1
|
Zhu Z, Yang H, Wen H, Hung J, Hu Y, Bi Y, Yu X. Innate network mechanisms of temporal pole for semantic cognition in neonatal and adult twin studies. Nat Commun 2025; 16:3835. [PMID: 40268914 DOI: 10.1038/s41467-025-58896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/04/2025] [Indexed: 04/25/2025] Open
Abstract
What are the innate neural mechanisms scaffolding the protracted development of sophisticated human cognition observable later in life? We investigate this question by focusing on the putative hub of the human semantic memory system-the temporal pole. Combining infant- and twin-based imaging analyses, we examine the ontogenetic mechanisms and network characteristics of the functional subdivisions within the temporal pole that are specialized for semantic processing of different types in adults. Our findings reveal topologically similar temporal pole parcellations in the adult and neonatal brains. Notably, the specific functional connectivity of the dorsal and ventrolateral subdivisions with semantic-related networks are evident in neonates, significantly heritable, and associated with semantic functions in adult twins. These results demonstrate the neonatal emergence of genetically programmed functional connectivity characteristics in the temporal pole parcellations that underlie its crucial role in semantic processing, highlighting the innate network mechanisms that support semantic cognition in humans.
Collapse
Affiliation(s)
- Ziliang Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Huichao Yang
- College of Education, Hebei Normal University, Shijiazhuang, China
| | - Haojie Wen
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Jinyi Hung
- Department of Audiology and Speech-Language Pathology, Mackay Medical College, New Taipei City, Taiwan
| | - Yueqin Hu
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
- School of Psychological and Cognitive Science and Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.
- Institute for Artificial Intelligence, Peking University, Beijing, China.
| | - Xi Yu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| |
Collapse
|
2
|
Hauptman M, Elli G, Pant R, Bedny M. Neural specialization for 'visual' concepts emerges in the absence of vision. Cognition 2025; 257:106058. [PMID: 39827755 DOI: 10.1016/j.cognition.2024.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
The 'different-body/different-concepts hypothesis' central to some embodiment theories proposes that the sensory capacities of our bodies shape the cognitive and neural basis of our concepts. We tested this hypothesis by comparing behavioral semantic similarity judgments and neural signatures (fMRI) of 'visual' categories ('living things,' or animals, e.g., tiger, and light events, e.g., sparkle) across congenitally blind (n = 21) and sighted (n = 22) adults. Words referring to 'visual' entities/nouns and events/verbs (animals and light events) were compared to less vision-dependent categories from the same grammatical class (animal vs. place nouns, light vs. sound, mouth, and hand verbs). Within-category semantic similarity judgments about animals (e.g., sparrow vs. finch) were partially different across groups, consistent with the idea that sighted people rely on visually learned information to make such judgments about animals. However, robust neural specialization for living things in temporoparietal semantic networks, including in the precuneus, was observed in blind and sighted people alike. For light events, which are directly accessible only through vision, behavioral judgments were indistinguishable across groups. Neural responses to light events were also similar across groups: in both blind and sighted people, the left middle temporal gyrus (LMTG+) responded more to event concepts, including light events, compared to entity concepts. Multivariate patterns of neural activity in LMTG+ distinguished among different event types, including light events vs. other event types. In sum, we find that neural signatures of concepts previously attributed to visual experience do not require vision. Across a wide range of semantic types, conceptual representations develop independent of sensory experience.
Collapse
Affiliation(s)
- Miriam Hauptman
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | - Giulia Elli
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Rashi Pant
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Psychology & Neuropsychology, Universität Hamburg, Germany.
| | - Marina Bedny
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Acunzo D, Grignolio D, Hickey C. Neural mechanisms for the attention-mediated propagation of conceptual information in the human brain. PLoS Biol 2025; 23:e3003018. [PMID: 40153693 DOI: 10.1371/journal.pbio.3003018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/14/2025] [Indexed: 03/30/2025] Open
Abstract
The visual environment is complicated, and humans and other animals accordingly prioritize some sources of information over others through the deployment of spatial attention. Cognitive theories propose that one core purpose of this is to gather information that can be used in downstream cognitive processes, including the development of concepts and categories. However, neuroscientific investigation has focused closely on the identification of the systems and algorithms that support attentional control or that instantiate the effect of attention on sensation and perception. Much less is known about how attention impacts the acquisition and activation of concepts. Here, we use machine learning of EEG and concurrently recorded EEG/MRI to temporally and anatomically characterize the neural network that abstracts from attended perceptual information to activate and construct semantic and conceptual representations. We find that variance in the amplitude of N2pc-an event-related potential (ERP) component closely linked to selective attention-predicts the emergence of conceptual information in a network including VMPFC, posterior parietal cortex, and anterior insula. This network appears to play a key role in the attention-mediated translation of perceptual information to concepts, semantics, and action plans.
Collapse
Affiliation(s)
- David Acunzo
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Damiano Grignolio
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Clayton Hickey
- Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Tang J, Huth AG. Semantic language decoding across participants and stimulus modalities. Curr Biol 2025; 35:1023-1032.e6. [PMID: 39919742 PMCID: PMC11903136 DOI: 10.1016/j.cub.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025]
Abstract
Brain decoders that reconstruct language from semantic representations have the potential to improve communication for people with impaired language production. However, training a semantic decoder for a participant currently requires many hours of brain responses to linguistic stimuli, and people with impaired language production often also have impaired language comprehension. In this study, we tested whether language can be decoded from a goal participant without using any linguistic training data from that participant. We trained semantic decoders on brain responses from separate reference participants and then used functional alignment to transfer the decoders to the goal participant. Cross-participant decoder predictions were semantically related to the stimulus words, even when functional alignment was performed using movies with no linguistic content. To assess how much semantic representations are shared between language and vision, we compared functional alignment accuracy using story and movie stimuli and found that performance was comparable in most cortical regions. Finally, we tested whether cross-participant decoders could be robust to lesions by excluding brain regions from the goal participant prior to functional alignment and found that cross-participant decoders do not depend on data from any single brain region. These results demonstrate that cross-participant decoding can reduce the amount of linguistic training data required from a goal participant and potentially enable language decoding from participants who struggle with both language production and language comprehension.
Collapse
Affiliation(s)
- Jerry Tang
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alexander G Huth
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Wurm MF, Erigüç DY. Decoding the physics of observed actions in the human brain. eLife 2025; 13:RP98521. [PMID: 39928050 PMCID: PMC11810105 DOI: 10.7554/elife.98521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Recognizing goal-directed actions is a computationally challenging task, requiring not only the visual analysis of body movements, but also analysis of how these movements causally impact, and thereby induce a change in, those objects targeted by an action. We tested the hypothesis that the analysis of body movements and the effects they induce relies on distinct neural representations in superior and anterior inferior parietal lobe (SPL and aIPL). In four fMRI sessions, participants observed videos of actions (e.g. breaking stick, squashing plastic bottle) along with corresponding point-light-display (PLD) stick figures, pantomimes, and abstract animations of agent-object interactions (e.g. dividing or compressing a circle). Cross-decoding between actions and animations revealed that aIPL encodes abstract representations of action effect structures independent of motion and object identity. By contrast, cross-decoding between actions and PLDs revealed that SPL is disproportionally tuned to body movements independent of visible interactions with objects. Lateral occipitotemporal cortex (LOTC) was sensitive to both action effects and body movements. These results demonstrate that parietal cortex and LOTC are tuned to physical action features, such as how body parts move in space relative to each other and how body parts interact with objects to induce a change (e.g. in position or shape/configuration). The high level of abstraction revealed by cross-decoding suggests a general neural code supporting mechanical reasoning about how entities interact with, and have effects on, each other.
Collapse
Affiliation(s)
- Moritz F Wurm
- CIMeC – Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
| | - Doruk Yiğit Erigüç
- CIMeC – Center for Mind/Brain Sciences, University of TrentoRoveretoItaly
- Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
6
|
Reilly J, Shain C, Borghesani V, Kuhnke P, Vigliocco G, Peelle JE, Mahon BZ, Buxbaum LJ, Majid A, Brysbaert M, Borghi AM, De Deyne S, Dove G, Papeo L, Pexman PM, Poeppel D, Lupyan G, Boggio P, Hickok G, Gwilliams L, Fernandino L, Mirman D, Chrysikou EG, Sandberg CW, Crutch SJ, Pylkkänen L, Yee E, Jackson RL, Rodd JM, Bedny M, Connell L, Kiefer M, Kemmerer D, de Zubicaray G, Jefferies E, Lynott D, Siew CSQ, Desai RH, McRae K, Diaz MT, Bolognesi M, Fedorenko E, Kiran S, Montefinese M, Binder JR, Yap MJ, Hartwigsen G, Cantlon J, Bi Y, Hoffman P, Garcea FE, Vinson D. What we mean when we say semantic: Toward a multidisciplinary semantic glossary. Psychon Bull Rev 2025; 32:243-280. [PMID: 39231896 PMCID: PMC11836185 DOI: 10.3758/s13423-024-02556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/06/2024]
Abstract
Tulving characterized semantic memory as a vast repository of meaning that underlies language and many other cognitive processes. This perspective on lexical and conceptual knowledge galvanized a new era of research undertaken by numerous fields, each with their own idiosyncratic methods and terminology. For example, "concept" has different meanings in philosophy, linguistics, and psychology. As such, many fundamental constructs used to delineate semantic theories remain underspecified and/or opaque. Weak construct specificity is among the leading causes of the replication crisis now facing psychology and related fields. Term ambiguity hinders cross-disciplinary communication, falsifiability, and incremental theory-building. Numerous cognitive subdisciplines (e.g., vision, affective neuroscience) have recently addressed these limitations via the development of consensus-based guidelines and definitions. The project to follow represents our effort to produce a multidisciplinary semantic glossary consisting of succinct definitions, background, principled dissenting views, ratings of agreement, and subjective confidence for 17 target constructs (e.g., abstractness, abstraction, concreteness, concept, embodied cognition, event semantics, lexical-semantic, modality, representation, semantic control, semantic feature, simulation, semantic distance, semantic dimension). We discuss potential benefits and pitfalls (e.g., implicit bias, prescriptiveness) of these efforts to specify a common nomenclature that other researchers might index in specifying their own theoretical perspectives (e.g., They said X, but I mean Y).
