1
|
Park HB, Min Y, Hwang S, Baek KH. Suppression of USP7 negatively regulates the stability of ETS proto-oncogene 2 protein. Biomed Pharmacother 2023; 162:114700. [PMID: 37062218 DOI: 10.1016/j.biopha.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUBs) that remove mono or polyubiquitin chains from target proteins. Depending on cancer types, USP7 has two opposing roles: oncogene or tumor suppressor. Moreover, it also known that USP7 functions in the cell cycle, apoptosis, DNA repair, chromatin remodeling, and epigenetic regulation through deubiquitination of several substrates including p53, mouse double minute 2 homolog (MDM2), Myc, and phosphatase and tensin homolog (PTEN). The [P/A/E]-X-X-S and K-X-X-X-K motifs of target proteins are necessary elements for the binding of USP7. In a previous study, we identified a novel substrate of USP7 through bioinformatics analysis using the binding motifs for USP7, and suggested that it can be an effective tool for finding new substrates for USP7. In the current study, gene ontology (GO) analysis revealed that putative target proteins having the [P/A/E]-X-X-S and K-X-X-K motifs are involved in transcriptional regulation. Moreover, through protein-protein interaction (PPI) analysis, we discovered that USP7 binds to the AVMS motif of ETS proto-oncogene 2 (ETS2) and deubiquitinates M1-, K11-, K27-, and K29-linked polyubiquitination of ETS2. Furthermore, we determined that suppression of USP7 decreases the protein stability of ETS2 and inhibits the transcriptional activity of ETS2 by disrupting the binding between the GGAA/T core motif and ETS2. Therefore, we propose that USP7 can be a novel target in cancers related to the dysregulation of ETS2.
Collapse
Affiliation(s)
- Hong-Beom Park
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Yosuk Min
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea; Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-Do 13496, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
2
|
Zhang GW, Tian X, Li Y, Wang ZQ, Li XD, Zhu CY. Down-regulation of ETS2 inhibits the invasion and metastasis of renal cell carcinoma cells by inducing EMT via the PI3K/Akt signaling pathway. Biomed Pharmacother 2018; 104:119-126. [PMID: 29772431 DOI: 10.1016/j.biopha.2018.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/02/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
V-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2), belonging to the ETS family of transcription factors, is implicated in a broad range of cellular functions. Recently, ETS2 has been found playing an important role in the progression of some types of cancers. However, it remains unclear whether ETS2 has any effects on renal cell carcinoma (RCC). In this study, we investigated the biological functions of ETS2 in RCC. The results showed that ETS2 was highly expressed in RCC tissues and cell lines and its expression had an association with clinicopathological characteristics of RCC patients. In addition, down-regulation of ETS2 significantly inhibited RCC cell invasion in vitro and metastasis in vivo as well as suppressed the epithelial-mesenchymal transition (EMT) process. We also found that ETS2 down-regulation significantly reduced the levels of PI3K and Akt phosphorylation in RCC cells. Taken together, we suggest that ETS2 is of potential value as a molecular target for RCC treatment.
Collapse
Affiliation(s)
- Guang-Wei Zhang
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Xin Tian
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Yang Li
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Zhi-Qiang Wang
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Xiao-Dong Li
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China
| | - Chao-Yang Zhu
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan Province, China.
| |
Collapse
|
3
|
Xu FP, Liu YH, Luo XL, Zhang F, Zhou HY, Ge Y, Liu C, Chen J, Luo DL, Yan LX, Mei P, Xu J, Zhuang HG. Overexpression of SRC-3 promotes esophageal squamous cell carcinoma aggressiveness by enhancing cell growth and invasiveness. Cancer Med 2016; 5:3500-3511. [PMID: 27781415 PMCID: PMC5224859 DOI: 10.1002/cam4.884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 02/06/2023] Open
Abstract
Steroid receptor coactivator‐3 (SRC‐3), a transcriptional coactivator for nuclear receptors and other transcription factors, plays an important role in the genesis and progression of several cancers. However, studies investigated the role of SRC‐3 in esophageal squamous cell carcinomas (ESCCs) are limited, and the role of SRC‐3 in tumor progression remains unclear. We examined the expression of SRC‐3 in 8 ESCC cell lines and 302 human ESCC tissues by qPCR, Western blot, and immunohistochemistry. In addition, ESCC cell lines were subjected to proliferation and invasion assays, tumorigenicity assay, flow cytometry assay, qPCR, Western blot, and Chromatin Immunoprecipitation assay to investigate the role of SRC‐3 in cancer progression. SRC‐3 was overexpressed in 48% of cases and correlated with poor overall (P = 0.0076) and progression‐free (P = 0.0069) survival of surgically resected ESCC patient. Cox regression analysis revealed that SRC‐3 is an independent prognostic marker. Furthermore, we found that activation of insulin‐like growth factor (IGF)/AKT) was involved in the SRC‐3 on the cell growth and invasiveness in two ESCC cell lines, Eca109 and EC18 cells. SRC‐3 overexpression is clinically and functionally relevant to the progression of human ESCC, and might be a useful molecular target for ESCC prognosis and treatment.
