1
|
Eubanks E, VanderSleen K, Mody J, Patel N, Sacks B, Farahani MD, Wang J, Elliott J, Jaber N, Akçimen F, Bandres-Ciga S, Helweh F, Liu J, Archakam S, Kimelman R, Sharma B, Socha P, Guntur A, Huang Y, Ramalingam N, Guadagno E, Bartels T, Dettmer U, Mouradian MM, Bahrami AH, Dai W, Baum J, Shi Z, Hardy J, Kara E. Increased burden of rare risk variants across gene expression networks predisposes to sporadic Parkinson's disease. Cell Rep 2025; 44:115636. [PMID: 40317721 DOI: 10.1016/j.celrep.2025.115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/04/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
Alpha-synuclein (αSyn) is an intrinsically disordered protein that accumulates in the brains of patients with Parkinson's disease (PD). Through a high-throughput screen, we recently identified 38 genes whose knockdown modulates αSyn propagation. Here, we show that, among those, TAX1BP1 regulates how αSyn interacts with lipids, and ADAMTS19 modulates how αSyn phase separates into inclusions, adding to the growing body of evidence implicating those processes in PD. Through RNA sequencing, we identify several genes that are differentially expressed after knockdown of TAX1BP1 or ADAMTS19 and carry an increased frequency of rare risk variants in patients with PD versus healthy controls. Those differentially expressed genes cluster within modules in regions of the brain that develop high degrees of αSyn pathology. We propose a model for the genetic architecture of sporadic PD: increased burden of risk variants across genetic networks dysregulates pathways underlying αSyn homeostasis and leads to pathology and neurodegeneration.
Collapse
Affiliation(s)
- Elena Eubanks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Katelyn VanderSleen
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Jiya Mody
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Neha Patel
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Benjamin Sacks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | | | - Jinying Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Nora Jaber
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Fulya Akçimen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fadel Helweh
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Jun Liu
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Sanjana Archakam
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Robert Kimelman
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Socha
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Ananya Guntur
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Yiming Huang
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Elyse Guadagno
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London W1T 7NF, UK
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - M Maral Mouradian
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Amir Houshang Bahrami
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Wei Dai
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - John Hardy
- UK Dementia Research Institute, University College London, London W1T 7NF, UK; Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK; National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, SAR, Hong Kong, China
| | - Eleanna Kara
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Maupérin M, Sun Y, Glandorf T, Oswald TA, Klatt N, Geil B, Mutero-Maeda A, Méan I, Jond L, Janshoff A, Yan J, Citi S. A feedback circuitry involving γ-actin, β-actin and nonmuscle myosin-2 A controls tight junction and apical cortex mechanics. Nat Commun 2025; 16:2514. [PMID: 40082413 PMCID: PMC11906862 DOI: 10.1038/s41467-025-57428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
Cytoplasmic β- and γ-actin isoforms, along with non-muscle myosin 2 isoforms, are tightly regulated in epithelial cells and compose the actomyosin cytoskeleton at the apical junctional complex. However, their specific role in regulating the mechanics of the membrane cortex and the organization of junctions, and which biomechanical circuitries modulate their expression remain poorly understood. Here, we show that γ-actin depletion in MDCK and other epithelial cells results in increased expression and junctional accumulation of β-actin and increased tight junction membrane tortuosity, both dependent on nonmuscle myosin-2A upregulation. The knock-out of γ-actin also decreases apical membrane stiffness and increases dynamic exchange of the cytoplasmic tight junction proteins like ZO-1 and cingulin, without affecting tight junction organization and barrier function. In summary, our findings uncover a biomechanical circuitry linking γ-actin to β-actin expression through nonmuscle myosin-2A and reveal γ-actin as a key regulator of tight junction and apical membrane cortex mechanics, and the dynamics of cytoskeleton-associated tight junction proteins in epithelial cells.