Collapse
Affiliation(s)
| | - Cory Shain
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Philipp Kuhnke
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | | | | | | | - Laurel J Buxbaum
- Thomas Jefferson University, Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | | | | | | | | | - Guy Dove
- University of Louisville, Louisville, KY, USA
| | - Liuba Papeo
- Centre National de La Recherche Scientifique (CNRS), University Claude-Bernard Lyon, Lyon, France
| | | | | | | | - Paulo Boggio
- Universidade Presbiteriana Mackenzie, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | - Eiling Yee
- University of Connecticut, Storrs, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Ken McRae
- Western University, London, ON, Canada
| | | | | | | | | | | | | | - Melvin J Yap
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- National University of Singapore, Singapore, Singapore
| | - Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | | | - Yanchao Bi
- University of Edinburgh, Edinburgh, UK
- Beijing Normal University, Beijing, China
| | | | | | | |
Collapse
|
7
|
Chivukula S, Aflalo T, Zhang C, Rosario ER, Bari A, Pouratian N, Andersen RA. Population encoding of observed and actual somatosensations in the human posterior parietal cortex. Proc Natl Acad Sci U S A 2025; 122:e2316012121. [PMID: 39793054 PMCID: PMC11725854 DOI: 10.1073/pnas.2316012121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/29/2024] [Indexed: 01/12/2025] Open
Abstract
Cognition relies on transforming sensory inputs into a generalizable understanding of the world. Mirror neurons have been proposed to underlie this process, mapping visual representations of others' actions and sensations onto neurons that mediate our own, providing a conduit for understanding. However, this theory has limitations. Here, we hypothesize that mirror-like responses represent one facet of a broader framework in which our brains engage internal models for cognition. We recorded populations of single neurons in the human posterior parietal cortex (PPC) of a brain-machine interface clinical trial participant implanted with a microelectrode array while she either experienced actual touch, or observed diverse tactile stimuli applied to other individuals. Two body locations were tested, on each of the participant and other individuals. Some neurons exhibited mirror-like properties, consistent with earlier literature. However, they were fragile, breaking with increased task complexity. Population responses were better characterized by generalizable and compositional basic-level features encoded within neural subspaces. These features enable the population to respond to diverse actual and observed touch stimuli and are recruited similarly for similar forms of touch. Mirror-like neurons belong within these subspaces, contributing more globally to compositionality and generalizability. We speculate that at a population-level, human PPC manifests an internal model for touch, and that cognition unfolds in the high-level human cortex by versatility in its representational building blocks. In a broad sense, we speculate that the population features we demonstrate support a broad mechanism by which the high-level human cortex enables understanding.
Collapse
Affiliation(s)
- Srinivas Chivukula
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX75390
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA91125
| | - Tyson Aflalo
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA91125
| | - Carey Zhang
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA91125
| | - Emily R. Rosario
- Casa Colina Hospital and Centers for Healthcare, Pomona, CA91767
| | - Ausaf Bari
- Casa Colina Hospital and Centers for Healthcare, Pomona, CA91767
- Department of Neurological Surgery, University of California, Los Angeles, CA90095
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX75390
| | - Richard A. Andersen
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
8
|
Kidder A, Silson EH, Nau M, Baker CI. Distributed Cortical Regions for the Recall of People, Places, and Objects. eNeuro 2025; 12:ENEURO.0496-24.2024. [PMID: 39746804 PMCID: PMC11735654 DOI: 10.1523/eneuro.0496-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025] Open
Abstract
The human medial parietal cortex (MPC) is recruited during multiple cognitive processes. Previously, we demonstrated regions specific to recall of people or places and proposed that the functional organization of MPC mirrors the category selectivity defining the medial-lateral axis of the ventral-temporal cortex (VTC). However, prior work considered recall of people and places only, and VTC also shows object selectivity sandwiched between face- and scene-selective regions. Here, we tested a strong prediction of our proposal: like VTC, MPC should show a region specifically recruited during object recall, and its relative cortical position should mirror the one of VTC. While responses during people and place recall showed a striking replication of prior findings, we did not observe any evidence for object-recall effects within MPC, which differentiates it from the spatial organization in VTC. Importantly, beyond MPC, robust recall effects were observed for people, places, and objects on the lateral surface of the brain. Place-recall effects were present in the angular gyrus, frontal eye fields, and peripheral portions of the early visual cortex, whereas people recall selectively drove response in the right posterior superior temporal sulcus. Object-recall effects were largely restricted to a region posterior to the left somatosensory cortex, in the vicinity of the supramarginal gyrus. Taken together, these data demonstrate that while there are distributed regions active during recall of people, places, and objects, the functional organization of MPC does not mirror the medial-lateral axis of VTC but reflects only the most salient features of that axis-namely, representations of people and places.
Collapse
Affiliation(s)
- Alexis Kidder
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892-1366
| | - Edward H Silson
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892-1366
- Department of Psychology, School of Philosophy, Psychology and Language Sciences, The University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Matthias Nau
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892-1366
| | - Chris I Baker
- Section on Learning and Plasticity, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, Maryland 20892-1366
| |
Collapse
|
9
|
Ambrosini E, Benavides-Varela S, Visalli A, Viviani G, Montefinese M. Evaluating semantic control with transcranial magnetic stimulation: a systematic review with meta-analysis. Front Psychol 2024; 15:1435338. [PMID: 39717470 PMCID: PMC11663645 DOI: 10.3389/fpsyg.2024.1435338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
Background This meta-analysis investigates the role of specific brain regions in semantic control processes using Transcranial Magnetic Stimulation (TMS). According to the Controlled Semantic Cognition framework, control processes help manage the contextually appropriate retrieval of semantic information by activating a distributed neural network, including the inferior frontal gyrus, the posterior middle temporal gyrus, and inferior parietal lobule. Lesions in these areas can lead to difficulties in manipulating weakly activated or competing semantic information. Researchers have used TMS to simulate such deficits in healthy individuals. Method By synthesizing results from TMS studies that targeted these regions, we aimed to evaluate whether neurostimulation over these areas can effectively impair participants' performance under high semantic control demands. Results Results from different meta-analytical approaches consistently showed no significant effects of TMS, especially after correcting for publication bias. Nevertheless, variability in experimental methodologies was evident. Conclusion These findings raise questions about the effectiveness of TMS in simulating deficits in semantic control and highlight the need for methodological improvements in future studies to enhance reliability and interpretability.
Collapse
Affiliation(s)
- Ettore Ambrosini
- Department of Neuroscience, University of Padova, Padova, Italy
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Silvia Benavides-Varela
- Department of Neuroscience, University of Padova, Padova, Italy
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| | | | - Giada Viviani
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| | - Maria Montefinese
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| |
Collapse
|
10
|
Zhang J, Li H, Qu J, Liu X, Feng X, Fu X, Mei L. Language proficiency is associated with neural representational dimensionality of semantic concepts. BRAIN AND LANGUAGE 2024; 258:105485. [PMID: 39388908 DOI: 10.1016/j.bandl.2024.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Previous studies suggest that semantic concepts are characterized by high-dimensional neural representations and that language proficiency affects semantic processing. However, it is not clear whether language proficiency modulates the dimensional representations of semantic concepts at the neural level. To address this question, the present study adopted principal component analysis (PCA) and representational similarity analysis (RSA) to examine the differences in representational dimensionalities (RDs) and in semantic representations between words in highly proficient (Chinese) and less proficient (English) language. PCA results revealed that language proficiency increased the dimensions of lexical representations in the left inferior frontal gyrus, temporal pole, inferior temporal gyrus, supramarginal gyrus, angular gyrus, and fusiform gyrus. RSA results further showed that these regions represented semantic information and that higher semantic representations were observed in highly proficient language relative to less proficient language. These results suggest that language proficiency is associated with the neural representational dimensionality of semantic concepts.
Collapse
Affiliation(s)
- Jingxian Zhang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Huiling Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Xiaoyu Liu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Xiaoxue Feng
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Xin Fu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents, South China Normal University, Ministry of Education, Guangzhou 510631, China; Center for Studies of Psychological Application, South China Normal University, 510631, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China; School of Psychology, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
11
|
Kurada HZ, Jiménez-Bravo M, Giacobbe C, Obeso I. Context, transparency and culture in motor resonance phenomena: Causal evidence of the motor cortex. Cortex 2024; 179:25-34. [PMID: 39098188 DOI: 10.1016/j.cortex.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
A connection between language and movement information in metaphorical and literal expressions activates the motor system. Despite numerous studies exploring distinctions between idioms and metaphors, a notable research gap remains in the specific effect of idioms with different transparency levels concerning motor resonance. Our primary focus was analysing the functional role of the primary motor cortex (M1) in processing hand motor verbs both in literal expressions and in two idiomatic contexts, i.e., opaque and transparent idioms. Additionally, we explored a potential language and cultural effect by comparing Turkish and Spanish speakers. An overt priming task with self-paced reading was used to judge the relatedness of a primer and a target sentence. We implemented a repetitive transcranial magnetic stimulation (TMS) protocol using continuous theta-burst stimulation (cTBS) compared to sham stimulation over the M1 in both Turkish and Spanish native speakers prior to the experimental task. Our findings reveal that the performance of Turkish and Spanish participants in processing hand motor actions was facilitated after the application of cTBS over the left M1. Moreover, brain stimulation specifically facilitated the processing of only transparent-but not opaque-idioms in both Spanish and Turkish participants. Our study reports distinct motor resonance results between different types of idioms with a parallel cross-cultural effect.