Collapse
Affiliation(s)
- Fang-Ping Xu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan-Hui Liu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin-Lan Luo
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fen Zhang
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hai-Yu Zhou
- Department of Thoracic Surgery, Cancer Center, Guangdong General Hospital, Guangzhou, China
| | - Yan Ge
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chao Liu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie Chen
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Dong-Lan Luo
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li-Xu Yan
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ping Mei
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jie Xu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Heng-Guo Zhuang
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
4
|
Li Q, Yang L, Han K, Zhu L, Zhang Y, Ma S, Zhang K, Yang B, Guan F. Ets2 knockdown inhibits tumorigenesis in esophageal squamous cell carcinoma in vivo and in vitro. Oncotarget 2016; 7:61458-61468. [PMID: 27556183 PMCID: PMC5308664 DOI: 10.18632/oncotarget.11369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/08/2016] [Indexed: 01/13/2023] Open
Abstract
Increased expression of Ets2 is reported upregulated in esophageal squamous cell carcinoma tissue. However, the function of Ets2 in carcinogenesis of ESCC is poorly understood. Here, the rise of Ets2 was confirmed in ESCC cells and Ets2 depletion by RNA interference promotes cell apoptosis, inhibits cell proliferation, attenuates cell invasion and induces cell cycle G0/G1 arrest in vitro. Moreover, in vivo, Xenograft mouse model studies showed Ets2 knockdown inhibits tumor formation and metastasis significantly. Furthermore, Ets2 depletion inactivates the mTOR/p70S6K signaling pathway both in vitro and in vivo. Taken together, these findings strongly suggest that a critical role of Ets2 in human ESCC pathogenesis via the inactivation of the mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Qinghua Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Lu Yang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kang Han
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liqiang Zhu
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450002, Henan Province, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Bo Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Fangxia Guan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China.,School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
5
|
Yang H, Schramek D, Adam RC, Keyes BE, Wang P, Zheng D, Fuchs E. ETS family transcriptional regulators drive chromatin dynamics and malignancy in squamous cell carcinomas. eLife 2015; 4:e10870. [PMID: 26590320 PMCID: PMC4739765 DOI: 10.7554/elife.10870] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023] Open
Abstract
Tumor-initiating stem cells (SCs) exhibit distinct patterns of transcription factors and gene expression compared to healthy counterparts. Here, we show that dramatic shifts in large open-chromatin domain (super-enhancer) landscapes underlie these differences and reflect tumor microenvironment. By in vivo super-enhancer and transcriptional profiling, we uncover a dynamic cancer-specific epigenetic network selectively enriched for binding motifs of a transcription factor cohort expressed in squamous cell carcinoma SCs (SCC-SCs). Many of their genes, including Ets2 and Elk3, are themselves regulated by SCC-SC super-enhancers suggesting a cooperative feed-forward loop. Malignant progression requires these genes, whose knockdown severely impairs tumor growth and prohibits progression from benign papillomas to SCCs. ETS2-deficiency disrupts the SCC-SC super-enhancer landscape and downstream cancer genes while ETS2-overactivation in epidermal-SCs induces hyperproliferation and SCC super-enhancer-associated genes Fos, Junb and Klf5. Together, our findings unearth an essential regulatory network required for the SCC-SC chromatin landscape and unveil its importance in malignant progression. DOI:http://dx.doi.org/10.7554/eLife.10870.001 Many cancers contain a mixture of different types of cells. Of these, cells known as cancer stem cells can form new tumours and drive the growth and spread of the cancer around the body. A central question is how cancer stem cells differ from healthy adult stem cells. Recent evidence suggests