1
|
Chowdhury R, Holmes NP, Cooling N, Belcher WJ, Dastoor PC, Zhou X. Surfactant Engineering and Its Role in Determining the Performance of Nanoparticulate Organic Photovoltaic Devices. ACS OMEGA 2022; 7:9212-9220. [PMID: 35350329 PMCID: PMC8945175 DOI: 10.1021/acsomega.1c05711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The fabrication of organic photovoltaics (OPVs) from non-hazardous nanoparticulate (NP) inks offers considerable promise for the development of eco-friendly large-scale printed solar modules. However, the typical NP core-shell morphology (driven by the different donor/acceptor affinities for the surfactant used in NP synthesis) currently hinders the photovoltaic performance. As such, surfactant engineering offers an elegant approach to synthesizing a more optimal intermixed NP morphology and hence an improved photovoltaic performance. In this work, the morphology of conventional sodium dodecyl sulfate (SDS) and 2-(3-thienyl) ethyloxybutylsulfonate (TEBS)-stabilized poly(3-hexylthiophene) (P3HT) donor:phenyl-C61-butyric acid methyl ester (PC61BM) acceptor NPs is probed using scanning transmission X-ray microscopy, UV-vis spectroscopy, grazing-incidence X-ray diffraction, and scanning electron microscopy. While the SDS-stabilized NPs exhibit a size-independent core-shell morphology, this work reveals that TEBS-stabilized NPs deliver an intermixed morphology, the extent of which depends on the particle size. Consequently, by optimizing the TEBS-stabilized NP size and distribution, NP-OPV devices with a power conversion efficiency that is ∼50% higher on average than that of the corresponding SDS-based NP-OPV devices are produced.
Collapse
Affiliation(s)
- Riku Chowdhury
- Centre
for Organic Electronics, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Natalie P. Holmes
- Australian
Centre for Microscopy and Microanalysis, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nathan Cooling
- Centre
for Organic Electronics, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Warwick J. Belcher
- Centre
for Organic Electronics, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Paul C. Dastoor
- Centre
for Organic Electronics, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Xiaojing Zhou
- Centre
for Organic Electronics, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
2
|
Holmes A, Deniau E, Lartigau-Dagron C, Bousquet A, Chambon S, Holmes NP. Review of Waterborne Organic Semiconductor Colloids for Photovoltaics. ACS NANO 2021; 15:3927-3959. [PMID: 33620200 DOI: 10.1021/acsnano.0c10161] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of carbon neutral and sustainable energy sources should be considered as a top priority solution for the growing worldwide energy demand. Photovoltaics are a strong candidate, more specifically, organic photovoltaics (OPV), enabling the design of flexible, lightweight, semitransparent, and low-cost solar cells. However, the active layer of OPV is, for now, mainly deposited from chlorinated solvents, harmful for the environment and for human health. Active layers processed from health and environmentally friendly solvents have over recent years formed a key focus topic of research, with the creation of aqueous dispersions of conjugated polymer nanoparticles arising. These nanoparticles are formed from organic semiconductors (molecules and macromolecules) initially designed for organic solvents. The topic of nanoparticle OPV has gradually garnered more attention, up to a point where in 2018 it was identified as a "trendsetting strategy" by leaders in the international OPV research community. Hence, this review has been prepared to provide a timely roadmap of the formation and application of aqueous nanoparticle dispersions of active layer components for OPV. We provide a thorough synopsis of recent developments in both nanoprecipitation and miniemulsion for preparing photovoltaic inks, facilitating readers in acquiring a deep understanding of the crucial synthesis parameters affecting particle size, colloidal concentration, ink stability, and more. This review also showcases the experimental levers for identifying and optimizing the internal donor-acceptor morphology of the nanoparticles, featuring cutting-edge X-ray spectromicroscopy measurements reported over the past decade. The different strategies to improve the incorporation of these inks into OPV devices and to increase their efficiency (to the current record of 7.5%) are reported, in addition to critical design choices of surfactant type and the advantages of single-component vs binary nanoparticle populations. The review naturally culminates by presenting the upscaling strategies in practice for this environmentally friendly and safer production of solar cells.
