - Jin Yang
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixue Xue
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, China
| |
Collapse
|
5
|
Wei WJ, Hong YL, Deng Y, Wang GL, Qiu JT, Pan F. Research progress on the development of hepatocyte growth factor/c-Met signaling pathway in gastric cancer: A review. World J Gastrointest Oncol 2024; 16:3397-3409. [PMID: 39171189 PMCID: PMC11334049 DOI: 10.4251/wjgo.v16.i8.3397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor, c-Met, play important roles in the occurrence, development, and treatment of gastric cancer (GC). This review explored the function of the HGF/c-Met signaling pathway in GC and its potential targeted therapeutic mechanisms. As one of the most common malignant tumors worldwide, GC has a complex pathogenesis and limited therapeutic options. Therefore, a thorough understanding of the molecular mechanism of GC is very important for the development of new therapeutic methods. The HGF/c-Met signaling pathway plays an important role in the proliferation, migration, and invasion of GC cells and has become a new therapeutic target. This review summarizes the current research progress on the role of HGF/c-Met in GC and discusses targeted therapeutic strategies targeting this signaling pathway, providing new ideas and directions for the treatment of GC.
Collapse
Affiliation(s)
- Wu-Jie Wei
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Ya-Li Hong
- Department of Cardiovascular, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Yi Deng
- Intensive Care Unit, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Guan-Liang Wang
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| | - Jiang-Tao Qiu
- Department of Gastrointestinal Surgery, Beijing Tsinghua Changgung Hospital, Beijing 100084, China
| | - Fang Pan
- Department of Oncology, People's Hospital of Chongqing Hechuan, Chongqing 401520, China
| |
Collapse
|
6
|
Wang LM, Zhang WW, Qiu YY, Wang F. Ferroptosis regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. World J Gastrointest Oncol 2024; 16:2781-2792. [PMID: 38994139 PMCID: PMC11236228 DOI: 10.4251/wjgo.v16.i6.2781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors in the world, and its occurrence and development involve complex biological processes. Iron death, as a new cell death mode, has attracted wide attention in recent years. However, the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear. AIM To explore the role of iron death in the development of gastric cancer, reveal its relationship with lipid peroxidation, and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer. METHODS The process of iron death in gastric cancer cells was simulated by cell culture model, and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry. The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology. In addition, a mouse model of gastric cancer was established, and the role of iron death in vivo was studied by histology and immunohistochemistry, and the level of lipid peroxidation was detected. These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer. RESULTS Iron death was significantly activated in gastric cancer cells, and at the same time, associated lipid peroxidation levels increased significantly. Through high-throughput sequencing analysis, it was found that iron death regulated the expression of several genes related to lipid metabolism. In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation. CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer. The activation of iron death significantly increased lipid peroxidation levels, revealing its regulatory mechanism inside the cell.