Collapse
Affiliation(s)
- Hazel Z Kurada
- Speech and Language Therapy Department, Faculty of Health Sciences, Ankara Medipol University, Ankara, Turkey.
| | - Miguel Jiménez-Bravo
- Department of Linguistics and Eastern Studies, Complutense University of Madrid, Madrid, Spain
| | - Chiara Giacobbe
- Department of Psychology, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Ignacio Obeso
- CINC-CSIC, Madrid, Spain; HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.
| |
Collapse
|
12
|
Zhao M, Xin Y, Deng H, Zuo Z, Wang X, Bi Y, Liu N. Object color knowledge representation occurs in the macaque brain despite the absence of a developed language system. PLoS Biol 2024; 22:e3002863. [PMID: 39466847 PMCID: PMC11542842 DOI: 10.1371/journal.pbio.3002863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/07/2024] [Accepted: 09/21/2024] [Indexed: 10/30/2024] Open
Abstract
Animals guide their behaviors through internal representations of the world in the brain. We aimed to understand how the macaque brain stores such general world knowledge, focusing on object color knowledge. Three functional magnetic resonance imaging (fMRI) experiments were conducted in macaque monkeys: viewing chromatic and achromatic gratings, viewing grayscale images of their familiar fruits and vegetables (e.g., grayscale strawberry), and viewing true- and false-colored objects (e.g., red strawberry and green strawberry). We observed robust object knowledge representations in the color patches, especially the one located around TEO: the activity patterns could classify grayscale pictures of objects based on their memory color and response patterns in these regions could translate between chromatic grating viewing and grayscale object viewing (e.g., red grating-grayscale images of strawberry), such that classifiers trained by viewing chromatic gratings could successfully classify grayscale object images according to their memory colors. Our results showed direct positive evidence of object color memory in macaque monkeys. These results indicate the perceptually grounded knowledge representation as a conservative memory mechanism and open a new avenue to study this particular (semantic) memory representation with macaque models.
Collapse
Affiliation(s)
- Minghui Zhao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yumeng Xin
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haoyun Deng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Ning Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Piretti L, Di Tella S, Lo Monaco MR, Delle Donne V, Rumiati RI, Silveri MC. Impaired processing of conspecifics in Parkinson's disease. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:787-795. [PMID: 35689301 DOI: 10.1080/23279095.2022.2074299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Experimental evidence indicates that the inferior frontal gyrus (IFG) processes emotional/affective features crucial to elaborate knowledge about social groups and that knowledge of social concepts is stored in the anterior temporal lobe (ATL).We investigated whether knowledge about social groups is impaired in Parkinson's disease (PD), in which dysfunctional connectivity between IFG and ATL has been demonstrated.PD patients (N = 20) and healthy controls (HC, N = 16) were given a lexical decision task in a semantic priming paradigm: the prime-targets included 144 words and 144 pseudowords, each preceded by three types of prime ("animals," "things," "persons"). Out of these 288 prime-targets, forty-eight were congruent (same category) and 96 incongruent (different category). Out of 48 congruent prime-targets, 24 denoted social items and 24 nonsocial items. Thus, four types of trials were obtained: congruent social; congruent nonsocial; incongruent social; incongruent nonsocial.Congruent target-words were recognized better than incongruent target-words by all groups. The semantic priming effect was preserved in PD; however, accuracy was significantly lower in PD than in HC in social items. No difference emerged between the two groups in nonsocial items.Impaired processing of words denoting social groups in PD may be due to impairment in accessing the affective/emotional features that characterize conceptual knowledge of social groups, for the functional disconnection between the IFG and the ATL.
Collapse
Affiliation(s)
- Luca Piretti
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Sonia Di Tella
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | | | | | - Raffaella Ida Rumiati
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Maria Caterina Silveri
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy
| |
Collapse
|
14
|
Tran EB, Vonk JM, Casaletto K, Zhang D, Christin R, Marathe S, Gorno-Tempini ML, Chang EF, Kleen JK. Development and validation of a nonverbal consensus-based semantic memory paradigm in patients with epilepsy. J Int Neuropsychol Soc 2024; 30:671-679. [PMID: 38616725 PMCID: PMC11473708 DOI: 10.1017/s1355617724000158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Brain areas implicated in semantic memory can be damaged in patients with epilepsy (PWE). However, it is challenging to delineate semantic processing deficits from acoustic, linguistic, and other verbal aspects in current neuropsychological assessments. We developed a new Visual-based Semantic Association Task (ViSAT) to evaluate nonverbal semantic processing in PWE. METHOD The ViSAT was adapted from similar predecessors (Pyramids & Palm Trees test, PPT; Camels & Cactus Test, CCT) comprised of 100 unique trials using real-life color pictures that avoid demographic, cultural, and other potential confounds. We obtained performance data from 23 PWE participants and 24 control participants (Control), along with crowdsourced normative data from 54 Amazon Mechanical Turk (Mturk) workers. RESULTS ViSAT reached a consensus >90% in 91.3% of trials compared to 83.6% in PPT and 82.9% in CCT. A deep learning model demonstrated that visual features of the stimulus images (color, shape; i.e., non-semantic) did not influence top answer choices (p = 0.577). The PWE group had lower accuracy than the Control group (p = 0.019). PWE had longer response times than the Control group in general and this was augmented for the semantic processing (trial answer) stage (both p < 0.001). CONCLUSIONS This study demonstrated performance impairments in PWE that may reflect dysfunction of nonverbal semantic memory circuits, such as seizure onset zones overlapping with key semantic regions (e.g., anterior temporal lobe). The ViSAT paradigm avoids confounds, is repeatable/longitudinal, captures behavioral data, and is open-source, thus we propose it as a strong alternative for clinical and research assessment of nonverbal semantic memory.
Collapse
Affiliation(s)
- Edwina B. Tran
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Jet M.J. Vonk
- Department of Neurology, University of California, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Kaitlin Casaletto
- Department of Neurology, University of California, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Da Zhang
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Raphael Christin
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Siddharth Marathe
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, University of California, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Edward F. Chang
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jonathan K. Kleen
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Bailey KM, Sami S, Smith FW. Decoding familiar visual object categories in the mu rhythm oscillatory response. Neuropsychologia 2024; 199:108900. [PMID: 38697558 DOI: 10.1016/j.neuropsychologia.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Whilst previous research has linked attenuation of the mu rhythm to the observation of specific visual categories, and even to a potential role in action observation via a putative mirror neuron system, much of this work has not considered what specific type of information might be coded in this oscillatory response when triggered via vision. Here, we sought to determine whether the mu rhythm contains content-specific information about the identity of familiar (and also unfamiliar) graspable objects. In the present study, right-handed participants (N = 27) viewed images of both familiar (apple, wine glass) and unfamiliar (cubie, smoothie) graspable objects, whilst performing an orthogonal task at fixation. Multivariate pattern analysis (MVPA) revealed significant decoding of familiar, but not unfamiliar, visual object categories in the mu rhythm response. Thus, simply viewing familiar graspable objects may automatically trigger activation of associated tactile and/or motor properties in sensorimotor areas, reflected in the mu rhythm. In addition, we report significant attenuation in the central beta band for both familiar and unfamiliar visual objects, but not in the mu rhythm. Our findings highlight how analysing two different aspects of the oscillatory response - either attenuation or the representation of information content - provide complementary views on the role of the mu rhythm in response to viewing graspable object categories.
Collapse
Affiliation(s)
| | - Saber Sami
- Norwich Medical School, University of East Anglia, UK
| | | |
Collapse
|
16
|
Diveica V, Muraki EJ, Binney RJ, Pexman PM. Mapping semantic space: Exploring the higher-order structure of word meaning. Cognition 2024; 248:105794. [PMID: 38653181 DOI: 10.1016/j.cognition.2024.105794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Multiple representation theories posit that concepts are represented via a combination of properties derived from sensorimotor, affective, and linguistic experiences. Recently, it has been proposed that information derived from social experience, or socialness, represents another key aspect of conceptual representation. How these various dimensions interact to form a coherent conceptual space has yet to be fully explored. To address this, we capitalized on openly available word property norms for 6339 words and conducted a large-scale investigation into the relationships between 18 dimensions. An exploratory factor analysis reduced the dimensions to six higher-order factors: sub-lexical, distributional, visuotactile, body action, affective and social interaction. All these factors explained unique variance in performance on lexical and semantic tasks, demonstrating that they make important contributions to the representation of word meaning. An important and novel finding was that the socialness dimension clustered with the auditory modality and with mouth and head actions. We suggest this reflects experiential learning from verbal interpersonal interactions. Moreover, formally modelling the network structure of semantic space revealed pairwise partial correlations between most dimensions and highlighted the centrality of the interoception dimension. Altogether, these findings provide new insights into the architecture of conceptual space, including the importance of inner and social experience, and highlight promising avenues for future research.
Collapse
Affiliation(s)
- Veronica Diveica
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd LL57 2AS, UK; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada.
| | - Emiko J Muraki
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Richard J Binney
- Cognitive Neuroscience Institute, Department of Psychology, Bangor University, Gwynedd LL57 2AS, UK.
| | - Penny M Pexman
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Department of Psychology, Western University, London, Ontario N6A 5C2, Canada.
| |
Collapse
|
17
|
Zhang Y, Chen S, Peng Y, Yang X. The concrete processing of Chinese action metaphors: an ERP study. Front Psychol 2024; 15:1362978. [PMID: 38638519 PMCID: PMC11025353 DOI: 10.3389/fpsyg.2024.1362978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/29/2024] [Indexed: 04/20/2024] Open
Abstract
The present research adopts ERP (Event-Related Potentials) technology to investigate whether there exists a concreteness effect in the processing of Chinese action verbs within metaphorical context. The mean amplitudes of N400 activated by action metaphors were compared with those activated by literal verbs and abstract verbs. The findings indicated that the Met verbs evoked a significantly larger N400 response at frontal brain region compared to the Abs verbs at a time window 200-500 ms, while the Met verbs elicited a notably greater N400 amplitude specifically at the posterior brain region in comparison to the Lit verbs at 300-500 ms time window. These results may be interpreted as indicating that the comprehension of the Met verbs is based on the concrete action semantics.