Collapse
Affiliation(s)
- Marine Maupérin
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Yuze Sun
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Thomas Glandorf
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Tabea Anne Oswald
- Georg-August Universität, Institute for Organic and Biomolecular Chemistry, Göttingen, Germany
| | - Niklas Klatt
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Burkhard Geil
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Annick Mutero-Maeda
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Isabelle Méan
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Lionel Jond
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Andreas Janshoff
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Sandra Citi
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Sánchez-Sánchez BJ, Marcotti S, Salvador-Garcia D, Díaz-de-la-Loza MDC, Burki M, Davidson AJ, Wood W, Stramer BM. Moesin integrates cortical and lamellar actin networks during Drosophila macrophage migration. Nat Commun 2025; 16:1414. [PMID: 39915456 PMCID: PMC11802916 DOI: 10.1038/s41467-024-55510-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Cells are thought to adopt mechanistically distinct migration modes depending on cell-type and environmental factors. These modes are assumed to be driven by mutually exclusive actin cytoskeletal organizations, which are either lamellar (flat, branched network) or cortical (crosslinked to the plasma membrane). Here we exploit Drosophila macrophage (hemocyte) developmental dispersal to reveal that these cells maintain both a lamellar actin network at their cell front and a cortical actin network at the rear. Loss of classical actin cortex regulators, such as Moesin, perturb hemocyte morphology and cell migration. Furthermore, cortical and lamellipodial actin networks are interregulated. Upon phosphorylation and binding to the plasma membrane, Moesin is advected to the rear by lamellar actin flow. Simultaneously, the cortical actin network feeds back on the lamella to help regulate actin flow speed and leading-edge dynamics. These data reveal that hemocyte motility requires both lamellipodial and cortical actin architectures in homeostatic equilibrium.
Collapse
Affiliation(s)
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - David Salvador-Garcia
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | | | - Mubarik Burki
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK
| | - Andrew J Davidson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1BD, Glasgow, UK
| | - Will Wood
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh Bioquarter, EH16 4UU, Edinburgh, UK
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL, London, UK.
| |
Collapse
|
4
|
Eubanks E, VanderSleen K, Mody J, Patel N, Sacks B, Farahani MD, Wang J, Elliott J, Jaber N, Akçimen F, Bandres-Ciga S, Helweh F, Liu J, Archakam S, Kimelman R, Sharma B, Socha P, Guntur A, Bartels T, Dettmer U, Mouradian MM, Bahrami AH, Dai W, Baum J, Shi Z, Hardy J, Kara E. Increased burden of rare risk variants across gene expression networks predisposes to sporadic Parkinson's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610195. [PMID: 39257816 PMCID: PMC11384021 DOI: 10.1101/2024.08.30.610195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Alpha-synuclein (αSyn) is an intrinsically disordered protein that accumulates in the brains of patients with Parkinson's disease and forms intraneuronal inclusions called Lewy Bodies. While the mechanism underlying the dysregulation of αSyn in Parkinson's disease is unclear, it is thought that prionoid cell-to-cell propagation of αSyn has an important role. Through a high throughput screen, we recently identified 38 genes whose knock down modulates αSyn propagation. Follow up experiments were undertaken for two of those genes, TAX1BP1 and ADAMTS19, to study the mechanism with which they regulate αSyn homeostasis. We used a recently developed M17D neuroblastoma cell line expressing triple mutant (E35K+E46K+E61K) "3K" αSyn under doxycycline induction. 3K αSyn spontaneously forms inclusions that show ultrastructural similarities to Lewy Bodies. Experiments using that cell line showed that TAX1BP1 and ADAMTS19 regulate how αSyn interacts with lipids and phase separates into inclusions, respectively, adding to the growing body of evidence implicating those processes in Parkinson's disease. Through RNA sequencing, we identified several genes that are differentially expressed after knock-down of TAX1BP1 or ADAMTS19. Burden analysis revealed that those differentially expressed genes (DEGs) carry an increased frequency of rare risk variants in Parkinson's disease patients versus healthy controls, an effect that was independently replicated across two separate cohorts (GP2 and AMP-PD). Weighted gene co-expression network analysis (WGCNA) showed that the DEGs cluster within modules in regions of the brain that develop high degrees of αSyn pathology (basal ganglia, cortex). We propose a novel model for the genetic architecture of sporadic Parkinson's disease: increased burden of risk variants across genetic networks dysregulates pathways underlying αSyn homeostasis, thereby leading to pathology and neurodegeneration.
