1
|
Hata Y, Serizawa T. Nanoarchitectonics of cello-oligosaccharides: A route toward artificial nanocelluloses. Adv Colloid Interface Sci 2025; 336:103361. [PMID: 39642432 DOI: 10.1016/j.cis.2024.103361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Colloidal cellulose nanoparticles, or nanocelluloses, are derived from natural cellulose sources in a top-down manner via physical and/or chemical treatments that extract naturally occurring cellulose nanostructures. Naturally derived nanocelluloses have been successfully commercialized in various fields, and their potential is still being widely explored in materials science. Moreover, recent advances in nanoarchitectonics of low-molecular-weight cellulose, or cello-oligosaccharides, have opened new avenues for developing "artificial nanocelluloses". Artificial nanocelluloses composed of cello-oligosaccharides synthesized via enzymatic oligomerization or solid-phase glycan synthesis technology are termed "synthetic nanocelluloses". These nanostructures are abiotically constructed in a bottom-up manner at the molecular level via self-assembly of cello-oligosaccharides in vitro. Modulation of the assembly process and molecular design provides control over the molecular alignment, nanomorphology, and surface functionality of artificial nanocelluloses. This review summarizes recent research progress in artificial nanocelluloses, from the preparation and self-assembly of cello-oligosaccharides to their potential applications.
Collapse
Affiliation(s)
- Yuuki Hata
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Takeshi Serizawa
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1-H-121 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
2
|
Maity S, Deb VK, Mondal S, Chakraborty A, Pramanick K, Adhikari S. Leveraging supramolecular systems in biomedical breakthroughs. Biofactors 2025; 51:e70005. [PMID: 39902766 DOI: 10.1002/biof.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Supramolecular systems, intricate assemblies of molecular subunits organized through various intermolecular interactions, offer versatile platforms for diverse applications, including gene therapy, antimicrobial therapy, and cellular engineering. These systems are cost-effective and environmentally friendly, contributing to their attractiveness in biomaterial design. Furthermore, supramolecular biomaterials based on acyclic, macrocyclic compounds and lipid-based assembly offer potential applications in distinct types of biomedical approaches. In this context, they can transport several therapeutic agents very effectively to the target site. Supramolecular hydrogels exhibit potent antimicrobial activity by disrupting microbial membranes, offering promising solutions to combat drug-resistant pathogens. Additionally, supramolecular luminescent nanoparticles enable targeted cell imaging, facilitating disease diagnosis and treatment with high specificity and sensitivity. In cellular engineering, supramolecular assemblies of small molecules demonstrate biological activities, overcoming challenges in cancer treatment by inhibiting signaling pathways and inducing apoptosis in cancer cells. This review emphasizes the applications of supramolecular systems from gene therapy to cellular imaging, tissue engineering, and antimicrobial therapy, showcasing their potential to drive innovation and address pressing healthcare challenges.
Collapse
Affiliation(s)
- Shreya Maity
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Sayani Mondal
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Akansha Chakraborty
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Kousik Pramanick
- Integrative Biology Research Unit, Department of Life Sciences, Presidency University, Kolkata, India
| | - Suman Adhikari
- Department of Chemistry, Government Degree College, Dharmanagar, India
| |
Collapse
|
3
|
Santangelo M, Iacopini D, Favero L, Zecchi R, Pieraccini G, Di Pietro S, Di Bussolo V. One-Pot Stereospecific Synthesis of 1,4-Oligosaccharides by Glycal-Derived Vinyl Epoxides Assembly. ACS OMEGA 2024; 9:45047-45052. [PMID: 39554454 PMCID: PMC11561766 DOI: 10.1021/acsomega.4c05247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/04/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024]
Abstract
Recently, naturally occurring linear 1,4-glycans have attracted remarkable attention for their activity in cancer and neurodegenerative disease treatment. Classical chemical synthetic strategies for linear 1,4-oligosaccharides are considerably time-consuming due to orthogonal protection/deprotection, the introduction of leaving groups, and various forms of activation of the glycosylation reaction. Herein, we present a new one-pot microwave-activated reiterative assembly of glycal-derived vinyl epoxides in an uncatalyzed substrate-dependent stereospecific process for the preparation of both β-1,4-d-Gulo and α-1,4-d-Manno oligosaccharides.