Collapse
Affiliation(s)
| | - Shifa Chen
- College of Foreign Languages, Ocean University of China, Qingdao, China
| | - Yule Peng
- College of Foreign Languages, Ocean University of China, Qingdao, China
| | | |
Collapse
|
18
|
Krieger-Redwood K, Wang X, Souter N, Gonzalez Alam TRDJ, Smallwood J, Jackson RL, Jefferies E. Graded and sharp transitions in semantic function in left temporal lobe. BRAIN AND LANGUAGE 2024; 251:105402. [PMID: 38484446 DOI: 10.1016/j.bandl.2024.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Recent work has focussed on how patterns of functional change within the temporal lobe relate to whole-brain dimensions of intrinsic connectivity variation (Margulies et al., 2016). We examined two such 'connectivity gradients' reflecting the separation of (i) unimodal versus heteromodal and (ii) visual versus auditory-motor cortex, examining visually presented verbal associative and feature judgments, plus picture-based context and emotion generation. Functional responses along the first dimension sometimes showed graded change between modality-tuned and heteromodal cortex (in the verbal matching task), and other times showed sharp functional transitions, with deactivation at the extremes and activation in the middle of this gradient (internal generation). The second gradient revealed more visual than auditory-motor activation, regardless of content (associative, feature, context, emotion) or task process (matching/generation). We also uncovered subtle differences across each gradient for content type, which predominantly manifested as differences in relative magnitude of activation or deactivation.
Collapse
Affiliation(s)
- Katya Krieger-Redwood
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom
| | - Xiuyi Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nicholas Souter
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom; School of Psychology, University of Sussex, Brighton, United Kingdom
| | | | | | - Rebecca L Jackson
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, York Biomedical Research Institute, University of York, United Kingdom.
| |
Collapse
|
19
|
Xiao X, Dong Z, Yu M, Ding J, Zhang M, Cruz S, Han Z, Chen Y. White matter network underlying semantic processing: evidence from stroke patients. Brain Commun 2024; 6:fcae058. [PMID: 38444912 PMCID: PMC10914445 DOI: 10.1093/braincomms/fcae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/27/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
The hub-and-spoke theory of semantic representation fractionates the neural underpinning of semantic knowledge into two essential components: the sensorimotor modality-specific regions and a crucially important semantic hub region. Our previous study in patients with semantic dementia has found that the hub region is located in the left fusiform gyrus. However, because this region is located within the brain damage in patients with semantic dementia, it is not clear whether the semantic deficit is caused by structural damage to the hub region itself or by its disconnection from other brain regions. Stroke patients do not have any damage to the left fusiform gyrus, but exhibit amodal and modality-specific deficits in semantic processing. Therefore, in this study, we validated the semantic hub region from a brain network perspective in 79 stroke patients and explored the white matter connections associated with it. First, we collected data of diffusion-weighted imaging and behavioural performance on general semantic tasks and modality-specific semantic tasks (assessing object knowledge on form, colour, motion, sound, manipulation and function). We then used correlation and regression analyses to examine the association between the nodal degree values of brain regions in the whole-brain structural network and general semantic performance in the stroke patients. The results revealed that the connectivity of the left fusiform gyrus significantly predicted general semantic performance, indicating that this region is the semantic hub. To identify the semantic-relevant connections of the semantic hub, we then correlated the white matter integrity values of each tract connected to the left fusiform gyrus separately with performance on general and modality-specific semantic processing. We found that the hub region accomplished general semantic processing through white matter connections with the left superior temporal pole, middle temporal gyrus, inferior temporal gyrus and hippocampus. The connectivity between the hub region and the left hippocampus, superior temporal pole, middle temporal gyrus, inferior temporal gyrus and parahippocampal gyrus was differentially involved in object form, colour, motion, sound, manipulation and function processing. After statistically removing the effects of potential confounding variables (i.e. whole-brain lesion volume, lesion volume of regions of interest and performance on non-semantic control tasks), the observed effects remained significant. Together, our findings support the role of the left fusiform gyrus as a semantic hub region in stroke patients and reveal its crucial connectivity in the network. This study provides new insights and evidence for the neuroanatomical organization of semantic memory in the human brain.
Collapse
Affiliation(s)
- Xiangyue Xiao
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhicai Dong
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingyan Yu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Junhua Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Maolin Zhang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Sara Cruz
- The Psychology for Development Research Center, Lusiada University Porto, Porto 4100-348, Portugal
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yan Chen
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
20
|
Garofalo G, Gherri E, Riggio L. Syntax matters in shaping sensorimotor activation driven by nouns. Mem Cognit 2024; 52:285-301. [PMID: 37672153 DOI: 10.3758/s13421-023-01460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Existing evidence has shown that adjectives modulate the grasp-compatibility effect elicited by object nouns. The aim of the present study was to investigate the role of syntax on the sensorimotor activation elicited by nouns in a grasp-compatibility task. We assessed two languages with different syntactic rules, Italian in Experiment 1 and English in Experiment 2. In both experiments, an adjective-noun pair was shown on the screen. The adjective was always in a pre-nominal position and denoted either a disadvantageous quality of the object graspability (e.g., sharp) or the object colour (e.g., reddish). Participants had to categorize the object nouns as natural or artifact, performing a precision or a power reach-to-grasp movement. On different trials, the grasp response was compatible or incompatible with the grip typically used to manipulate the object indicated by the noun. In Experiment 1 (Italian language) the adjective-noun order violated the syntactic order and no difference emerged between reaction times on compatible and incompatible trials (no grasp compatibility effect). In Experiment 2 (English language), the adjective-noun order followed the syntactic rule. Results showed a grasp-compatibility effect when a colour adjective was presented before a natural object noun. When a disadvantageous adjective preceded an artifact or a natural object noun, an inverted grasp-compatibility effect emerged with slower responses on compatible than incompatible trials. Taken together, these findings suggest that adjectives can shape the sensorimotor activation elicited by nouns of graspable objects only when the syntax is correct. Results are discussed with respect to embodied cognition theories.
Collapse
Affiliation(s)
- Gioacchino Garofalo
- Department of Philosophy and Communication, University of Bologna, Via Azzo Gardino 23, 40122, Bologna, Italy.
- Department of Medicine and Surgery - Unit of Neuroscience, University of Parma, Via Volturno 39, 43125, Parma, Italy.
| | - Elena Gherri
- Department of Philosophy and Communication, University of Bologna, Via Azzo Gardino 23, 40122, Bologna, Italy
- Department of Psychology, Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK
| | - Lucia Riggio
- Department of Medicine and Surgery - Unit of Neuroscience, University of Parma, Via Volturno 39, 43125, Parma, Italy
| |
Collapse
|
21
|
Yang Y, Li L, de Deyne S, Li B, Wang J, Cai Q. Unraveling lexical semantics in the brain: Comparing internal, external, and hybrid language models. Hum Brain Mapp 2024; 45:e26546. [PMID: 38014759 PMCID: PMC10789206 DOI: 10.1002/hbm.26546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023] Open
Abstract
To explain how the human brain represents and organizes meaning, many theoretical and computational language models have been proposed over the years, varying in their underlying computational principles and in the language samples based on which they are built. However, how well they capture the neural encoding of lexical semantics remains elusive. We used representational similarity analysis (RSA) to evaluate to what extent three models of different types explained neural responses elicited by word stimuli: an External corpus-based word2vec model, an Internal free word association model, and a Hybrid ConceptNet model. Semantic networks were constructed using word relations computed in the three models and experimental stimuli were selected through a community detection procedure. The similarity patterns between language models and neural responses were compared at the community, exemplar, and word node levels to probe the potential hierarchical semantic structure. We found that semantic relations computed with the Internal model provided the closest approximation to the patterns of neural activation, whereas the External model did not capture neural responses as well. Compared with the exemplar and the node levels, community-level RSA demonstrated the broadest involvement of brain regions, engaging areas critical for semantic processing, including the angular gyrus, superior frontal gyrus and a large portion of the anterior temporal lobe. The findings highlight the multidimensional semantic organization in the brain which is better captured by Internal models sensitive to multiple modalities such as word association compared with External models trained on text corpora.
Collapse
Affiliation(s)
- Yang Yang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
- Shanghai Changning Mental Health CenterShanghaiChina
- Shanghai Center for Brain Science and Brain‐Inspired TechnologyShanghaiChina
| | - Luan Li
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
- Shanghai Changning Mental Health CenterShanghaiChina
- Shanghai Center for Brain Science and Brain‐Inspired TechnologyShanghaiChina
| | - Simon de Deyne
- School of Psychological SciencesUniversity of MelbourneMelbourneVictoriaAustralia
| | - Bing Li
- UMR 9193—SCALab—Sciences Cognitives et Sciences AffectivesUniversité de Lille, CNRSLilleFrance
| | - Jing Wang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
- Shanghai Changning Mental Health CenterShanghaiChina
- Shanghai Center for Brain Science and Brain‐Inspired TechnologyShanghaiChina
| | - Qing Cai
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), Institute of Brain and Education Innovation, School of Psychology and Cognitive ScienceEast China Normal UniversityShanghaiChina
- Shanghai Changning Mental Health CenterShanghaiChina
- Shanghai Center for Brain Science and Brain‐Inspired TechnologyShanghaiChina
| |
Collapse
|
22
|
Tang J, Du M, Vo VA, Lal V, Huth AG. Brain encoding models based on multimodal transformers can transfer across language and vision. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 2023; 36:29654-29666. [PMID: 39015152 PMCID: PMC11250991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Encoding models have been used to assess how the human brain represents concepts in language and vision. While language and vision rely on similar concept representations, current encoding models are typically trained and tested on brain responses to each modality in isolation. Recent advances in multimodal pretraining have produced transformers that can extract aligned representations of concepts in language and vision. In this work, we used representations from multimodal transformers to train encoding models that can transfer across fMRI responses to stories and movies. We found that encoding models trained on brain responses to one modality can successfully predict brain responses to the other modality, particularly in cortical regions that represent conceptual meaning. Further analysis of these encoding models revealed shared semantic dimensions that underlie concept representations in language and vision. Comparing encoding models trained using representations from multimodal and unimodal transformers, we found that multimodal transformers learn more aligned representations of concepts in language and vision. Our results demonstrate how multimodal transformers can provide insights into the brain's capacity for multimodal processing.