Collapse
Affiliation(s)
- Lan-Mei Wang
- Department of Clinical Laboratory, Anqiu People's Hospital, Weifang 262123, Shandong Province, China
| | - Wei-Wei Zhang
- Department of Gastroenterology, Feicheng People's Hospital, Tai’an 271600, Shandong Province, China
| | - Ying-Yang Qiu
- Yong Loo Lin School of Medicine, National University of Singapore, 119077, Singapore
| | - Fang Wang
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, China
| |
Collapse
|
7
|
Ali M, Archer DB, Gorijala P, Western D, Timsina J, Fernández MV, Wang TC, Satizabal CL, Yang Q, Beiser AS, Wang R, Chen G, Gordon B, Benzinger TLS, Xiong C, Morris JC, Bateman RJ, Karch CM, McDade E, Goate A, Seshadri S, Mayeux RP, Sperling RA, Buckley RF, Johnson KA, Won HH, Jung SH, Kim HR, Seo SW, Kim HJ, Mormino E, Laws SM, Fan KH, Kamboh MI, Vemuri P, Ramanan VK, Yang HS, Wenzel A, Rajula HSR, Mishra A, Dufouil C, Debette S, Lopez OL, DeKosky ST, Tao F, Nagle MW, Hohman TJ, Sung YJ, Dumitrescu L, Cruchaga C. Large multi-ethnic genetic analyses of amyloid imaging identify new genes for Alzheimer disease. Acta Neuropathol Commun 2023; 11:68. [PMID: 37101235 PMCID: PMC10134547 DOI: 10.1186/s40478-023-01563-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Amyloid PET imaging has been crucial for detecting the accumulation of amyloid beta (Aβ) deposits in the brain and to study Alzheimer's disease (AD). We performed a genome-wide association study on the largest collection of amyloid imaging data (N = 13,409) to date, across multiple ethnicities from multicenter cohorts to identify variants associated with brain amyloidosis and AD risk. We found a strong APOE signal on chr19q.13.32 (top SNP: APOE ɛ4; rs429358; β = 0.35, SE = 0.01, P = 6.2 × 10-311, MAF = 0.19), driven by APOE ɛ4, and five additional novel associations (APOE ε2/rs7412; rs73052335/rs5117, rs1081105, rs438811, and rs4420638) independent of APOE ɛ4. APOE ɛ4 and ε2 showed race specific effect with stronger association in Non-Hispanic Whites, with the lowest association in Asians. Besides the APOE, we also identified three other genome-wide loci: ABCA7 (rs12151021/chr19p.13.3; β = 0.07, SE = 0.01, P = 9.2 × 10-09, MAF = 0.32), CR1 (rs6656401/chr1q.32.2; β = 0.1, SE = 0.02, P = 2.4 × 10-10, MAF = 0.18) and FERMT2 locus (rs117834516/chr14q.22.1; β = 0.16, SE = 0.03, P = 1.1 × 10-09, MAF = 0.06) that all colocalized with AD risk. Sex-stratified analyses identified two novel female-specific signals on chr5p.14.1 (rs529007143, β = 0.79, SE = 0.14, P = 1.4 × 10-08, MAF = 0.006, sex-interaction P = 9.8 × 10-07) and chr11p.15.2 (rs192346166, β = 0.94, SE = 0.17, P = 3.7 × 10-08, MAF = 0.004, sex-interaction P = 1.3 × 10-03). We also demonstrated that the overall genetic architecture of brain amyloidosis overlaps with that of AD, Frontotemporal Dementia, stroke, and brain structure-related complex human traits. Overall, our results have important implications when estimating the individual risk to a population level, as race and sex will needed to be taken into account. This may affect participant selection for future clinical trials and therapies.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Derek B Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Daniel Western
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Maria V Fernández
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Ting-Chen Wang
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | | | - Gengsheng Chen
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Brian Gordon
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Tammie L S Benzinger
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University, St Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Randall J Bateman
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA
- Department of Neurology, Washington University, St Louis, MO, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
| | - Eric McDade
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Alison Goate
- Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sudha Seshadri
- Framingham Heart Study, Framingham, MA, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Richard P Mayeux
- The Department of Neurology, Columbia University, New York, NY, USA
| | - Reisa A Sperling
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Brigham and Women's Hospital and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel F Buckley
- Brigham and Women's Hospital and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Keith A Johnson
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-Hee Won
- Department of Digital Health, Samsung Medical Center, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Department of Digital Health, Samsung Medical Center, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hang-Rai Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hee Jin Kim
- Department of Digital Health, Samsung Medical Center, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, 6027, Australia
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, MN, 55905, USA
| | - Vijay K Ramanan
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN, 55905, USA
| | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Allen Wenzel
- Wisconsin Alzheimer's Institute, Madison, WI, USA
| | - Hema Sekhar Reddy Rajula
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
| | - Aniket Mishra
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
| | - Carole Dufouil
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
| | - Stephanie Debette
- UMR 1219, University of Bordeaux, INSERM, Bordeaux Population Health Research Centre, Team ELEANOR, 33000, Bordeaux, France
- Department of Neurology, Boston University School of Medicine, Boston, MA, 2115, USA
- Department of Neurology, CHU de Bordeaux, 33000, Bordeaux, France
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven T DeKosky
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Feifei Tao
- Neurogenomics, Genetics-Guided Dementia Discovery, Eisai, Inc, Cambridge, MA, USA
| | - Michael W Nagle
- Neurogenomics, Genetics-Guided Dementia Discovery, Eisai, Inc, Cambridge, MA, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO, 63110, USA.