Collapse
Affiliation(s)
| | - Dalila Iacopini
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Lucilla Favero
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Riccardo Zecchi
- CISM
- Centro di servizi di Spettrometria di Massa, Piattaforma dei Centri
di servizio, Università degli Studi
di Firenze, Viale G.
Pieraccini 6, 50139 Firenze, Italy
| | - Giuseppe Pieraccini
- CISM
- Centro di servizi di Spettrometria di Massa, Piattaforma dei Centri
di servizio, Università degli Studi
di Firenze, Viale G.
Pieraccini 6, 50139 Firenze, Italy
| | | | - Valeria Di Bussolo
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
4
|
van Trijp JP, Hribernik N, Lim JH, Dal Colle MCS, Mena YV, Ogawa Y, Delbianco M. Enzyme-Triggered Assembly of Glycan Nanomaterials. Angew Chem Int Ed Engl 2024; 63:e202410634. [PMID: 39008635 DOI: 10.1002/anie.202410634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
A comprehensive molecular understanding of carbohydrate aggregation is key to optimize carbohydrate utilization and to engineer bioinspired analogues with tailored shapes and properties. However, the lack of well-defined synthetic standards has substantially hampered advances in this field. Herein, we employ a phosphorylation-assisted strategy to synthesize previously inaccessible long oligomers of cellulose, chitin, and xylan. These oligomers were subjected to enzyme-triggered assembly (ETA) for the on-demand formation of well-defined carbohydrate nanomaterials, including elongated platelets, helical bundles, and hexagonal particles. Cryo-electron microscopy and electron diffraction analysis provided molecular insights into the aggregation behavior of these oligosaccharides, establishing a direct connection between the resulting morphologies and the oligosaccharide primary sequence. Our findings demonstrate that ETA is a powerful approach to elucidate the intrinsic aggregation behavior of carbohydrates in nature. Moreover, the ability to access a diverse array of morphologies, expanded with a non-natural sequence, underscores the potential of ETA, coupled with sequence design, as a robust tool for accessing programmable glycan architectures.
Collapse
Affiliation(s)
- Jacobus P van Trijp
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Nives Hribernik
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jia Hui Lim
- Jia Hui Lim, Yadiel Vázquez Mena, Yu Ogawa, Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Marlene C S Dal Colle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yadiel Vázquez Mena
- Jia Hui Lim, Yadiel Vázquez Mena, Yu Ogawa, Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Yu Ogawa
- Jia Hui Lim, Yadiel Vázquez Mena, Yu Ogawa, Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
5
|
Rondon B, Ungolan P, Wu L, Niu J. Chemically Recyclable Pseudo-Polysaccharides from Living Ring-Opening Polymerization of Glucurono-1,6-lactones. J Am Chem Soc 2024; 146:21868-21876. [PMID: 39051936 DOI: 10.1021/jacs.4c06431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Recent advances in synthetic methods and monomer design have given access to precision carbohydrate polymers that extend beyond native polysaccharides. In this article, we present the synthesis of a class of chemically recyclable ester-linked pseudo-polysaccharides via the living anionic ring-opening polymerization of glucurono-1,6-lactones. Notably, the pseudo-polysaccharides exhibited defined chain-end groups, well-controlled molecular weights, and narrow molecular weight distributions, all hallmarks of living polymerization. Furthermore, we demonstrate that our approach is modular, as evidenced by tunable glass transition temperatures (Tg) and the ability to produce both amorphous and semicrystalline polymers by adjusting the monomer side chain structure. Lastly, we showcased the complete catalytic chemical recycling of these pseudo-polysaccharides back to the monomers. The flexibility of the polymerization and the recyclability of these pseudo-polysaccharides promote a sustainable circular economy while offering the potential to access polysaccharide-like materials with tunable thermal and mechanical properties.