Collapse
Affiliation(s)
- Alexandre Holmes
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64012, France
| | - Elise Deniau
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64012, France
| | | | - Antoine Bousquet
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau 64012, France
| | - Sylvain Chambon
- LIMMS/CNRS-IIS (UMI2820), Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Natalie P Holmes
- Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Madsen Building F09, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Chowdhury R, Tegg L, Keast VJ, Holmes NP, Cooling NA, Vaughan B, Nicolaidis NC, Belcher WJ, Dastoor PC, Zhou X. Plasmonic enhancement of aqueous processed organic photovoltaics. RSC Adv 2021; 11:19000-19011. [PMID: 35478661 PMCID: PMC9033506 DOI: 10.1039/d1ra02328d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Sodium tungsten bronze (NaxWO3) is a promising alternative plasmonic material to nanoparticulate gold due to its strong plasmonic resonances in both the visible and near-infrared (NIR) regions. Additional benefits include its simple production either as a bulk or a nanoparticle material at a relatively low cost. In this work, plasmonic NaxWO3 nanoparticles were introduced and mixed into the nanoparticulate zinc oxide electron transport layer of a water processed poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) nanoparticle (NP) based organic photovoltaic device (NP-OPV). The power conversion efficiency of NP-OPV devices with NaxWO3 NPs added was found to improve by around 35% compared to the control devices, attributed to improved light absorption, resulting in an enhanced short circuit current and fill factor. Plasmonic NaxWO3 nanoparticles were introduced to aqueous processed organic photovoltaics with 35% device enhancement.![]()
Collapse
|
4
|
Ameri M, Al-Mudhaffer MF, Almyahi F, Fardell GC, Marks M, Al-Ahmad A, Fahy A, Andersen T, Elkington DC, Feron K, Dickinson M, Samavat F, Dastoor PC, Griffith MJ. Role of Stabilizing Surfactants on Capacitance, Charge, and Ion Transport in Organic Nanoparticle-Based Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10074-10088. [PMID: 30777424 DOI: 10.1021/acsami.8b19820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deposition of functionalized nanoparticles onto solid surfaces has created a new revolution in electronic devices. Surface adsorbates such as ionic surfactants or additives are often used to stabilize such nanoparticle suspensions; however, little is presently known about the influence of such surfactants and additives on specific electronic and chemical functionality of nanoparticulate electronic devices. This work combines experimental measurements and theoretical models to probe the role of an ionic surfactant in the fundamental physical chemistry and electronic charge carrier behavior of photodiode devices prepared using multicomponent organic electronic nanoparticles. A large capacitance was detected, which could be subsequently manipulated using the external stimuli of light, temperature, and electric fields. It was demonstrated that analyzing this capacitance through the framework of classical semiconductor analysis produced substantially misleading information on the electronic trap density of the nanoparticles. Electrochemical impedance measurements demonstrated that it is actually the stabilizing surfactant that creates capacitance through two distinct mechanisms, each of which influenced charge carrier behavior differently. The first mechanism involved a dipole layer created at the contact interfaces by mobile ions, a mechanism that could be replicated by addition of ions to solution-cast devices and was shown to be the major origin of restricted electronic performance. The second mechanism consisted of immobile ionic shells around individual nanoparticles and was shown to have a minor impact on device performance as it could be removed upon addition of electronic charge in the photodiodes through either illumination or external bias. The results confirmed that the surfactant ions do not create a significantly increased level of charge carrier traps as has been previously suspected, but rather, preventing the diffusion of mobile ions through the nanoparticulate film and their accumulation at contacts is critical to optimize the performance.
Collapse
Affiliation(s)
- Mohsen Ameri
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
- Department of Physics , Bu-Ali Sina University , Hamedan 6516738695 , Iran
| | - Mohammed F Al-Mudhaffer
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
- Department of Physics, College of Education for Pure Sciences , University of Basrah , Basrah 61002 , Iraq
| | - Furqan Almyahi
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
- Department of Physics, College of Education for Pure Sciences , University of Basrah , Basrah 61002 , Iraq
| | - Georgia C Fardell
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Melissa Marks
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Alaa Al-Ahmad
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
- Department of Physics, College of Education for Pure Sciences , University of Basrah , Basrah 61002 , Iraq
| | - Adam Fahy
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Thomas Andersen
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Daniel C Elkington
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Krishna Feron
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
- CSIRO Energy , Newcastle , New South Wales 2300 , Australia
| | - Michael Dickinson
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Feridoun Samavat
- Department of Physics , Bu-Ali Sina University , Hamedan 6516738695 , Iran
| | - Paul C Dastoor
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
| | - Matthew J Griffith
- Centre for Organic Electronics , University of Newcastle , Callaghan , New South Wales 2308 , Australia
| |
Collapse
|