- NeuroGenomics and Informatics, Washington University, St. Louis, MO, 63110, USA.
- Knight Alzheimer's Disease Research Center, Washington University, St Louis, MO, USA.
- Hope Center for Neurologic Diseases, Washington University, St. Louis, MO, 63110, USA.
- Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Liu W, Cai S, Pu R, Li Z, Liu D, Zhou X, Yin J, Chen X, Chen L, Wu J, Tan X, Wang X, Cao G. HBV preS Mutations Promote Hepatocarcinogenesis by Inducing Endoplasmic Reticulum Stress and Upregulating Inflammatory Signaling. Cancers (Basel) 2022; 14:cancers14133274. [PMID: 35805045 PMCID: PMC9265300 DOI: 10.3390/cancers14133274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Viral mutations at the preS region of hepatitis B virus (HBV) significantly increase the risk of developing hepatocellular carcinoma (HCC). Compared to HBV preS deletion, the oncogenic effect of preS combo mutation has rarely been investigated. With a cohort including 2114 subjects, we demonstrated that preS combo mutations G2950A/G2951A/A2962G/C2964A and C3116T/T31C significantly increased the risk of HCC in patients without antiviral treatment, whereas preS2 deletion significantly increased the risk of HCC in patients with antiviral treatment. The prevalence of C3116T/T31C (43.61%) was higher than preS2 deletion (7.16%). By using Sleeping Beauty mouse models and in vitro experiments, we found G2950A/G2951A/A2962G/C2964A, C3116T/T31C, and preS2 deletion promoted hepatocarcinogenesis by increasing levels of inflammatory cytokines, activating STAT3 pathway, enhancing endoplasmic reticulum stress, and altering gene expression profiles in inflammation- and metabolism-related pathways. These results suggest that preS combo mutations G2950A/G2951A/A2962G/C2964A and C3116T/T31C had similar oncogenic effects of preS2 deletion and should also be monitored. Abstract This study aimed to elucidate the effects and underlying mechanisms of hepatitis B virus (HBV) preS mutations on hepatocarcinogenesis. The effect of the preS mutations on hepatocellular carcinoma (HCC) occurrence was evaluated using a prospective cohort study with 2114 HBV-infected patients, of whom 612 received antiviral treatments. The oncogenic functions of HBV preS mutations were investigated using cancer cell lines and Sleeping Beauty (SB) mouse models. RNA-sequencing and microarray were applied to identify key molecules involved in the mutant-induced carcinogenesis. Combo mutations G2950A/G2951A/A2962G/C2964A and C3116T/T31C significantly increased HCC risk in patients without antiviral treatment, whereas the preS2 deletion significantly increased HCC risk in patients with antiviral treatment. In SB mice, the preS1/preS2/S mutants induced a higher rate of tumor and higher serum levels of inflammatory cytokines than did wild-type counterpart. The preS1/preS2/S mutants induced altered gene expression profiles in the inflammation- and metabolism-related pathways, activated pathways of endoplasmic reticulum (ER) stress, affected the response to hypoxia, and upregulated the protein level of STAT3. Inhibiting the STAT3 pathway attenuated the effects of the preS1/preS2/S mutants on cell proliferation. G2950A/G2951A/A2962G/C2964A, C3116T/T31C, and preS2 deletion promote hepatocarcinogenesis via inducing ER stress, metabolism alteration, and STAT3 pathways, which might be translated into HCC prophylaxis.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Shiliang Cai
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Rui Pu
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Zixiong Li
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Donghong Liu
- Department of Liver Cancer Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai 200433, China;
| | - Xinyu Zhou
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Liping Chen
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Jianfeng Wu
- Department of Pathology, Xijing Hospital, Xi’an 710032, China;
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
| | - Xin Wang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200433, China;
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd., Shanghai 200433, China; (W.L.); (S.C.); (R.P.); (Z.L.); (X.Z.); (J.Y.); (X.C.); (L.C.); (X.T.)