Collapse
Affiliation(s)
- Brayan Rondon
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Poom Ungolan
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Lianqian Wu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
6
|
Guo H, Mi P. Polymer-drug and polymer-protein conjugated nanocarriers: Design, drug delivery, imaging, therapy, and clinical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1988. [PMID: 39109479 DOI: 10.1002/wnan.1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 01/06/2025]
Abstract
Polymer-drug conjugates and polymer-protein conjugates have been pivotal in the realm of drug delivery systems for over half a century. These polymeric drugs are characterized by the conjugation of therapeutic molecules or functional moieties to polymers, enabling a range of benefits including extended circulation times, targeted delivery, controlled release, and decreased immunogenicity. This review delves into recent advancements and challenges in the clinical translations and preclinical studies of polymer-drug conjugates and polymer-protein conjugates. The design principles and functionalization strategies crucial for the development of these polymeric drugs were explored followed by the review of structural properties and characteristics of various polymer carriers. This review also identifies significant obstacles in the clinical translation of polymer-drug conjugates and provides insights into the directions for their future development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Haochen Guo
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
| | - Peng Mi
- Department of Radiology, Huaxi MR Research Center (HMRRC), and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Giraldo JD, García Y, Vera M, Garrido-Miranda KA, Andrade-Acuña D, Marrugo KP, Rivas BL, Schoebitz M. Alternative processes to produce chitin, chitosan, and their oligomers. Carbohydr Polym 2024; 332:121924. [PMID: 38431399 DOI: 10.1016/j.carbpol.2024.121924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Sustainable recovery of chitin and its derivatives from shellfish waste will be achieved when the industrial production of these polymers is achieved with a high control of their molecular structure, low costs, and acceptable levels of pollution. Therefore, the conventional chemical method for obtaining these biopolymers needs to be replaced or optimized. The goal of the present review is to ascertain what alternative methods are viable for the industrial-scale production of chitin, chitosan, and their oligomers. Therefore, a detailed review of recent literature was undertaken, focusing on the advantages and disadvantages of each method. The analysis of the existing data allows suggesting that combining conventional, biological, and alternative methods is the most efficient strategy to achieve sustainable production, preventing negative impacts and allowing for the recovery of high added-value compounds from shellfish waste. In conclusion, a new process for obtaining chitinous materials is suggested, with the potential of reducing the consumption of reagents, energy, and water by at least 1/10, 1/4, and 1/3 part with respect to the conventional process, respectively.
Collapse
Affiliation(s)
- Juan D Giraldo
- Escuela de Ingeniería Ambiental, Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Balneario Pelluco, Los Pinos s/n, Chile.
| | - Yadiris García
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Karla A Garrido-Miranda
- Center of Waste Management and Bioenergy, Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de la Frontera, Temuco 4811230, Chile; Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile
| | - Daniela Andrade-Acuña
- Centro de Docencia Superior en Ciencias Básicas, Universidad Austral de Chile, Sede Puerto Montt, Los Pinos s/n. Balneario Pelluco, Puerto Montt, Chile
| | - Kelly P Marrugo
- Departamento de Química Orgánica, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; Centro de Investigaciones en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bernabé L Rivas
- Universidad San Sebastián, Sede Concepción 4080871, Concepción, Chile
| | - Mauricio Schoebitz
- Departamento de Suelos y Recursos Naturales, Facultad de Agronomía, Campus Concepción, Casilla 160-C, Universidad de Concepción, Chile; Laboratory of Biofilms and Environmental Microbiology, Center of Biotechnology, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile
| |
Collapse
|
8
|
Tang Y, Zhu Y, Wang X, Peng H, Wang Z, Yue C, Wang L, Bai Z, Li P, Luo D. Study of the structural characterization, physicochemical properties and antioxidant activities of phosphorylated long-chain inulin with different degrees of substitution. Int J Biol Macromol 2024; 263:130139. [PMID: 38354927 DOI: 10.1016/j.ijbiomac.2024.130139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
In this study, phosphorylated derivatives of long-chain inulin with different substitution degrees were prepared. The synthesized samples were named PFXL-1, PFXL-2, PFXL-3, and PFXL-4 according to their degree of substitution (from low to high). The structures of FXL and PFXL were characterized by infrared spectroscopy and nuclear magnetic resonance spectroscopy, and the results indicated the successful introduction of phosphate groups. FXL and PFXL were composed of two types of sugar, fructose and glucose, with a molar ratio of 0.977:0.023. The SEM results showed that phosphorylation changed the morphology of FXL from an irregular mass to small spherical aggregates. The XRD pattern showed that the crystallinity was reduced by the introduction of phosphate groups. The Mw of FXL was 2649 g/mol, and the Mw of PFXL-4 increased the most (2965 g/mol). Additionally, PFXL was more stable and uniform, and the absolute value of the PFXL potential reached 7.83 mV. Phosphorylation decreased the weight loss rate of FXL and improved the viscoelastic properties and antioxidant activity of FXL. This study presents a method for the modification of FXL, demonstrating that phosphorylation can enhance its physicochemical properties and physiological activity and suggesting its potential as a functional food and quality modifier.