Collapse
|
23
|
Yu W, Ni L, Zhang Z, Zheng W, Liu Y. No need to integrate action information during coarse semantic processing of man-made tools. Psychon Bull Rev 2023; 30:2230-2239. [PMID: 37221279 DOI: 10.3758/s13423-023-02301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/25/2023]
Abstract
Action representation of man-made tools consists of two subtypes: structural action representation concerning how to grasp an object, and functional action representation concerning the skilled use of an object. Compared to structural action representation, functional action representation plays the dominant role in fine-grained (i.e., basic level) object recognition. However, it remains unclear whether the two types of action representation are involved differently in the coarse semantic processing in which the object is recognized at a superordinate level (i.e., living/non-living). Here we conducted three experiments using the priming paradigm, in which video clips displaying structural and functional action hand gestures were used as prime stimuli and grayscale photos of man-made tools were used as target stimuli. Participants recognized the target objects at the basic level in Experiment 1 (i.e., naming task) and at the superordinate level in Experiments 2 and 3 (i.e., categorization task). We observed a significant priming effect for functional action prime-target pairs only in the naming task. In contrast, no priming effect was found in either the naming or the categorization task for the structural action prime-target pairs (Experiment 2), even when the categorization task was preceded by a preliminary action imitation of the prime gestures (Experiment 3). Our results suggest that only functional action information is retrieved during fine-grained object processing. In contrast, coarse semantic processing does not require the integration of either structural or functional action information.
Collapse
Affiliation(s)
- Wenyuan Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
- Research Center for Applied Mathematics and Machine Intelligence, Research Institute of Basic Theories, Zhejiang Lab, Hangzhou, 311121, People's Republic of China
| | - Long Ni
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19106, USA
| | - Zijian Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China
| | - Weiqi Zheng
- School of Psychology, Beijing Sport University, Beijing, 100084, People's Republic of China
| | - Ye Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 101408, People's Republic of China.
| |
Collapse
|
24
|
Siddique A, Browne WN, Grimshaw GM. Lateralized Learning to Solve Complex Boolean Problems. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:6761-6775. [PMID: 35476559 DOI: 10.1109/tcyb.2022.3166119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modern classifier systems can effectively classify targets that consist of simple patterns. However, they can fail to detect hierarchical patterns of features that exist in many real-world problems, such as understanding speech or recognizing object ontologies. Biological nervous systems have the ability to abstract knowledge from simple and small-scale problems in order to then apply it to resolve more complex problems in similar and related domains. It is thought that lateral asymmetry of biological brains allows modular learning to occur at different levels of abstraction, which can then be transferred between tasks. This work develops a novel evolutionary machine-learning (EML) system that incorporates lateralization and modular learning at different levels of abstraction. The results of analyzable Boolean tasks show that the lateralized system has the ability to encapsulate underlying knowledge patterns in the form of building blocks of knowledge (BBK). Lateralized abstraction transforms complex problems into simple ones by reusing general patterns (e.g., any parity problem becomes a sequence of the 2-bit parity problem). By enabling abstraction in evolutionary computation, the lateralized system is able to identify complex patterns (e.g., in hierarchical multiplexer (HMux) problems) better than existing systems.
Collapse
|
25
|
Desai RH, Hackett CT, Johari K, Lai VT, Riccardi N. Spatiotemporal characteristics of the neural representation of event concepts. BRAIN AND LANGUAGE 2023; 246:105328. [PMID: 37847931 PMCID: PMC10873121 DOI: 10.1016/j.bandl.2023.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Events are a fundamentally important part of our understanding of the world. How lexical concepts denoting events are represented in the brain remains controversial. We conducted two experiments using event and object nouns matched on a range of psycholinguistic variables, including concreteness, to examine spatial and temporal characteristics of event concepts. Both experiments used magnitude and valence tasks on event and object nouns. The fMRI experiment revealed a distributed set of regions for events, including the angular gyrus, anterior temporal lobe, and posterior cingulate across tasks. In the EEG experiment, events and objects differed in amplitude within the 300-500 ms window. Together these results shed light into the spatiotemporal characteristics of event concept representation and show that event concepts are represented in the putative hubs of the semantic system. While these hubs are typically associated with object semantics, they also represent events, and have a likely role in temporal integration.
Collapse
Affiliation(s)
- Rutvik H Desai
- Department of Psychology, University of South Carolina, United States; Institute for Mind and Brain, University of South Carolina, United States.
| | | | - Karim Johari
- Department of Communication Sciences & Disorders, Louisiana State University, United States
| | - Vicky T Lai
- Department of Psychology, University of Arizona, United States
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, United States
| |
Collapse
|
26
|
Pulvermüller F. Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks. Prog Neurobiol 2023; 230:102511. [PMID: 37482195 PMCID: PMC10518464 DOI: 10.1016/j.pneurobio.2023.102511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Neural networks are successfully used to imitate and model cognitive processes. However, to provide clues about the neurobiological mechanisms enabling human cognition, these models need to mimic the structure and function of real brains. Brain-constrained networks differ from classic neural networks by implementing brain similarities at different scales, ranging from the micro- and mesoscopic levels of neuronal function, local neuronal links and circuit interaction to large-scale anatomical structure and between-area connectivity. This review shows how brain-constrained neural networks can be applied to study in silico the formation of mechanisms for symbol and concept processing and to work towards neurobiological explanations of specifically human cognitive abilities. These include verbal working memory and learning of large vocabularies of symbols, semantic binding carried by specific areas of cortex, attention focusing and modulation driven by symbol type, and the acquisition of concrete and abstract concepts partly influenced by symbols. Neuronal assembly activity in the networks is analyzed to deliver putative mechanistic correlates of higher cognitive processes and to develop candidate explanations founded in established neurobiological principles.
Collapse
Affiliation(s)
- Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099 Berlin, Germany; Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany; Cluster of Excellence 'Matters of Activity', Humboldt Universität zu Berlin, 10099 Berlin, Germany.
| |
Collapse
|
27
|
Rabini G, Ubaldi S, Fairhall SL. Task-based activation and resting-state connectivity predict individual differences in semantic capacity for complex semantic knowledge. Commun Biol 2023; 6:1020. [PMID: 37813935 PMCID: PMC10562439 DOI: 10.1038/s42003-023-05400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
Our ability to know and access complex factual information has far reaching effects, influencing our scholastic, professional and social lives. Here we employ functional MRI to assess the relationship between individual differences in semantic aptitude in the task-based activation and resting-state functional connectivity. Using psychometric and behavioural measures, we quantified the semantic and executive aptitude of individuals and had them perform a general-knowledge semantic-retrieval task (N = 41) and recorded resting-state data (N = 43). During the semantic-retrieval task, participants accessed general-knowledge facts drawn from four different knowledge-domains (people, places, objects and 'scholastic'). Individuals with greater executive capacity more strongly recruit anterior sections of prefrontal cortex (PFC) and the precuneus, and individuals with lower semantic capacity more strongly activate a posterior section of the dorsomedial PFC (dmPFC). The role of these regions in semantic processing was validated by analysis of independent resting-state data, where increased connectivity between a left anterior PFC and the precuneus predict higher semantic aptitude, and increased connectivity between left anterior PFC and posterior dmPFC predict lower semantic aptitude. Results suggest that coordination between core semantic regions in the precuneus and anterior prefrontal regions associated with executive processes support greater semantic aptitude.
Collapse
Affiliation(s)
- Giuseppe Rabini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy.
| | - Silvia Ubaldi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Scott L Fairhall
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| |
Collapse
|
28
|
Kocsis Z, Jenison RL, Taylor PN, Calmus RM, McMurray B, Rhone AE, Sarrett ME, Deifelt Streese C, Kikuchi Y, Gander PE, Berger JI, Kovach CK, Choi I, Greenlee JD, Kawasaki H, Cope TE, Griffiths TD, Howard MA, Petkov CI. Immediate neural impact and incomplete compensation after semantic hub disconnection. Nat Commun 2023; 14:6264. [PMID: 37805497 PMCID: PMC10560235 DOI: 10.1038/s41467-023-42088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/28/2023] [Indexed: 10/09/2023] Open
Abstract
The human brain extracts meaning using an extensive neural system for semantic knowledge. Whether broadly distributed systems depend on or can compensate after losing a highly interconnected hub is controversial. We report intracranial recordings from two patients during a speech prediction task, obtained minutes before and after neurosurgical treatment requiring disconnection of the left anterior temporal lobe (ATL), a candidate semantic knowledge hub. Informed by modern diaschisis and predictive coding frameworks, we tested hypotheses ranging from solely neural network disruption to complete compensation by the indirectly affected language-related and speech-processing sites. Immediately after ATL disconnection, we observed neurophysiological alterations in the recorded frontal and auditory sites, providing direct evidence for the importance of the ATL as a semantic hub. We also obtained evidence for rapid, albeit incomplete, attempts at neural network compensation, with neural impact largely in the forms stipulated by the predictive coding framework, in specificity, and the modern diaschisis framework, more generally. The overall results validate these frameworks and reveal an immediate impact and capability of the human brain to adjust after losing a brain hub.
Collapse
Affiliation(s)
- Zsuzsanna Kocsis
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Rick L Jenison
- Departments of Neuroscience and Psychology, University of Wisconsin, Madison, WI, USA
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
- UCL Institute of Neurology, Queen Square, London, UK
| | - Ryan M Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Bob McMurray
- Department of Psychological and Brain Science, University of Iowa, Iowa City, IA, USA
| | - Ariane E Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | | | - Yukiko Kikuchi
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Phillip E Gander
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Joel I Berger
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, USA
| | | | - Hiroto Kawasaki
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Thomas E Cope
- Department of Clinical Neurosciences, Cambridge University, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK.
| |
Collapse
|
29
|
Borghi AM, Mazzuca C. Grounded Cognition, Linguistic Relativity, and Abstract Concepts. Top Cogn Sci 2023; 15:662-667. [PMID: 37165536 DOI: 10.1111/tops.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Kemmerer's paper convincingly claims that the grounded cognition model (GCM) entails linguistic relativity. Here, we underline that tackling linguistic relativity and cultural differences is vital for GCM. First, it allows GCM to focus more on flexible rather than stable aspects of cognition. Second, it highlights the centrality of linguistic experience for human cognition. While GCM-inspired research underscored the similarity between linguistic and nonlinguistic concepts, it is now paramount to understand when and how language(s) influence knowledge. To this aim, we argue that linguistic variation might be particularly relevant for more abstract concepts-which are more debatable and open to revisions.