that, in addition to having genetic mutations, cancer stem cells live in a very different environment to other cells within the tumour. This 'microenvironment'also has a major impact on how these cells behave compared to normal stem cells. Together, the genetic and environmental differences profoundly change the way genes are expressed in the cancer cells. In 2013, a group of researchers identified regions of DNA called super-enhancers. These regions are long stretches of DNA that proteins called transcription factors can interact with to coordinate the expression of nearby genes to alter the production of certain proteins. Super-enhancers contain several transcription factor-binding sites that are close to each other with the different sites being associated with transcription factors that are only active in specific types of cells. Furthermore, super-enhancers are often self-regulatory, meaning that the binding of transcription factors to a super-enhancer can lead to an increase in the expression of the genes that encode the same transcription factors. Yang, Schramek et al. have now identified the super-enhancers in a skin cancer called squamous cell carcinoma and showed that they differ dramatically from the super-enhancers of normal skin stem cells. Their experiments show that the active super-enhancers in cancer stem cells are associated with a very different set of genes that are highly and often specifically expressed in cancer stem cells. In the cancer stem cells, a transcription factor called ETS2 binds to the super-enhancers and reprograms the expression of genes to promote the development of cancer. Yang, Schramek et al. also show that over-active ETS2 is a major driver of squamous cell carcinoma. Furthermore, ETS2 also increases the expression of genes that cause inflammation and promote the growth of cancers. Yang, Schramek et al.’s findings reveal a new regulatory network that governs the expression of genes involved in cancer. Furthermore, the experiments show that high levels of ETS2 are linked with poor outcomes for patients with head and neck squamous cell carcinoma, which is one of the most life-threatening cancers world-wide. In the future, these findings might lead to the development of new therapies to treat these cancers. DOI:http://dx.doi.org/10.7554/eLife.10870.002
Collapse
Affiliation(s)
- Hanseul Yang
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Daniel Schramek
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Rene C Adam
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Brice E Keyes
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, New York, United States
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, New York, United States.,Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, United States
| |
Collapse
|
6
|
The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma. Mol Cancer 2010; 9:313. [PMID: 21143918 PMCID: PMC3009708 DOI: 10.1186/1476-4598-9-313] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 12/09/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many members of the ETS-domain transcription factor family are important drivers of tumourigenesis. In this context, their activation by Ras-ERK pathway signaling is particularly relevant to the tumourigenic properties of many ETS-domain transcription factors. The PEA3 subfamily of ETS-domain transcription factors have been implicated in tumour metastasis in several different cancers. RESULTS Here, we have studied the expression of the PEA3 subfamily members PEA3/ETV4 and ER81/ETV1 in oesophageal adenocarcinomas and determined their role in oesophageal adenocarcinoma cell function. PEA3 plays an important role in controlling both the proliferation and invasive properties of OE33 oesophageal adenocarcinoma cells. A key target gene is MMP-1. The ERK MAP kinase pathway activates PEA3 subfamily members and also plays a role in these PEA3 controlled events, establishing the ERK-PEA3-MMP-1 axis as important in OE33 cells. PEA3 subfamily members are upregulated in human adenocarcinomas and expression correlates with MMP-1 expression and late stage metastatic disease. Enhanced ERK signaling is also more prevalent in late stage oesophageal adenocarcinomas. CONCLUSIONS This study shows that the ERK-PEA3-MMP-1 axis is upregulated in oesophageal adenocarcinoma cells and is a potentially important driver of the metastatic progression of oesophageal adenocarcinomas.