Collapse
Affiliation(s)
- Yu Tang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ying Zhu
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaojing Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Huainan Peng
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Ziyu Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chonghui Yue
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China.
| | - Libo Wang
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Zhouya Bai
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Peiyan Li
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| | - Denglin Luo
- College of Food & Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Material, Henan University of Science & Technology, Luoyang, China
| |
Collapse
|
9
|
Li X, Di Carluccio C, Miao H, Zhang L, Shang J, Molinaro A, Xu P, Silipo A, Yu B, Yang Y. Promoter-Controlled Synthesis and Conformational Analysis of Cyclic Mannosides up to a 32-mer. Angew Chem Int Ed Engl 2023; 62:e202307851. [PMID: 37433753 DOI: 10.1002/anie.202307851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Cyclodextrins are widely used as carriers of small molecules for drug delivery owing to their remarkable host properties and excellent biocompatibility. However, cyclic oligosaccharides with different sizes and shapes are limited. Cycloglycosylation of ultra-large bifunctional saccharide precursors is challenging due to the constrained conformational spaces. Herein we report a promoter-controlled cycloglycosylation approach for the synthesis of cyclic α-(1→6)-linked mannosides up to a 32-mer. Cycloglycosylation of the bifunctional thioglycosides and (Z)-ynenoates was found to be highly dependent on the promoters. In particular, a sufficient amount of a gold(I) complex played a key role in the proper preorganization of the ultra-large cyclic transition state, providing a cyclic 32-mer polymannoside, which represents the largest synthetic cyclic polysaccharide to date. NMR experiments and a computational study revealed that the cyclic 2-mer, 4-mer, 8-mer, 16-mer, and 32-mer mannosides adopted different conformational states and shapes.
Collapse
Affiliation(s)
- Xiaona Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - He Miao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Lvfeng Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jintao Shang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
- Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Napoli, Italy
- Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - You Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
10
|
Wu L, Zhou Z, Sathe D, Zhou J, Dym S, Zhao Z, Wang J, Niu J. Precision native polysaccharides from living polymerization of anhydrosugars. Nat Chem 2023; 15:1276-1284. [PMID: 37106096 DOI: 10.1038/s41557-023-01193-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
The composition, sequence, length and type of glycosidic linkage of polysaccharides profoundly affect their biological and physical properties. However, investigation of the structure-function relationship of polysaccharides is hampered by difficulties in accessing well-defined polysaccharides in sufficient quantities. Here we report a chemical approach to precision polysaccharides with native glycosidic linkages via living cationic ring-opening polymerization of 1,6-anhydrosugars. We synthesized well-defined polysaccharides with tunable molecular weight, low dispersity and excellent regio- and stereo-selectivity using a boron trifluoride etherate catalyst and glycosyl fluoride initiators. Computational studies revealed that the reaction propagated through the monomer α-addition to the oxocarbenium and was controlled by the reversible deactivation of the propagating oxocarbenium to form the glycosyl fluoride dormant species. Our method afforded a facile and scalable pathway to multiple biologically relevant precision polysaccharides, including D-glucan, D-mannan and an unusual L-glucan. We demonstrated that catalytic depolymerization of precision polysaccharides efficiently regenerated monomers, suggesting their potential utility as a class of chemically recyclable materials with tailored thermal and mechanical properties.