Collapse
Affiliation(s)
- Elena Eubanks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Katelyn VanderSleen
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Jiya Mody
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Neha Patel
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Benjamin Sacks
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | | | - Jinying Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jordan Elliott
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Nora Jaber
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Fulya Akçimen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Sara Bandres-Ciga
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Fadel Helweh
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
| | - Jun Liu
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Sanjana Archakam
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Robert Kimelman
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Socha
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Ananya Guntur
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Tim Bartels
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - M. Maral Mouradian
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| | - Amir Houshang Bahrami
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
- Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Wei Dai
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - John Hardy
- UK Dementia Research Institute, University College London, London W1T 7NF, United Kingdom
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Eleanna Kara
- Department of Neurology, Robert Wood Johnson Medical School, Institute for Neurological Therapeutics at Rutgers, Rutgers Biomedical and Health Sciences, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Schoen JR, Chen J, Rankin S. The intrinsically disordered tail of ESCO1 binds DNA in a charge-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570177. [PMID: 38106185 PMCID: PMC10723360 DOI: 10.1101/2023.12.05.570177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
ESCO1 is an acetyltransferase enzyme that regulates chromosome organization and gene expression. It does this by modifying the Smc3 subunit of the Cohesin complex. Although ESCO1 is enriched at the base of chromatin loops in a Cohesin-dependent manner, precisely how it interacts with chromatin is unknown. Here we show that the basic and intrinsically disordered tail of ESCO1 binds DNA with very high affinity, likely through electrostatic interaction. We show that neutralization of positive residues in the N-tail reduces both DNA binding in vitro and association of the enzyme with chromatin in cells. Additionally, disruption of the chromatin state and charge distribution reduces chromatin bound ESCO1. Strikingly, defects in DNA binding do not affect total SMC3 acetylation or sister chromatid cohesion, suggesting that ESCO1-dependent acetylation can occur independently of direct chromatin association. We conclude that the intrinsically disordered tail of ESCO1 binds DNA with both high affinity and turnover, but surprisingly, ESCO1 catalytic activity occurs independently of direct DNA binding by the enzyme.
Collapse
Affiliation(s)
- Jeffrey R. Schoen
- Cell Cycle and Cancer Biology program, Oklahoma Medical Research Foundation, 825 NE 13 St, Oklahoma City, OK 73104
- Cell Biology Department, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104
| | - Jingrong Chen
- Cell Cycle and Cancer Biology program, Oklahoma Medical Research Foundation, 825 NE 13 St, Oklahoma City, OK 73104
| | - Susannah Rankin
- Cell Cycle and Cancer Biology program, Oklahoma Medical Research Foundation, 825 NE 13 St, Oklahoma City, OK 73104
- Cell Biology Department, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104
| |
Collapse
|
6
|
El-Khobar KE, Tay E, Diefenbach E, Gloss BS, George J, Douglas MW. Polo-like kinase-1 mediates hepatitis C virus-induced cell migration, a drug target for liver cancer. Life Sci Alliance 2023; 6:e202201630. [PMID: 37648284 PMCID: PMC10468647 DOI: 10.26508/lsa.202201630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/04/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a regulator of cell mitosis and cytoskeletal dynamics. PLK1 overexpression in liver cancer is associated with tumour progression, metastasis, and vascular invasion. Hepatitis C virus (HCV) NS5A protein stimulates PLK1-mediated phosphorylation of host proteins, so we hypothesised that HCV-PLK1 interactions might be a mechanism for HCV-induced liver cancer. We used a HCV cell-culture model (Jc1) to investigate the effects of virus infection on the cytoskeleton. In HCV-infected cells, a novel posttranslational modification in β-actin was observed with phosphorylation at Ser239. Using in silico and in vitro approaches, we identified PLK1 as the mediating kinase. In functional experiments with a phosphomimetic mutant form of β-actin, Ser239 phosphorylation influences β-actin polymerization and distribution, resulting in increased cell motility. The changes were prevented by treating cells with the PLK1 inhibitor volasertib. In HCV-infected hepatocytes, increased cell motility contributes to cancer cell migration, invasion, and metastasis. PLK1 is an important mediator of these effects and early treatment with PLK1 inhibitors may prevent or reduce HCC progression, particularly in people with HCV-induced HCC.