- Correspondence: ; Tel.: +86-21-8187-1060
| |
Collapse
|
9
|
Scimeca M, Montanaro M, Bonfiglio R, Anemona L, Agrò EF, Asimakopoulos AD, Bei R, Manzari V, Urbano N, Giacobbi E, Servadei F, Bonanno E, Schillaci O, Mauriello A. The ETS Homologous Factor (EHF) Represents a Useful Immunohistochemical Marker for Predicting Prostate Cancer Metastasis. Diagnostics (Basel) 2022; 12:800. [PMID: 35453848 PMCID: PMC9025154 DOI: 10.3390/diagnostics12040800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The main aim of this study was to investigate the risk of prostate cancer metastasis formation associated with the expression of ETS homologous factor (EHF) in a cohort of bioptic samples. To this end, the expression of EHF was evaluated in a cohort of 152 prostate biopsies including primary prostate cancers that developed metastatic lesions, primary prostate cancers that did not develop metastasis, and benign lesions. Data here reported EHF as a candidate immunohistochemical prognostic biomarker for prostate cancer metastasis formation regardless of the Gleason scoring system. Indeed, our data clearly show that primary lesions with EHF positive cells ≥40% had a great risk of developing metastasis within five years from the first diagnosis. Patients with these lesions had about a 40-fold increased risk of developing metastasis as compared with patients with prostate lesions characterized by a percentage of EHF positive cells ≤30%. In conclusion, the immunohistochemical evaluation of EHF could significantly improve the management of prostate cancer patients by optimizing the diagnostic and therapeutic health procedures and, more important, ameliorating the patient's quality of life.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
- San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
- Faculty of Medicine, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Manuela Montanaro
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Rita Bonfiglio
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Lucia Anemona
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Enrico Finazzi Agrò
- Department of Surgical Sciences, Division of Urology, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.A.); (A.D.A.)
| | - Anastasios D. Asimakopoulos
- Department of Surgical Sciences, Division of Urology, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.A.); (A.D.A.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (V.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.B.); (V.M.)
| | - Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy;
| | - Erica Giacobbi
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Francesca Servadei
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense, 18, 86077 Pozzilli, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (R.B.); (L.A.); (E.G.); (F.S.); (E.B.); (A.M.)
| |
Collapse
|
10
|
Wang P, Sun GB, Dou GX, Wang BQ. Long non-coding RNA B3GALT5-AS1 contributes to the progression of gastric cancer via interacting with CSNK2A1. Exp Ther Med 2021; 22:927. [PMID: 34306196 PMCID: PMC8281446 DOI: 10.3892/etm.2021.10359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is a type of cancer that is characterized by high morbidity and mortality rates. Long non-coding RNA (lncRNA) β-1,3-galactosyltransferase 5-AS1 (B3GALT5-AS1) was previously found to be highly expressed in the serum of patients with gastric cancer. However, the regulatory effects of B3GALT5-AS1 in gastric cancer remain poorly understood. The present study aimed to investigate the effects of B3GALT5-AS1 in gastric cancer cell lines. The expression levels of B3GALT5-AS1 were determined in different gastric cancer cell lines (AGS, HGC-27 and MKN-45) using reverse transcription-quantitative PCR. The potential interaction between B3GALT5-AS1 and casein kinase 2 a1 (CSNK2A1) was evaluated using an RNA binding protein immunoprecipitation and RNA pull down assays. Western blot analysis was performed to measure protein expression levels. Cell Counting Kit-8 assay was utilized to determine cell viability, whilst cell invasion and migration were assessed using Transwell and wound healing assays, respectively. Apoptotic cells were evaluated using TUNEL assays. The results showed that B3GALT5-AS1 expression was upregulated in MKN-45 cells compared with the control group. In addition, B3GALT5-AS1 could bind to CSNK2A1 to regulate its expression. B3GALT5-AS1 knockdown attenuated cell viability, invasion and migration, whilst promoting cell apoptosis. These effects were partly reversed by CSNK2A1 overexpression. Overall, results of the present study revealed that interference with B3GALT5-AS1 impeded gastric cancer cell migration and invasion whilst promoting apoptosis by regulating CSNK2A1 expression. These findings suggested that B3GALT5-AS1 and CSNK2A1 may serve a tumorigenic role in the progression of gastric cancer and serve as therapeutic targets for this type of cancer.