Collapse
Affiliation(s)
- Lianqian Wu
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Zefeng Zhou
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Devavrat Sathe
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, USA
| | - Junfeng Zhou
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, USA
| | - Shoshana Dym
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Zhensheng Zhao
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | - Junpeng Wang
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH, USA
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA.
| |
Collapse
|
11
|
Corrie L, Gulati M, Awasthi A, Vishwas S, Kaur J, Khursheed R, Porwal O, Alam A, Parveen SR, Singh H, Chellappan DK, Gupta G, Kumbhar P, Disouza J, Patravale V, Adams J, Dua K, Singh SK. Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery. Chem Biol Interact 2022; 368:110238. [DOI: 10.1016/j.cbi.2022.110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022]
|
12
|
Rahman MA, Kuroda K, Endo H, Sasaki N, Hamada T, Sakai H, Nokami T. Synthesis of protected precursors of chitin oligosaccharides by electrochemical polyglycosylation of thioglycosides. Beilstein J Org Chem 2022; 18:1133-1139. [PMID: 36105733 PMCID: PMC9443410 DOI: 10.3762/bjoc.18.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 12/31/2022] Open
Abstract
The synthesis of protected precursors of chitin oligosaccharides by electrochemical polyglycosylation of thioglycosides as monomer is described. Oligosaccharides up to the hexasaccharide were synthesized under optimized reaction conditions. Further, a modified method enabled the synthesis of oligosaccharides up to the octasaccharide by repeating electrolysis with additional monomers. The mechanism of the electrochemical polyglycosylation is also discussed, based on the oxidation potential of the monomer and oligosaccharides.
Collapse
Affiliation(s)
- Md Azadur Rahman
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552 Tottori, Japan
| | - Kana Kuroda
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552 Tottori, Japan
| | - Hirofumi Endo
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552 Tottori, Japan
| | - Norihiko Sasaki
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552 Tottori, Japan
- Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552 Tottori, Japan
| | - Tomoaki Hamada
- Koganei Corporation, 3-11-28 Midorimachi, Koganei City, 184-8533 Tokyo, Japan
| | - Hiraku Sakai
- Koganei Corporation, 3-11-28 Midorimachi, Koganei City, 184-8533 Tokyo, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552 Tottori, Japan
- Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori City, 680-8552 Tottori, Japan
| |
Collapse
|
13
|
Dhara D, Dhara A, Murphy PV, Mulard LA. Protecting group principles suited to late stage functionalization and global deprotection in oligosaccharide synthesis. Carbohydr Res 2022; 521:108644. [PMID: 36030632 DOI: 10.1016/j.carres.2022.108644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
Chemical synthesis is a powerful tool to access homogeneous complex glycans, which relies on protecting group (PG) chemistry. However, the overall efficiency of chemical glycan assembly is still low when compared to oligonucleotide or oligopeptide synthesis. There have been many contributions giving rise to collective improvement in carbohydrate synthesis that includes PG manipulation and stereoselective glycoside formation and some of this chemistry has been transferred to the solid phase or adapted for programmable one pot synthesis approaches. However, after all glycoside bond formation reactions are completed, the global deprotection (GD) required to give the desired target OS can be challenging. Difficulties observed in the removal of permanent PGs to release the desired glycans can be due to the number and diversity of PGs present in the protected OSs, nature and structural complexity of glycans, etc. Here, we have reviewed the difficulties associated with the removal of PGs from densely protected OSs to obtain their free glycans. In particularly, this review focuses on the challenges associated with hydrogenolysis of benzyl groups, saponification of esters and functional group interconversion such as oxidation/reduction that are commonly performed in GD stage. More generally, problems observed in the removal of permanent PGs is reviewed herein, including benzyl, acyl (levulinoyl, acetyl), N-trichloroacetyl, N-2,2,2-trichloroethoxycarbonyl, N-phthaloyl etc. from a number of fully protected OSs to release the free sugar, that have been previously reported in the literature.