Collapse
Affiliation(s)
- Korri E El-Khobar
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, Australia
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Enoch Tay
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Eve Diefenbach
- Protein Core Facility, Westmead Institute for Medical Research, Westmead, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Westmead, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, Australia
| | - Mark W Douglas
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, Australia
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, University of Sydney at Westmead Hospital, Westmead, Australia
| |
Collapse
|
7
|
Baronti D, Tomov N, Hupp S, Mitchell TJ, Iliev AI. Dendritic spine loss deep in the neocortex and dendrite distortion with diffusion disturbances occur early in experimental pneumococcal meningitis. Front Neurosci 2023; 16:912445. [PMID: 36704002 PMCID: PMC9871924 DOI: 10.3389/fnins.2022.912445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Streptococcus pneumoniae (pneumococcus) meningitis is a serious disease with substantial lethality and long-term disability in survivors. Loss of synaptic staining in the superficial layers of the neocortex in rodent models and in humans, and pneumolysin (a major pneumococcal toxin)-dependent dendritic spine collapse in brain slices have been described. It remains unclear how deep in the neocortex more discrete changes are present, how soon after disease onset these changes occur, and whether other properties of dendrites are also affected. Methods Using a mouse model of pneumococcal meningitis, we studied changes in the neocortex shortly (3-6 h) after the onset of clinical symptoms via modified Golgi-Cox silver staining. Results Dendritic changes were present in areas with otherwise unchanged cell numbers and no signs of necrosis or other apparent neuronal pathology. Mature dendritic spines were reduced in the pyramidal neurons running through layers 1-5. Additionally, spine morphology changes (swelling, spine neck distortion), were also observed in the deeper layers 4 and 5 of the neocortex. Immature spines (filopodia) remained unchanged between groups, as well as the dendritic arborization of the analyzed neurons. In a third of the animals with meningitis, massive mechanical distortion of the primary dendrites of most of the pyramidal neurons through layers 1-5 was observed. This distortion was reproduced in acute brain slices after exposure to pneumolysin-containing bacterial lysates (S. pneumoniae D39 strain), but not to lysates of pneumolysin-deficient bacteria, which we explain by the tissue remodeling effect of the toxin. Experimental mechanical dendrite distortion in primary neural cultures demonstrated diminished FRAP diffusion of neuronally-expressed enhanced green fluorescent protein (eGFP), indicative of disturbed dendritic diffusion. Discussion Our work extends earlier knowledge of synaptic loss in the superficial cortical layers during meningitis to deeper layers. These changes occurred surprisingly early in the course of the disease, substantially limiting the effective therapeutic window. Methodologically, we demonstrate that the dendritic spine collapse readout is a highly reliable and early marker of neural damage in pneumococcal meningitis models, allowing for reduction of the total number of animals used per a group due to much lower variation among animals.
