1
|
Hommel K, Kauth AMA, Kirupakaran A, Theisen S, Hayduk M, Niemeyer FC, Beuck C, Zadmard R, Bayer P, Jan Ravoo B, Voskuhl J, Schrader T, Knauer SK. Functional Linkers Support Targeting of Multivalent Tweezers to Taspase1. Chemistry 2024; 30:e202401542. [PMID: 38958349 DOI: 10.1002/chem.202401542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Taspase 1 is a unique protease not only pivotal for embryonic development but also implicated in leukemias and solid tumors. As such, this enzyme is a promising while still challenging therapeutic target, and with its protein structure featuring a flexible loop preceding the active site a versatile model system for drug development. Supramolecular ligands provide a promising complementary approach to traditional small-molecule inhibitors. Recently, the multivalent arrangement of molecular tweezers allowed the successful targeting of Taspase 1's surface loop. With this study we now want to take the next logic step und utilize functional linker systems that not only allow the implementation of novel properties but also engage in protein surface binding. Consequently, we chose two different linker types differing from the original divalent assembly: a backbone with aggregation-induced emission (AIE) properties to enable monitoring of binding and a calix[4]arene scaffold initially pre-positioning the supramolecular binding units. With a series of four AIE-equipped ligands with stepwise increased valency we demonstrated that the functionalized AIE linkers approach ligand binding affinities in the nanomolar range and allow efficient proteolytic inhibition of Taspase 1. Moreover, implementation of the calix[4]arene backbone further enhanced the ligands' inhibitory potential, pointing to a specific linker contribution.
Collapse
Affiliation(s)
- Katrin Hommel
- Molecular Biology II, Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Alisa-Maite A Kauth
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Abbna Kirupakaran
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Sebastian Theisen
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Matthias Hayduk
- Faculty of Chemistry (Organic Chemistry II), Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Felix C Niemeyer
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Reza Zadmard
- Department of Organic Chemistry, Chemistry and Chemical Engineering Research Center of Iran (CCERCI), P. O. Box 14335-186, Tehran, Iran
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, University of Münster, Busso-Peus-Straße 10, 48149, Münster, Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry II), Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry I, Biosupramolecular Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Shirley K Knauer
- Molecular Biology II, Center of Medical Biotechnology (ZMB) and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstrasse 5, 45141, Essen, Germany
| |
Collapse
|
2
|
Neblik J, Kirupakaran A, Beuck C, Mieres-Perez J, Niemeyer F, Le MH, Telgheder U, Schmuck JF, Dudziak A, Bayer P, Sanchez-Garcia E, Westermann S, Schrader T. Multivalent Molecular Tweezers Disrupt the Essential NDC80 Interaction with Microtubules. J Am Chem Soc 2023. [PMID: 37392180 DOI: 10.1021/jacs.3c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Binding of microtubule filaments by the conserved Ndc80 protein is required for kinetochore-microtubule attachments in cells and the successful distribution of the genetic material during cell division. The reversible inhibition of microtubule binding is an important aspect of the physiological error correction process. Small molecule inhibitors of protein-protein interactions involving Ndc80 are therefore highly desirable, both for mechanistic studies of chromosome segregation and also for their potential therapeutic value. Here, we report on a novel strategy to develop rationally designed inhibitors of the Ndc80 Calponin-homology domain using Supramolecular Chemistry. With a multiple-click approach, lysine-specific molecular tweezers were assembled to form covalently fused dimers to pentamers with a different overall size and preorganization/stiffness. We identified two dimers and a trimer as efficient Ndc80 CH-domain binders and have shown that they disrupt the interaction between Ndc80 and microtubules at low micromolar concentrations without affecting microtubule dynamics. NMR spectroscopy allowed us to identify the biologically important lysine residues 160 and 204 as preferred tweezer interaction sites. Enhanced sampling molecular dynamics simulations provided a rationale for the binding mode of multivalent tweezers and the role of pre-organization and secondary interactions in targeting multiple lysine residues across a protein surface.