Collapse
Affiliation(s)
- Ping Wang
- Center of Digestive Endoscopy, Tianjin Fifth Central Hospital, Tianjin 300451, P.R. China
| | - Guang-Bin Sun
- Center of Digestive Endoscopy, Tianjin Fifth Central Hospital, Tianjin 300451, P.R. China
| | - Guang-Xian Dou
- Center of Digestive Endoscopy, Tianjin Fifth Central Hospital, Tianjin 300451, P.R. China
| | - Bai-Qing Wang
- Center of Digestive Endoscopy, Tianjin Fifth Central Hospital, Tianjin 300451, P.R. China
| |
Collapse
|
11
|
Chen G, Zhou Z, Jin J, Zhou Y, Liu Y, Wang W. CXCR4 is a prognostic marker that inhibits the invasion and migration of gastric cancer by regulating VEGF expression. Oncol Lett 2021; 22:587. [PMID: 34149898 PMCID: PMC8200941 DOI: 10.3892/ol.2021.12848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/18/2021] [Indexed: 01/11/2023] Open
Abstract
Metastasis is the main cause of poor prognosis of patients with gastric cancer (GC). Thus, current research is focused on identifying biomarkers that can predict the prognosis of patients with GC. C-X-C motif chemokine receptor 4 (CXCR4) and vascular endothelial growth factor (VEGF) have been reported to play important roles in different types of malignancies; however, their role in the prognosis of GC remains unknown. The present study aimed to investigate the potential role of CXCR4 and VEGF in predicting the prognosis of patients with GC. Immunohistochemistry analysis was performed to analyze the expression levels of CXCR4 and VEGF in a GC tissue microarray containing GC tissues and adjacent normal tissues. The association between CXCR4 or VEGF expression levels and the clinicopathological characteristics or survival outcomes were assessed. Furthermore, Transwell and wound healing assays were performed to determine the cell invasive and migratory abilities in vitro. The results demonstrated that CXCR4 promoted AGS cell invasion and migration by regulating VEGF expression. In addition, CXCR4 and VEGF expression levels were significantly upregulated in GC tissues compared with adjacent normal tissues, which was associated with a poorer overall survival (OS). Cox regression analysis demonstrated that both upregulated CXCR4 and VEGF expression were independent negative biomarkers of OS. To the best of our knowledge, the present study was the first to discover that CXCR4 and VEGF exert synergistic roles as efficient prognostic indicators for patients with GC.
Collapse
Affiliation(s)
- Gaoyang Chen
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, P.R. China.,Department of Oncology, The Second People's Hospital of Taizhou City Jiangsu, Jiangsu, Taizhou 225300, P.R. China
| | - Zhen Zhou
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, P.R. China
| | - Jun Jin
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Jiangsu, Yangzhou 225001, P.R. China
| | - Yan Zhou
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Jiangsu, Yangzhou 225001, P.R. China
| | - Yanqing Liu
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, P.R. China.,Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Jiangsu, Yangzhou 225001, P.R. China
| | - Weimin Wang
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Jiangsu, Yangzhou 225001, P.R. China.,Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Jiangsu, Yixing 214200, P.R. China
| |
Collapse
|