Collapse
Affiliation(s)
- Dario Baronti
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Nikola Tomov
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Sabrina Hupp
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Timothy J. Mitchell
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Asparouh I. Iliev
- Institute of Anatomy, University of Bern, Bern, Switzerland,*Correspondence: Asparouh I. Iliev,
| |
Collapse
|
8
|
Lara-Mondragón CM, Dorchak A, MacAlister CA. O-glycosylation of the extracellular domain of pollen class I formins modulates their plasma membrane mobility. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3929-3945. [PMID: 35383367 PMCID: PMC9232206 DOI: 10.1093/jxb/erac131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/31/2022] [Indexed: 06/09/2023]
Abstract
In plant cells, linkage between the cytoskeleton, plasma membrane, and cell wall is crucial for maintaining cell shape. In highly polarized pollen tubes, this coordination is especially important to allow rapid tip growth and successful fertilization. Class I formins contain cytoplasmic actin-nucleating formin homology domains as well as a proline-rich extracellular domain and are candidate coordination factors. Here, using Arabidopsis, we investigated the functional significance of the extracellular domain of two pollen-expressed class I formins: AtFH3, which does not have a polar localization, and AtFH5, which is limited to the growing tip region. We show that the extracellular domain of both is necessary for their function, and identify distinct O-glycans attached to these sequences, AtFH5 being hydroxyproline-arabinosylated and AtFH3 carrying arabinogalactan chains. Loss of hydroxyproline arabinosylation altered the plasma membrane localization of AtFH5 and disrupted actin cytoskeleton organization. Moreover, we show that O-glycans differentially affect lateral mobility in the plasma membrane. Together, our results support a model of protein sub-functionalization in which AtFH5 and AtFH3, restricted to specific plasma membrane domains by their extracellular domains and the glycans attached to them, organize distinct subarrays of actin during pollen tube elongation.
Collapse
Affiliation(s)
- Cecilia M Lara-Mondragón
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alexandria Dorchak
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
9
|
Wang C, Lu H, Liu X, Gao X, Tian W, Chen H, Xue Y, Zhou Q. A natural product targets BRD4 to inhibit phase separation and gene transcription. iScience 2022; 25:103719. [PMID: 35072011 PMCID: PMC8762392 DOI: 10.1016/j.isci.2021.103719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
The BET-bromodomain protein BRD4 uses two bromodomains to target acetyl-histones and other domains to recruit P-TEFb and other transcription factors to stimulate transcription of proto-oncogenes and key cell identity genes. Recent studies show that its ability to form phase-separated condensates that cluster preferentially at the super-enhancer regions of target genes is key for BRD4 to exert its functions. Here, we describe the identification of a natural product called PCG from polygonum cuspidatum Sieb.et Zucc., a traditional Chinese medicinal herb, that directly binds to BRD4. This binding inhibits BRD4 phase separation, turns dynamic BRD4 nuclear condensates into static aggregates, and effectively shuts down transcription of BRD4-dependent genes. Thus, through PCG we have discovered a BET inhibitor that not only selectively targets BRD4 but also works by suppressing phase separation, a mechanism of action that is different from those of the other known BET inhibitors.
Collapse
Affiliation(s)
- Cong Wang
- State Key Laboratory of Cellular Stress Biology Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.,Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Huasong Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.,Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiangzhong Liu
- State Key Laboratory of Cellular Stress Biology Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xiang Gao
- State Key Laboratory of Cellular Stress Biology Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wenjing Tian
- State Key Laboratory of Cellular Stress Biology Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Haifeng Chen
- State Key Laboratory of Cellular Stress Biology Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yuhua Xue
- State Key Laboratory of Cellular Stress Biology Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, Biojone C, Cannarozzo C, Sahu MP, Kaurinkoski K, Brunello CA, Steinzeig A, Winkel F, Patil S, Vestring S, Serchov T, Diniz CRAF, Laukkanen L, Cardon I, Antila H, Rog T, Piepponen TP, Bramham CR, Normann C, Lauri SE, Saarma M, Vattulainen I, Castrén E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021; 184:1299-1313.e19. [PMID: 33606976 PMCID: PMC7938888 DOI: 10.1016/j.cell.2021.01.034] [Citation(s) in RCA: 411] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.