Collapse
Affiliation(s)
- Anna M Borghi
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome
- Institute of Cognitive Sciences and Technologies, Italian National Research Council
| | - Claudia Mazzuca
- Department of Dynamic and Clinical Psychology, and Health Studies, Sapienza University of Rome
| |
Collapse
|
30
|
Malik G, Crowder D, Mingolla E. Extreme image transformations affect humans and machines differently. BIOLOGICAL CYBERNETICS 2023; 117:331-343. [PMID: 37310489 PMCID: PMC10600046 DOI: 10.1007/s00422-023-00968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
Some recent artificial neural networks (ANNs) claim to model aspects of primate neural and human performance data. Their success in object recognition is, however, dependent on exploiting low-level features for solving visual tasks in a way that humans do not. As a result, out-of-distribution or adversarial input is often challenging for ANNs. Humans instead learn abstract patterns and are mostly unaffected by many extreme image distortions. We introduce a set of novel image transforms inspired by neurophysiological findings and evaluate humans and ANNs on an object recognition task. We show that machines perform better than humans for certain transforms and struggle to perform at par with humans on others that are easy for humans. We quantify the differences in accuracy for humans and machines and find a ranking of difficulty for our transforms for human data. We also suggest how certain characteristics of human visual processing can be adapted to improve the performance of ANNs for our difficult-for-machines transforms.
Collapse
Affiliation(s)
- Girik Malik
- Northeastern University, Boston, MA 02115 USA
| | | | | |
Collapse
|
31
|
Dove G. Concepts require flexible grounding. BRAIN AND LANGUAGE 2023; 245:105322. [PMID: 37713771 DOI: 10.1016/j.bandl.2023.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/30/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Research on semantic memory has a problem. On the one hand, a robust body of evidence implicates sensorimotor regions in conceptual processing. On the other hand, a different body of evidence implicates a modality independent semantic system. The standard solution to this tension is to posit a hub-and-spoke system with modality independent hubs and modality specific spokes. In this paper, I argue in support of an alternative view of grounding which remains committed to neural reenactment but emphasizes the multimodal and multilevel nature of the semantic system. This view is built upon the recognition that abstraction is a design feature of concepts. Semantic memory employs hierarchically structured representations to capture different degrees of abstraction. Grounding does not work the way that many embodied approaches have assumed.
Collapse
Affiliation(s)
- Guy Dove
- Department of Philosophy, University of Louisville, United States.
| |
Collapse
|
32
|
Reilly J, Finley AM, Litovsky CP, Kenett YN. Bigram semantic distance as an index of continuous semantic flow in natural language: Theory, tools, and applications. J Exp Psychol Gen 2023; 152:2578-2590. [PMID: 37079833 PMCID: PMC10790181 DOI: 10.1037/xge0001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Much of our understanding of word meaning has been informed through studies of single words. High-dimensional semantic space models have recently proven instrumental in elucidating connections between words. Here we show how bigram semantic distance can yield novel insights into conceptual cohesion and topic flow when computed over continuous language samples. For example, "Cats drink milk" is comprised of an ordered vector of bigrams (cat-drink, drink-milk). Each of these bigrams has a unique semantic distance. These distances in turn may provide a metric of dispersion or the flow of concepts as language unfolds. We offer an R-package ("semdistflow") that transforms any user-specified language transcript into a vector of ordered bigrams, appending two metrics of semantic distance to each pair. We validated these distance metrics on a continuous stream of simulated verbal fluency data assigning predicted switch markers between alternating semantic clusters (animals, musical instruments, fruit). We then generated bigram distance norms on a large sample of text and demonstrated applications of the technique to a classic work of short fiction, To Build a Fire (London, 1908). In one application, we showed that bigrams spanning sentence boundaries are punctuated by jumps in the semantic distance. We discuss the promise of this technique for characterizing semantic processing in real-world narratives and for bridging findings at the single word level with macroscale discourse analyses. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Jamie Reilly
- Eleanor M. Saffran Center for Cognitive Neuroscience
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, Pennsylvania USA
| | - Ann Marie Finley
- Eleanor M. Saffran Center for Cognitive Neuroscience
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, Pennsylvania USA
| | - Celia P. Litovsky
- Eleanor M. Saffran Center for Cognitive Neuroscience
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, Pennsylvania USA
| | - Yoed N. Kenett
- Faculty of Faculty of Data and Decision Sciences, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
33
|
Xu Y, Vignali L, Sigismondi F, Crepaldi D, Bottini R, Collignon O. Similar object shape representation encoded in the inferolateral occipitotemporal cortex of sighted and early blind people. PLoS Biol 2023; 21:e3001930. [PMID: 37490508 PMCID: PMC10368275 DOI: 10.1371/journal.pbio.3001930] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/23/2023] [Indexed: 07/27/2023] Open
Abstract
We can sense an object's shape by vision or touch. Previous studies suggested that the inferolateral occipitotemporal cortex (ILOTC) implements supramodal shape representations as it responds more to seeing or touching objects than shapeless textures. However, such activation in the anterior portion of the ventral visual pathway could be due to the conceptual representation of an object or visual imagery triggered by touching an object. We addressed these possibilities by directly comparing shape and conceptual representations of objects in early blind (who lack visual experience/imagery) and sighted participants. We found that bilateral ILOTC in both groups showed stronger activation during a shape verification task than during a conceptual verification task made on the names of the same manmade objects. Moreover, the distributed activity in the ILOTC encoded shape similarity but not conceptual association among objects. Besides the ILOTC, we also found shape representation in both groups' bilateral ventral premotor cortices and intraparietal sulcus (IPS), a frontoparietal circuit relating to object grasping and haptic processing. In contrast, the conceptual verification task activated both groups' left perisylvian brain network relating to language processing and, interestingly, the cuneus in early blind participants only. The ILOTC had stronger functional connectivity to the frontoparietal circuit than to the left perisylvian network, forming a modular structure specialized in shape representation. Our results conclusively support that the ILOTC selectively implements shape representation independently of visual experience, and this unique functionality likely comes from its privileged connection to the frontoparietal haptic circuit.
Collapse
Affiliation(s)
- Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Lorenzo Vignali
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Davide Crepaldi
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Roberto Bottini
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Olivier Collignon
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
- Psychological Sciences Research Institute (IPSY) and Institute of NeuroScience (IoNS), University of Louvain, Louvain-la-Neuve, Belgium
- School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, Lausanne and Sion, Switzerland
| |
Collapse
|
34
|
Martin A. Supramodality does not specify the nature of conceptual representations. LANGUAGE, COGNITION AND NEUROSCIENCE 2023; 39:850-853. [PMID: 39184914 PMCID: PMC11343472 DOI: 10.1080/23273798.2023.2211691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 08/27/2024]
Affiliation(s)
- Alex Martin
- Laboratory of Brain and Cognition, National Institute of mental health, NIH, Bethesda, MD, USA
| |
Collapse
|
35
|
Reilly J, Peelle JE. Modality-Specificity is not a Necessary Condition for Grounded Semantic Cognition: Commentary on. LANGUAGE, COGNITION AND NEUROSCIENCE 2023; 39:854-858. [PMID: 39309274 PMCID: PMC11412611 DOI: 10.1080/23273798.2023.2210234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 09/25/2024]
Affiliation(s)
- Jamie Reilly
- Eleanor M. Saffran Center for Cognitive Neuroscience
- Department of Communication Sciences and Disorders, Temple University, Philadelphia, Pennsylvania USA
| | - Jonathan E. Peelle
- Center for Cognitive and Brain Health
- Department of Communication Sciences and Disorders
- Department of Psychology, Northeastern University, Boston, Massachusetts USA
| |
Collapse
|
36
|
Rahimi S, Jackson R, Farahibozorg SR, Hauk O. Time-Lagged Multidimensional Pattern Connectivity (TL-MDPC): An EEG/MEG pattern transformation based functional connectivity metric. Neuroimage 2023; 270:119958. [PMID: 36813063 PMCID: PMC10030313 DOI: 10.1016/j.neuroimage.2023.119958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/16/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Functional and effective connectivity methods are essential to study the complex information flow in brain networks underlying human cognition. Only recently have connectivity methods begun to emerge that make use of the full multidimensional information contained in patterns of brain activation, rather than unidimensional summary measures of these patterns. To date, these methods have mostly been applied to fMRI data, and no method allows vertex-to-vertex transformations with the temporal specificity of EEG/MEG data. Here, we introduce time-lagged multidimensional pattern connectivity (TL-MDPC) as a novel bivariate functional connectivity metric for EEG/MEG research. TL-MDPC estimates the vertex-to-vertex transformations among multiple brain regions and across different latency ranges. It determines how well patterns in ROI X at time point tx can linearly predict patterns of ROI Y at time point ty. In the present study, we use simulations to demonstrate TL-MDPC's increased sensitivity to multidimensional effects compared to a unidimensional approach across realistic choices of number of trials and signal-to-noise ratios. We applied TL-MDPC, as well as its unidimensional counterpart, to an existing dataset varying the depth of semantic processing of visually presented words by contrasting a semantic decision and a lexical decision task. TL-MDPC detected significant effects beginning very early on, and showed stronger task modulations than the unidimensional approach, suggesting that it is capable of capturing more information. With TL-MDPC only, we observed rich connectivity between core semantic representation (left and right anterior temporal lobes) and semantic control (inferior frontal gyrus and posterior temporal cortex) areas with greater semantic demands. TL-MDPC is a promising approach to identify multidimensional connectivity patterns, typically missed by unidimensional approaches.