Collapse
Affiliation(s)
- Debashis Dhara
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France; School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland.
| | - Ashis Dhara
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Paul V Murphy
- School of Biological and Chemical Sciences, NUI Galway, University Road, Galway, H91 TK33, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, NUI Galway, University Road, Galway, H91 TK33, Ireland
| | - Laurence A Mulard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3523, Unité de Chimie des Biomolécules, 25-28 rue du Dr Roux, 75015, Paris, France
| |
Collapse
|
14
|
Chemical synthesis of polysaccharides. Curr Opin Chem Biol 2022; 69:102154. [DOI: 10.1016/j.cbpa.2022.102154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022]
|
15
|
Tyrikos-Ergas T, Gim S, Huang JY, Pinzón Martín S, Varón Silva D, Seeberger PH, Delbianco M. Synthetic phosphoethanolamine-modified oligosaccharides reveal the importance of glycan length and substitution in biofilm-inspired assemblies. Nat Commun 2022; 13:3954. [PMID: 35804023 PMCID: PMC9270332 DOI: 10.1038/s41467-022-31633-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/28/2022] [Indexed: 12/18/2022] Open
Abstract
Bacterial biofilm matrices are nanocomposites of proteins and polysaccharides with remarkable mechanical properties. Efforts understanding and tuning the protein component have been extensive, whereas the polysaccharide part remained mostly overlooked. The discovery of phosphoethanolamine (pEtN) modified cellulose in E. coli biofilms revealed that polysaccharide functionalization alters the biofilm properties. To date, the pattern of pEtN cellulose and its mode of interactions with proteins remains elusive. Herein, we report a model system based on synthetic epitomes to explore the role of pEtN in biofilm-inspired assemblies. Nine pEtN-modified oligosaccharides were synthesized with full control over the length, degree and pattern of pEtN substitution. The oligomers were co-assembled with a representative peptide, triggering the formation of fibers in a length dependent manner. We discovered that the pEtN pattern modulates the adhesion of biofilm-inspired matrices, while the peptide component controls its stiffness. Unnatural oligosaccharides tune or disrupt the assembly morphology, revealing interesting targets for polysaccharide engineering to develop tunable bio-inspired materials.
Collapse
Affiliation(s)
- Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Jhih-Yi Huang
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Sandra Pinzón Martín
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Daniel Varón Silva
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.,Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
16
|
Kim T, Bell MR, Thota VN, Lowary TL. One-Pot Regioselective Diacylation of Pyranoside 1,2- cis Diols. J Org Chem 2022; 87:4894-4907. [PMID: 35290061 DOI: 10.1021/acs.joc.2c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-pot strategy for functionalizing pyranoside 1,2-cis-diols with two different ester protecting groups is reported. The approach employs regioselective acylation via orthoester hydrolysis promoted by a carboxylic acid, e.g., levulinic acid, acetic acid, benzoic acid, or chloroacetic acid. Upon removal of water and introduction of a coupling agent, the carboxylic acid is esterified to the hydroxyl group liberated during hydrolysis. Although applied to 1,2-cis-diols on pyranoside scaffolds, the method should be applicable to such motifs on any six-membered ring.