Collapse
|
7
|
Chatterjee A, Dutta S, Mukherjee S, Mukherjee N, Chandra S, Mukherjee A, Sinha S, Panda CK, Chaudhuri K, Mukhopadyay K. Differential allelic distribution of V-ets erythroblastosis virus E26 oncogene homolog2 (ETS2) functional polymorphisms in different group of patients. Gene Expr 2010; 15:61-73. [PMID: 21526717 PMCID: PMC6043833 DOI: 10.3727/105221611x12973615737541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
V-ets erythroblastosis virus E26 oncogene homolog2 (ETS2), located at chromosome 21 and overexpressed in Down's syndrome (DS), has known cancer regulatory functions. Because leukemia is of common occurrence in DS subjects while solid tumors are rare, we have explored the role of ETS2 functional genetic polymorphisms in this differential oncological development. In silico methods were used for identifying deleterious SNPs, tagged SNPs, and linkage disequilibrium followed by genotyping of 14 SNPs in Indo-Caucasoid individuals (N=668). Significantly different allelic frequencies for rs457705, rs1051420, and rs1051425 were observed in Indian controls (N=149) compared to other ethnic groups. A heterozygous "T" insertion, between chromosomal contig positions 40195541 and 40195542, was observed in DS subjects and their parents. rs461155 showed significant allelic and genotypic association in breast and oral cancer patients. Significantly higher occurrence of G-C haplotype (rs461155-rs1051425) was also observed in these patients compared to DS and leukemic patients. This is the first report on this type of allelic discrimination pattern of ETS2 under different disease conditions. From the data obtained it may be proposed that allelic discrimination of deleterious SNPs in ETS2 may play a regulatory role in the differential development of malignancy in DS subjects.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Manovikas Biomedical Research and Diagnostic Centre, MRIH, Kolkata, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Li M, Zhang P. The function of APC/CCdh1 in cell cycle and beyond. Cell Div 2009; 4:2. [PMID: 19152694 PMCID: PMC2635356 DOI: 10.1186/1747-1028-4-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/19/2009] [Indexed: 02/07/2023] Open
Abstract
The anaphase promoting complex/cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase playing essential functions in mitosis. It is conserved from yeast to human and relies on two adaptor proteins, Cdc20 and Cdh1, to bring in substrates. Both APCCdc20 and APCCdh1 are implicated in the control of mitosis through mediating ubiquitination and degradation of important mitotic regulators such as cyclin B1, securin, and Plk1. In addition, APCCdh1 is thought to prevent premature S phase entry by limiting the accumulation of mitotic cyclins in G1 and to regulate processes unrelated to cell cycle. In this review, we will summarize our current understanding of APCCdh1 function in cell cycle and beyond.
Collapse
Affiliation(s)
- Min Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
9
|
Wanschitz F, Stein E, Sutter W, Kneidinger D, Smolik K, Watzinger F, Turhani D. Expression patterns of Ets2 protein correlate with bone-specific proteins in cell-seeded three-dimensional bone constructs. Cells Tissues Organs 2007; 186:213-20. [PMID: 17703088 DOI: 10.1159/000107556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2007] [Indexed: 11/19/2022] Open
Abstract
The transcription factor Ets2 and its transcriptional targets osteopontin (OPN) and osteocalcin (OC) are expressed in tissue-engineered bone constructs in vitro. Up to now little is known about the role of Ets2 in tissue-engineering applications. This study was intended to investigate the hypothesis that protein expression of Ets2 is correlated with the expression of bone-specific proteinsin tissue-engineeredbone constructs. Cell-seeded three-dimensional bone constructs manufactured with osteoblastic cells and poly(lactic-co-glycolic acid) polymer fleeces over a period of 21 days were analyzed by SDS-PAGE and Western blotting. The protein expression of OPN, OC, osteonectin and collagen type I was analyzed. Cellularity, alkaline phosphatase-specific activity and histology confirmed the osteoblastic phenotype of the constructs. Correlations between Ets2 expression and OPN and Ets2 and collagen type I expression could be detected during the phase of late osteoblastic differentiation between days 9 and 21. The correlation between OC and collagen type I was significant in this late stage of osteoblastic differentiation. These results suggest that there is a strong interplay of Ets2 with bone-specific proteins in cell-seeded three-dimensional bone constructs. This study is a crucial step to elucidate the complex interplay of bone-related proteins in the application of bone tissue engineering.