Collapse
Affiliation(s)
- Setareh Rahimi
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom.
| | - Rebecca Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom
| | - Seyedeh-Rezvan Farahibozorg
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF United Kingdom
| |
Collapse
|
37
|
Frisby SL, Halai AD, Cox CR, Lambon Ralph MA, Rogers TT. Decoding semantic representations in mind and brain. Trends Cogn Sci 2023; 27:258-281. [PMID: 36631371 DOI: 10.1016/j.tics.2022.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
A key goal for cognitive neuroscience is to understand the neurocognitive systems that support semantic memory. Recent multivariate analyses of neuroimaging data have contributed greatly to this effort, but the rapid development of these novel approaches has made it difficult to track the diversity of findings and to understand how and why they sometimes lead to contradictory conclusions. We address this challenge by reviewing cognitive theories of semantic representation and their neural instantiation. We then consider contemporary approaches to neural decoding and assess which types of representation each can possibly detect. The analysis suggests why the results are heterogeneous and identifies crucial links between cognitive theory, data collection, and analysis that can help to better connect neuroimaging to mechanistic theories of semantic cognition.
Collapse
Affiliation(s)
- Saskia L Frisby
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, Chaucer Road, Cambridge CB2 7EF, UK.
| | - Ajay D Halai
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, Chaucer Road, Cambridge CB2 7EF, UK
| | - Christopher R Cox
- Department of Psychology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Matthew A Lambon Ralph
- Medical Research Council (MRC) Cognition and Brain Sciences Unit, Chaucer Road, Cambridge CB2 7EF, UK
| | - Timothy T Rogers
- Department of Psychology, University of Wisconsin-Madison, 1202 West Johnson Street, Madison, WI 53706, USA.
| |
Collapse
|
38
|
Jung J, Lambon Ralph MA. Distinct but cooperating brain networks supporting semantic cognition. Cereb Cortex 2023; 33:2021-2036. [PMID: 35595542 PMCID: PMC9977382 DOI: 10.1093/cercor/bhac190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/25/2022] [Accepted: 04/07/2022] [Indexed: 02/02/2023] Open
Abstract
Semantic cognition is a complex multifaceted brain function involving multiple processes including sensory, semantic, and domain-general cognitive systems. However, it remains unclear how these systems cooperate with each other to achieve effective semantic cognition. Here, we used independent component analysis (ICA) to investigate the functional brain networks that support semantic cognition. We used a semantic judgment task and a pattern-matching control task, each with 2 levels of difficulty, to disentangle task-specific networks from domain-general networks. ICA revealed 2 task-specific networks (the left-lateralized semantic network [SN] and a bilateral, extended semantic network [ESN]) and domain-general networks including the frontoparietal network (FPN) and default mode network (DMN). SN was coupled with the ESN and FPN but decoupled from the DMN, whereas the ESN was synchronized with the FPN alone and did not show a decoupling with the DMN. The degree of decoupling between the SN and DMN was associated with semantic task performance, with the strongest decoupling for the poorest performing participants. Our findings suggest that human higher cognition is achieved by the multiple brain networks, serving distinct and shared cognitive functions depending on task demands, and that the neural dynamics between these networks may be crucial for efficient semantic cognition.
Collapse
Affiliation(s)
- JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Science Unit (CBU), University of Cambridge, Cambridge, CB2 7EF United Kingdom
| |
Collapse
|
39
|
Fu Z, Wang X, Wang X, Yang H, Wang J, Wei T, Liao X, Liu Z, Chen H, Bi Y. Different computational relations in language are captured by distinct brain systems. Cereb Cortex 2023; 33:997-1013. [PMID: 35332914 DOI: 10.1093/cercor/bhac117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/14/2022] Open
Abstract
A critical way for humans to acquire information is through language, yet whether and how language experience drives specific neural semantic representations is still poorly understood. We considered statistical properties captured by 3 different computational principles of language (simple co-occurrence, network-(graph)-topological relations, and neural-network-vector-embedding relations) and tested the extent to which they can explain the neural patterns of semantic representations, measured by 2 functional magnetic resonance imaging experiments that shared common semantic processes. Distinct graph-topological word relations, and not simple co-occurrence or neural-network-vector-embedding relations, had unique explanatory power for the neural patterns in the anterior temporal lobe (capturing graph-common-neighbors), inferior frontal gyrus, and posterior middle/inferior temporal gyrus (capturing graph-shortest-path). These results were relatively specific to language: they were not explained by sensory-motor similarities and the same computational relations of visual objects (based on visual image database) showed effects in the visual cortex in the picture naming experiment. That is, different topological properties within language and the same topological computations (common-neighbors) for language and visual inputs are captured by different brain regions. These findings reveal the specific neural semantic representations along graph-topological properties of language, highlighting the information type-specific and statistical property-specific manner of semantic representations in the human brain.
Collapse
Affiliation(s)
- Ze Fu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Xiaosha Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Xiaoying Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Huichao Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Jiahuan Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Tao Wei
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Zhiyuan Liu
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Huimin Chen
- School of Journalism and Communication, Tsinghua University, Beijing 100084, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
40
|
Johari K, Lai VT, Riccardi N, Desai RH. Temporal features of concepts are grounded in time perception neural networks: An EEG study. BRAIN AND LANGUAGE 2023; 237:105220. [PMID: 36587493 PMCID: PMC10100101 DOI: 10.1016/j.bandl.2022.105220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Experimental evidence suggests that modality-specific concept features such as action, motion, and sound partially rely on corresponding action/perception neural networks in the human brain.Little is known, however, about time-related features of concepts. We examined whether temporal features of concepts recruit networks that subserve time perception in the brain in an EEG study using event and object nouns. Results showed significantly larger ERPs for event duration vs object size judgments over right parietal electrodes, a region associated with temporal processing. Additionally, alpha/beta (10-15 Hz) neural oscillation showed a stronger desynchronization for event duration compared to object size in the right parietal electrodes. This difference was not seen in control tasks comparing event vs object valence, suggesting that it is not likely to reflect a general difference between event and object nouns. These results indicate that temporal features of words may be subserved by time perception circuits in the human brain.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Vicky T Lai
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, USA; Institute for Mind and Brain, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
41
|
Kuhnke P, Beaupain MC, Arola J, Kiefer M, Hartwigsen G. Meta-analytic evidence for a novel hierarchical model of conceptual processing. Neurosci Biobehav Rev 2023; 144:104994. [PMID: 36509206 DOI: 10.1016/j.neubiorev.2022.104994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Conceptual knowledge plays a pivotal role in human cognition. Grounded cognition theories propose that concepts consist of perceptual-motor features represented in modality-specific perceptual-motor cortices. However, it is unclear whether conceptual processing consistently engages modality-specific areas. Here, we performed an activation likelihood estimation (ALE) meta-analysis across 212 neuroimaging experiments on conceptual processing related to 7 perceptual-motor modalities (action, sound, visual shape, motion, color, olfaction-gustation, and emotion). We found that conceptual processing consistently engages brain regions also activated during real perceptual-motor experience of the same modalities. In addition, we identified multimodal convergence zones that are recruited for multiple modalities. In particular, the left inferior parietal lobe (IPL) and posterior middle temporal gyrus (pMTG) are engaged for three modalities: action, motion, and sound. These "trimodal" regions are surrounded by "bimodal" regions engaged for two modalities. Our findings support a novel model of the conceptual system, according to which conceptual processing relies on a hierarchical neural architecture from modality-specific to multimodal areas up to an amodal hub.
Collapse
Affiliation(s)
- Philipp Kuhnke
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| | - Marie C Beaupain
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Johannes Arola
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| |
Collapse
|
42
|
Blasi DE, Henrich J, Adamou E, Kemmerer D, Majid A. Over-reliance on English hinders cognitive science. Trends Cogn Sci 2022; 26:1153-1170. [PMID: 36253221 DOI: 10.1016/j.tics.2022.09.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
English is the dominant language in the study of human cognition and behavior: the individuals studied by cognitive scientists, as well as most of the scientists themselves, are frequently English speakers. However, English differs from other languages in ways that have consequences for the whole of the cognitive sciences, reaching far beyond the study of language itself. Here, we review an emerging body of evidence that highlights how the particular characteristics of English and the linguistic habits of English speakers bias the field by both warping research programs (e.g., overemphasizing features and mechanisms present in English over others) and overgeneralizing observations from English speakers' behaviors, brains, and cognition to our entire species. We propose mitigating strategies that could help avoid some of these pitfalls.
Collapse
Affiliation(s)
- Damián E Blasi
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Street, 02138 Cambridge, MA, USA; Department of Linguistic and Cultural Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Pl. 6, 04103 Leipzig, Germany; Human Relations Area Files, 755 Prospect Street, New Haven, CT 06511-1225, USA.
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Street, 02138 Cambridge, MA, USA
| | - Evangelia Adamou
- Languages and Cultures of Oral Tradition lab, National Center for Scientific Research (CNRS), 7 Rue Guy Môquet, 94801 Villejuif, France
| | - David Kemmerer
- Department of Speech, Language, and Hearing Sciences, Purdue University, 715 Clinic Drive, West Lafayette, IN 47907, USA; Department of Psychological Sciences, Purdue University, 703 3rd Street, West Lafayette, IN 47907, USA
| | - Asifa Majid
- Department of Experimental Psychology, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK.
| |
Collapse
|
43
|
Cabral L, Zubiaurre-Elorza L, Wild CJ, Linke A, Cusack R. Anatomical correlates of category-selective visual regions have distinctive signatures of connectivity in neonates. Dev Cogn Neurosci 2022; 58:101179. [PMID: 36521345 PMCID: PMC9768242 DOI: 10.1016/j.dcn.2022.101179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The ventral visual stream is shaped during development by innate proto-organization within the visual system, such as the strong input from the fovea to the fusiform face area. In adults, category-selective regions have distinct signatures of connectivity to brain regions beyond the visual system, likely reflecting cross-modal and motoric associations. We tested if this long-range connectivity is part of the innate proto-organization, or if it develops with postnatal experience, by using diffusion-weighted imaging to characterize the connectivity of anatomical correlates of category-selective regions in neonates (N = 445), 1-9 month old infants (N = 11), and adults (N = 14). Using the HCP data we identified face- and place- selective regions and a third intermediate region with a distinct profile of selectivity. Using linear classifiers, these regions were found to have distinctive connectivity at birth, to other regions in the visual system and to those outside of it. The results support an extended proto-organization that includes long-range connectivity that shapes, and is shaped by, experience-dependent development.