Collapse
Affiliation(s)
- Taeok Kim
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Michael R Bell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - V Narasimharao Thota
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.,Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei, 11529, Taiwan.,Institute of Biochemical Sciences, National Taiwan University, Roosevelt Road, Section 4, #1, Taipei, 10617, Taiwan
| |
Collapse
|
17
|
Tyrikos-Ergas T, Sletten ET, Huang JY, Seeberger PH, Delbianco M. On resin synthesis of sulfated oligosaccharides. Chem Sci 2022; 13:2115-2120. [PMID: 35308866 PMCID: PMC8848854 DOI: 10.1039/d1sc06063e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/29/2022] [Indexed: 01/19/2023] Open
Abstract
Sulfated glycans are involved in many biological processes, making well-defined sulfated oligosaccharides highly sought molecular probes. These compounds are a considerable synthetic challenge, with each oligosaccharide target requiring specific synthetic protocols and extensive purifications steps. Here, we describe a general on resin approach that simplifies the synthesis of sulfated glycans. The oligosaccharide backbone, obtained by Automated Glycan Assembly (AGA), is subjected to regioselective sulfation and hydrolysis of protecting groups. The protocol is compatible with several monosaccharides and allows for multi-sulfation of linear and branched glycans. Seven diverse, biologically relevant sulfated glycans were prepared in good to excellent overall yield.
Collapse
Affiliation(s)
- Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Jhih-Yi Huang
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
18
|
Hintze V, Schnabelrauch M, Rother S. Chemical Modification of Hyaluronan and Their Biomedical Applications. Front Chem 2022; 10:830671. [PMID: 35223772 PMCID: PMC8873528 DOI: 10.3389/fchem.2022.830671] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Hyaluronan, the extracellular matrix glycosaminoglycan, is an important structural component of many tissues playing a critical role in a variety of biological contexts. This makes hyaluronan, which can be biotechnologically produced in large scale, an attractive starting polymer for chemical modifications. This review provides a broad overview of different synthesis strategies used for modulating the biological as well as material properties of this polysaccharide. We discuss current advances and challenges of derivatization reactions targeting the primary and secondary hydroxyl groups or carboxylic acid groups and the N-acetyl groups after deamidation. In addition, we give examples for approaches using hyaluronan as biomedical polymer matrix and consequences of chemical modifications on the interaction of hyaluronan with cells via receptor-mediated signaling. Collectively, hyaluronan derivatives play a significant role in biomedical research and applications indicating the great promise for future innovative therapies.
Collapse
Affiliation(s)
- Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany
| | | | - Sandra Rother
- School of Medicine, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| |
Collapse
|
19
|
Vessella G, Marchetti R, Del Prete A, Traboni S, Iadonisi A, Schiraldi C, Silipo A, Bedini E. Semisynthetic Isomers of Fucosylated Chondroitin Sulfate Polysaccharides with Fucosyl Branches at a Non-Natural Site. Biomacromolecules 2021; 22:5151-5161. [PMID: 34775751 PMCID: PMC8672353 DOI: 10.1021/acs.biomac.1c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The several interesting
activities detected for fucosylated chondroitin
sulfate (fCS) have fueled in the last years several efforts toward
the obtainment of fCS oligosaccharides and low molecular weight (LMW)
polysaccharides with a well-defined structure, in order to avoid the
problems associated with the potential employment of native, sea cucumber
sourced fCSs as a drug. Total synthesis and controlled depolymerization
of the natural fCS polysaccharides are the main approaches to this
aim; nonetheless, they present some limitations. These could be circumvented
by semisynthesis, a strategy relying upon the regioselective fucosylation
and sulfation of a microbial sourced polysaccharide sharing the same
chondroitin backbone of fCS but devoid of any fucose (Fuc) and sulfate
decoration on it. This approach is highly versatile, as it could open
access also to fCS isomers carrying Fuc and sulfate groups at non-natural
sites. Here we prepare for the first time some structurally homogeneous
fCS isomers through a multistep procedure with a glycosylation reaction
between a LMW polysaccharide acceptor and three different Fuc donors
as key step. The obtained products were subjected to a detailed structural
characterization by 2D-NMR. The conformational behavior was also investigated
by NMR and molecular dynamics simulation methods and compared with
data reported for natural fCS.
Collapse
Affiliation(s)
- Giulia Vessella
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Angela Del Prete
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Serena Traboni
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, University of Campania "Luigi Vanvitelli", via de Crecchio 7, I-80138 Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| | - Emiliano Bedini
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S.Angelo, via Cintia 4, I-80126 Napoli, Italy
| |
Collapse
|