Collapse
Affiliation(s)
- Felix Wanschitz
- Department of Cranio-Maxillofacial and Oral Surgery, General Hospital of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
10
|
Satgé D, Sasco AJ, Vekemans MJJ, Portal ML, Fléjou JF. Aspects of digestive tract tumors in Down syndrome: a literature review. Dig Dis Sci 2006; 51:2053-61. [PMID: 17009117 DOI: 10.1007/s10620-006-9131-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 11/08/2005] [Indexed: 12/09/2022]
Abstract
The purpose of this study was to describe the digestive neoplasms found in persons with Down syndrome. Due to intellectual disability, persons with Down syndrome do not convey their symptoms and pain, leading to delayed diagnosis and potentially worse outcome. It is thus important to know which organs are at risk for tumors and possible tumor risk factors. In a review of the literature, we found 13 benign tumors and 127 cancers in 1 fetus, 8 children, and 131 adults with Down syndrome. The review suggests a decreased incidence of digestive cancer, however, with a possible increased incidence of neoplasms of the pancreas and gallbladder. The distribution of cancers is distinct from that in the general population and that in persons with other intellectual disabilities who share the same life conditions, suggesting that constitutional protective factors exist. This review may allow a more specific, adapted medical follow-up for persons with Down syndrome and could help to elucidate the oncogenesis of digestive neoplasms.
Collapse
Affiliation(s)
- Daniel Satgé
- Laboratoire d'Anatomie Pathologique, Centre Hospitalier, 19 000, Tulle, France.
| | | | | | | | | |
Collapse
|
11
|
Abstract
The incidence of esophageal adenocarcinoma is rising in the United States and Western countries. Significant differences exist between esophageal adenocarcinoma and squamous cell carcinoma in the molecular mechanisms responsible for the tumorigenesis process. State-of-the-art techniques such as gene microarrays and proteomics will greatly aid in the development of new therapies targeting specific molecular pathways,ultimately leading to improved survival in patients who have esophageal cancer.
Collapse
Affiliation(s)
- King F Kwong
- Division of Thoracic Surgery, Greenebaum Cancer Center, University of Maryland School of Medicine, 22 South Greene Street, Room N4E35, Baltimore, MD 21201, USA.
| |
Collapse
|
12
|
Tong T, Zhong Y, Kong J, Dong L, Song Y, Fu M, Liu Z, Wang M, Guo L, Lu S, Wu M, Zhan Q. Overexpression of Aurora-A contributes to malignant development of human esophageal squamous cell carcinoma. Clin Cancer Res 2005; 10:7304-10. [PMID: 15534106 DOI: 10.1158/1078-0432.ccr-04-0806] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Aurora-A/STK15/BTAK, a centrosome-associated oncogenic protein, is implicated in the control of mitosis. Overexpression of Aurora-A has been shown to result in chromosomal aberration and genomic instability. Multiple lines of evidence indicate that Aurora-A induces cell malignant transformation. In the current study, we are interested in investigating the expression of Aurora-A in human esophageal squamous cell carcinoma (ESCC) and characterizing the association of Aurora-A with ESCCmalignant progression. EXPERIMENTAL DESIGN Aurora-A protein expression was examined in 84 ESCC tissues and 81 paired normal adjacent tissues by either immunohistochemistry or Western blot analysis. In addition, a gene-knockdown small interfering RNA technique was used in ESCC cells to investigate whether Aurora-A contributes to the ability of a tumor to grow invasively. RESULTS The amount of Aurora-A protein in ESCC was considerably higher than that in normal adjacent tissues. Overexpression of Aurora-A was observed in 57 of 84 (67.5%) ESCC samples. In contrast, <2% of normal adjacent tissue displayed high expression of Aurora-A. Interestingly, overexpression of Aurora-A seemed to correlate with the invasive malignancy of ESCC. Disruption of endogenous Aurora-A using small interfering RNA technique substantially suppressed cell migrating ability. CONCLUSION The findings presented in this report show that Aurora-A expression is elevated in human esophageal squamous cell carcinoma and is possibly associated with tumor invasion, indicating that overexpression of Aurora-A may contribute to ESCC occurrence and progression.
Collapse
Affiliation(s)
- Tong Tong
- State Key Laboratory of Molecular Oncology , Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wu CM, Huang TH, Xie QD, Wu DS, Xu XH. Expression properties of recombinant pEgr-P16 plasmid in esophageal squamous cell carcinoma induced by ionizing irradiation. World J Gastroenterol 2003; 9:2650-3. [PMID: 14669305 PMCID: PMC4612024 DOI: 10.3748/wjg.v9.i12.2650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct the recombinant pEgr-P16 plasmid for the investigation of its expression properties in esophageal squamous cell carcinoma induced by ionizing irradiation and the feasibility of gene-radiotherapy for esophageal carcinoma.