Collapse
Affiliation(s)
- Laura Cabral
- Department of Radiology, University of Pittsburgh, Pittsburgh 15224, PA, USA.
| | - Leire Zubiaurre-Elorza
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao 48007, Spain
| | - Conor J Wild
- Western Institute for Neuroscience, Western University, London, ON N6A 3K7, Canada; Department of Physiology and Pharmacology,Western University, London, ON N6A 3K7, Canada
| | - Annika Linke
- Brain Development Imaging Laboratories, San Diego State University, San Diego 92120, CA, USA
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
44
|
Moscovitch M, Gilboa A. Has the concept of systems consolidation outlived its usefulness? Identification and evaluation of premises underlying systems consolidation. Fac Rev 2022; 11:33. [PMID: 36532709 PMCID: PMC9720899 DOI: 10.12703/r/11-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Systems consolidation has mostly been treated as a neural construct defined by the time-dependent change in memory representation from the hippocampus (HPC) to other structures, primarily the neocortex. Here, we identify and evaluate the explicit and implicit premises that underlie traditional or standard models and theories of systems consolidation based on evidence from research on humans and other animals. We use the principle that changes in neural representation over time and experience are accompanied by corresponding changes in psychological representations, and vice versa, to argue that each of the premises underlying traditional or standard models and theories of systems consolidation is found wanting. One solution is to modify or abandon the premises or theories and models. This is reflected in moderated models of systems consolidation that emphasize the early role of the HPC in training neocortical memories until they stabilize. The fault, however, may lie in the very concept of systems consolidation and its defining feature. We propose that the concept be replaced by one of memory systems reorganization, which does not carry the theoretical baggage of systems consolidation and is flexible enough to capture the dynamic nature of memory from inception to very long-term retention and retrieval at a psychological and neural level. The term "memory system reorganization" implies that memory traces are not fixed, even after they are presumably consolidated. Memories can continue to change as a result of experience and interactions among memory systems across the lifetime. As will become clear, hippocampal training of neocortical memories is only one type of such interaction, and not always the most important one, even at inception. We end by suggesting some principles of memory reorganization that can help guide research on dynamic memory processes that capture corresponding changes in memory at the psychological and neural levels.
Collapse
Affiliation(s)
- Morris Moscovitch
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - Asaf Gilboa
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
- Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
45
|
The different effects of breaking an object at different time points. Psychon Bull Rev 2022:10.3758/s13423-022-02210-0. [DOI: 10.3758/s13423-022-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/21/2022]
|
46
|
Farahibozorg SR, Henson RN, Woollams AM, Hauk O. Distinct roles for the anterior temporal lobe and angular gyrus in the spatiotemporal cortical semantic network. Cereb Cortex 2022; 32:4549-4564. [PMID: 35094061 PMCID: PMC9574238 DOI: 10.1093/cercor/bhab501] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022] Open
Abstract
Semantic knowledge is supported by numerous brain regions, but the spatiotemporal configuration of the network that links these areas remains an open question. The hub-and-spokes model posits that a central semantic hub coordinates this network. In this study, we explored distinct aspects that define a semantic hub, as reflected in the spatiotemporal modulation of neural activity and connectivity by semantic variables, from the earliest stages of semantic processing. We used source-reconstructed electro/magnetoencephalography, and investigated the concreteness contrast across three tasks. In a whole-cortex analysis, the left anterior temporal lobe (ATL) was the only area that showed modulation of evoked brain activity from 100 ms post-stimulus. Furthermore, using Dynamic Causal Modeling of the evoked responses, we investigated effective connectivity amongst the candidate semantic hub regions, that is, left ATL, supramarginal/angular gyrus (SMG/AG), middle temporal gyrus, and inferior frontal gyrus. We found that models with a single semantic hub showed the highest Bayesian evidence, and the hub region was found to change from ATL (within 250 ms) to SMG/AG (within 450 ms) over time. Our results support a single semantic hub view, with ATL showing sustained modulation of neural activity by semantics, and both ATL and AG underlying connectivity depending on the stage of semantic processing.
Collapse
Affiliation(s)
- Seyedeh-Rezvan Farahibozorg
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.,Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Richard N Henson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK.,Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Anna M Woollams
- Neuroscience and Aphasia Research Unit, School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Olaf Hauk
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, CB2 7EF, UK
| |
Collapse
|
47
|
The action-sentence compatibility effect (ACE): Meta-analysis of a benchmark finding for embodiment. Acta Psychol (Amst) 2022; 230:103712. [PMID: 36103797 DOI: 10.1016/j.actpsy.2022.103712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
The embodied account of language comprehension has been one of the most influential theoretical developments in the recent decades addressing the question how humans comprehend and represent language. To examine its assumptions, many studies have made use of behavioral paradigms involving basic compatibility effects. The action-sentence compatibility effect (ACE) is one of the most influential of these compatibility effects and is the most widely cited evidence for the embodied account of language comprehension. However, recently there have been difficulties in extending or even in reliably replicating the ACE. The conflicting findings concerning the ACE and its extensions lead to the discussion of whether the ACE is indeed a reliable effect. In a first step we conducted a meta-analysis using a random-effects model. This analysis revealed a small but significant effect size of the ACE. Furthermore, the task-parameter Delay occurred as a factor of interest in whether the ACE appears with positive or negative effect direction. A second meta-analytic approach (Fisher's method) supports these findings. Additionally, an analysis of publication bias suggests that there is bias in the ACE literature. In post-hoc analyses of the recent multi-lab investigation of the ACE (Morey et al., 2021), evidence for individual differences in the ACE was found. However, further analyses indicate that these differences are likely due to item-specific variability and the specific way in which items were assigned to conditions in the counterbalancing lists.
Collapse
|
48
|
Wang Y, Ji Q, Zhou C, Wang Y. Brain mechanisms linking language processing and open motor skill training. Front Hum Neurosci 2022; 16:911894. [PMID: 35992938 PMCID: PMC9386041 DOI: 10.3389/fnhum.2022.911894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Given the discovery of a distributed language and motor functional network, surprisingly few studies have explored whether language processing is related to motor skill training. To address this issue, the present study used functional magnetic resonance imaging to compare whole-brain activation between nonexperts and experts in table tennis, an open skill sport in which players make rapid decisions in response to an ever-changing environment. Whole-brain activation was assessed in 30 expert table tennis players with more than 7 years’ experience and 35 age-matched nonexpert college students while they performed both a size and a semantic judgment task of words presented on a monitor. Compared with nonexperts, expert table tennis players showed greater activation in the left middle occipital gyrus and right precuneus while judging the size of the words versus during baseline fixation. They also showed greater activation in the left lingual gyrus during the semantic judgment task versus during baseline fixation. Our findings indicate that the visual regions engaged in language processing are associated with open motor skill training.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Qingchun Ji
- Department of Physical Education, Shanghai University of Engineering Science, Shanghai, China
| | - Chenglin Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yingying Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Yingying Wang,
| |
Collapse
|
49
|
Avery JA, Liu AG, Carrington M, Martin A. Taste Metaphors Ground Emotion Concepts Through the Shared Attribute of Valence. Front Psychol 2022; 13:938663. [PMID: 35903735 PMCID: PMC9314637 DOI: 10.3389/fpsyg.2022.938663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
“Parting is such sweet sorrow.” Taste metaphors provide a rich vocabulary for describing emotional experience, potentially serving as an adaptive mechanism for conveying abstract emotional concepts using concrete verbal references to our shared experience. We theorized that the popularity of these expressions results from the close association with hedonic valence shared by these two domains of experience. To explore the possibility that this affective quality underlies the semantic similarity of these domains, we used a behavioral “odd-one-out” task in an online sample of 1059 participants in order to examine the semantic similarity of concepts related to emotion, taste, and color, another rich source of sensory metaphors. We found that the semantic similarity of emotion and taste concepts was greater than that of emotion and color concepts. Importantly, the similarity of taste and emotion concepts was strongly related to their similarity in hedonic valence, a relationship which was also significantly greater than that present between color and emotion. These results suggest that the common core of valence between taste and emotion concepts allows us to bridge the conceptual divide between our shared sensory environment and our internal emotional experience.
Collapse
Affiliation(s)
- Jason A. Avery
- *Correspondence: Jason A. Avery, , orcid.org/0000-0003-4097-2819
| | | | | | | |
Collapse
|
50
|
Knights E, Smith FW, Rossit S. The role of the anterior temporal cortex in action: evidence from fMRI multivariate searchlight analysis during real object grasping. Sci Rep 2022; 12:9042. [PMID: 35662252 PMCID: PMC9167815 DOI: 10.1038/s41598-022-12174-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 12/20/2022] Open
Abstract
Intelligent manipulation of handheld tools marks a major discontinuity between humans and our closest ancestors. Here we identified neural representations about how tools are typically manipulated within left anterior temporal cortex, by shifting a searchlight classifier through whole-brain real action fMRI data when participants grasped 3D-printed tools in ways considered typical for use (i.e., by their handle). These neural representations were automatically evocated as task performance did not require semantic processing. In fact, findings from a behavioural motion-capture experiment confirmed that actions with tools (relative to non-tool) incurred additional processing costs, as would be suspected if semantic areas are being automatically engaged. These results substantiate theories of semantic cognition that claim the anterior temporal cortex combines sensorimotor and semantic content for advanced behaviours like tool manipulation.
Collapse
Affiliation(s)
- Ethan Knights
- School of Psychology, University of East Anglia, Norwich, UK
| | - Fraser W Smith
- School of Psychology, University of East Anglia, Norwich, UK
| | | |
Collapse
|