Collapse
Affiliation(s)
- Jonas Neblik
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Abbna Kirupakaran
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Christine Beuck
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Joel Mieres-Perez
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
- Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, North Rhine-Westfalia 44227, Germany
| | - Felix Niemeyer
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - My-Hue Le
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Ursula Telgheder
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Jessica Felice Schmuck
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Alexander Dudziak
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Peter Bayer
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Elsa Sanchez-Garcia
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
- Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, North Rhine-Westfalia 44227, Germany
| | - Stefan Westermann
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| |
Collapse
|
3
|
Blueggel M, Kroening A, Kracht M, van den Boom J, Dabisch M, Goehring A, Kaschani F, Kaiser M, Bayer P, Meyer H, Beuck C. The UBX domain in UBXD1 organizes ubiquitin binding at the C-terminus of the VCP/p97 AAA-ATPase. Nat Commun 2023; 14:3258. [PMID: 37277335 DOI: 10.1038/s41467-023-38604-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
The AAA+ ATPase p97/VCP together with different sets of substrate-delivery adapters and accessory cofactor proteins unfolds ubiquitinated substrates to facilitate degradation by the proteasome. The UBXD1 cofactor is connected to p97-associated multisystem proteinopathy but its biochemical function and structural organization on p97 has remained largely elusive. Using a combination of crosslinking mass spectrometry and biochemical assays, we identify an extended UBX (eUBX) module in UBXD1 related to a lariat in another cofactor, ASPL. Of note, the UBXD1-eUBX intramolecularly associates with the PUB domain in UBXD1 close to the substrate exit pore of p97. The UBXD1 PUB domain can also bind the proteasomal shuttling factor HR23b via its UBL domain. We further show that the eUBX domain has ubiquitin binding activity and that UBXD1 associates with an active p97-adapter complex during substrate unfolding. Our findings suggest that the UBXD1-eUBX module receives unfolded ubiquitinated substrates after they exit the p97 channel and before hand-over to the proteasome. The interplay of full-length UBXD1 and HR23b and their function in the context of an active p97:UBXD1 unfolding complex remains to be studied in future work.
Collapse
Affiliation(s)
- Mike Blueggel
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Alexander Kroening
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Kracht
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Matthias Dabisch
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Anna Goehring
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Farnusch Kaschani
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Markus Kaiser
- Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Molecular Biology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Höing A, Kirupakaran A, Beuck C, Pörschke M, Niemeyer FC, Seiler T, Hartmann L, Bayer P, Schrader T, Knauer SK. Recognition of a Flexible Protein Loop in Taspase 1 by Multivalent Supramolecular Tweezers. Biomacromolecules 2022; 23:4504-4518. [PMID: 36200481 DOI: 10.1021/acs.biomac.2c00652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many natural proteins contain flexible loops utilizing well-defined complementary surface regions of their interacting partners and usually undergo major structural rearrangements to allow perfect binding. The molecular recognition of such flexible structures is still highly challenging due to the inherent conformational dynamics. Notably, protein-protein interactions are on the other hand characterized by a multivalent display of complementary binding partners to enhance molecular affinity and specificity. Imitating this natural concept, we here report the rational design of advanced multivalent supramolecular tweezers that allow addressing two lysine and arginine clusters on a flexible protein surface loop. The protease Taspase 1, which is involved in cancer development, carries a basic bipartite nuclear localization signal (NLS) and thus interacts with Importin α, a prerequisite for proteolytic activation. Newly established synthesis routes enabled us to covalently fuse several tweezer molecules into multivalent NLS ligands. The resulting bi- up to pentavalent constructs were then systematically compared in comprehensive biochemical assays. In this series, the stepwise increase in valency was robustly reflected by the ligands' gradually enhanced potency to disrupt the interaction of Taspase 1 with Importin α, correlated with both higher binding affinity and inhibition of proteolytic activity.
Collapse
Affiliation(s)
- Alexander Höing
- Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Abbna Kirupakaran
- Institute of Organic Chemistry I, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Marius Pörschke
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Felix C Niemeyer
- Institute of Organic Chemistry I, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Theresa Seiler
- Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Laura Hartmann
- Organic Chemistry and Macromolecular Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| | - Thomas Schrader
- Institute of Organic Chemistry I, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Shirley K Knauer
- Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|