METHODS: The recombinant pEgr-P16 plasmid was constructed and transfected into EC9706 cells with lipofectamine. Western blot, quantitative RT-PCR and flow cytometry were performed to study the expression of pEgr-P16 in EC9706 cells and the biological characteristics of EC9706 cell line after transfection induced by ionizing irradiation.
RESULTS: The eukaryotic expression vector pEgr-P16 was successfully constructed and transfected into EC9706 cells. The expression of P16 was significantly increased in the transfected cells after irradiation while the transfected cells were not induced by ionizing irradiation. The induction of apoptosis in transfection plus irradiation group was higher than that in plasmid alone or irradiation alone.
CONCLUSION: The combination of pEgr-P16 and irradiation could significantly enhance the P16 expression property and markedly induce apoptosis in EC9706 cells. These results may lay an important experimental basis for gene radiotherapy for esophageal carcinoma.
Collapse
Affiliation(s)
- Cong-Mei Wu
- Research Center of Reproductive Medicine, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | | | | | | | | |
Collapse
|
14
|
Yu Y, Zhang YC, Zhang WZ, Shen LS, Hertzog P, Wilson TJ, Xu DK. Ets1 as a marker of malignant potential in gastric carcinoma. World J Gastroenterol 2003; 9:2154-9. [PMID: 14562368 PMCID: PMC4656453 DOI: 10.3748/wjg.v9.i10.2154] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Ets1 proto-oncogene is a transcription factor involved in the activation of several genes of tumor invasion and metastasis. We aimed to determine the relationship between the extent and intensity of Ets1 expression and patients’ clinicopathological factors in gastric carcinoma.
METHODS: Immunohistochemical analysis was performed for gastric tumor paraffin-embedded sections, followed by image analysis.
RESULTS: Ets1 was not expressed in the normal gastric epithelium and its surrounding cells. The percentage of Ets1 expressing cells detected increased significantly in both epithelial tumor and stromal cells from high T classification, lymph node metastasis positive, clinical advanced-stage groups (P < 0.001). The level of Ets1 staining in epithelial tumor cells also reflected the degree of cell differentiation. The percentage of epithelial and stromal cells expressing Ets1 was significantly correlated with the presence of lymph node metastasis (P = 0.014 and P < 0.001 respectively). Ets1 expression was not observed in tissue samples from patients with benign gastric ulcers.
CONCLUSION: Ets1 protein expression in epithelial tumor cells reflects the degree of differentiation, and the percentage of Ets1 positive tumor and stromal cells correlates with lymph node metastasis. Thus Ets1 is a valuable marker of malignant potential in terms of invasiveness and metastasis of gastric carcinoma. It is also possible that inhibition of Ets1 is a potential avenue for therapy in gastric cancer.
Collapse
Affiliation(s)
- Yong Yu
- Department of General Surgery, Xinhua Hospital, Shanghai Second Medical University, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Wang JS, Shi JS, Xu YZ, Duan XY, Zhang L, Wang J, Yang LM, Weng SF, Wu JG. FT-IR spectroscopic analysis of normal and cancerous tissues of esophagus. World J Gastroenterol 2003; 9:1897-9. [PMID: 12970871 PMCID: PMC4656639 DOI: 10.3748/wjg.v9.i9.1897] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the special Fourier transform infrared spectroscopy (FT-IR) spectra in normal and cancerous tissues of esophagus.
METHODS: Twenty-seven pairs of normal and cancerous tissues of esophagus were studied by using FT-IR and the special spectra characteristics were analyzed in different tissues.
RESULTS: Different spectra were found in normal and cancerous tissues. The peak at 1550/cm was weak and wide in cancerous tissues but strong and high in normal tissues.The ratio of I 1647/I 1550 was 2.0 in normal tissues and 2.36 in cancerous tissues (P < 0.05). The ratio of I 1550/I 1080 was 4.5 in normal tissues and 3.4 in cancerous tissues (P < 0.01). The peak at 1453/cm was higher than at 1402/cm in normal tissue and lower than at 1402/cm in cancerous tissues.
CONCLUSION: The results indicate that FTIR may be used in clinical diagnosis.
Collapse
Affiliation(s)
- Jian-Sheng Wang
- Department of Oncological Surgery, First Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|