Collapse
Affiliation(s)
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Senem M Fred
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Vera Kovaleva
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Rafael Moliner
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Katja Kaurinkoski
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | - Anna Steinzeig
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Frederike Winkel
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cassiano R A F Diniz
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paul, Brazil
| | - Liina Laukkanen
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Iseline Cardon
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Brain Master Program, Faculty of Science, Aix-Marseille Université, Marseille, France; Department of Psychiatry, University of Regensburg, Regenburg, Germany
| | - Hanna Antila
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomasz Rog
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Timo Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation (NeuroModul Basics), University of Freiburg, Freiburg, Germany
| | - Sari E Lauri
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland; Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Eero Castrén
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Yang S, Zhang Y, Ting CY, Bettedi L, Kim K, Ghaniam E, Lilly MA. The Rag GTPase Regulates the Dynamic Behavior of TSC Downstream of Both Amino Acid and Growth Factor Restriction. Dev Cell 2020; 55:272-288.e5. [PMID: 32898476 PMCID: PMC7657977 DOI: 10.1016/j.devcel.2020.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/30/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Abstract
The dysregulation of the metabolic regulator TOR complex I (TORC1) contributes to a wide array of human pathologies. Tuberous sclerosis complex (TSC) is a potent inhibitor of TORC1. Here, we demonstrate that the Rag GTPase acts in both the amino-acid-sensing and growth factor signaling pathways to control TORC1 activity through the regulation of TSC dynamics in HeLa cells and Drosophila. We find that TSC lysosomal-cytosolic exchange increases in response to both amino acid and growth factor restriction. Moreover, the rate of exchange mirrors TSC function, with depletions of the Rag GTPase blocking TSC lysosomal mobility and rescuing TORC1 activity. Finally, we show that the GATOR2 complex controls the phosphorylation of TSC2, which is essential for TSC exchange. Our data support the model that the amino acid and growth factor signaling pathways converge on the Rag GTPase to inhibit TORC1 activity through the regulation of TSC dynamics.
Collapse
Affiliation(s)
- Shu Yang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yingbiao Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chun-Yuan Ting
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lucia Bettedi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kuikwon Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elena Ghaniam
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mary A Lilly
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Mariani RA, Paranjpe S, Dobrowolski R, Weber GF. 14-3-3 targets keratin intermediate filaments to mechanically sensitive cell-cell contacts. Mol Biol Cell 2020; 31:930-943. [PMID: 32074004 PMCID: PMC7185971 DOI: 10.1091/mbc.e18-06-0373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Intermediate filament (IF) cytoskeletal networks simultaneously support mechanical integrity and influence signal transduction pathways. Marked remodeling of the keratin IF network accompanies collective cellular morphogenetic movements that occur during early embryonic development in the frog Xenopus laevis. While this reorganization of keratin is initiated by force transduction on cell–cell contacts mediated by C-cadherin, the mechanism by which keratin filament reorganization occurs remains poorly understood. In this work, we demonstrate that 14-3-3 proteins regulate keratin reorganization dynamics in embryonic mesendoderm cells from Xenopus gastrula. 14-3-3 colocalizes with keratin filaments near cell–cell junctions in migrating mesendoderm. Coimmunoprecipitation, mass spectrometry, and bioinformatic analyses indicate 14-3-3 is associated with Keratin 19 (K19) in the whole embryo and, more specifically, mesendoderm tissue. Inhibition of 14-3-3 results in both the decreased exchange of keratin subunits into filaments and blocks keratin filament recruitment toward cell–cell contacts. Synthetically coupling 14-3-3 to K19 through a unique fusion construct conversely induces the localization of this keratin population to the region of cell–cell contacts. Taken together, these findings indicate that 14-3-3 acts on keratin IFs and is involved in their reorganization to sites of cell adhesion.
Collapse
Affiliation(s)
- Richard A Mariani
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102
| | - Shalaka Paranjpe
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102.,Department of Biology, University of Indianapolis, Indianapolis, IN 46227
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-Newark, Newark, NJ 07102.,Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
13
|
Suresh MV, Dolgachev VA, Zhang B, Balijepalli S, Swamy S, Mooliyil J, Kralovich G, Thomas B, Machado-Aranda D, Karmakar M, Lalwani S, Subramanian A, Anantharam A, Moore BB, Raghavendran K. TLR3 absence confers increased survival with improved macrophage activity against pneumonia. JCI Insight 2019; 4:131195. [PMID: 31801911 DOI: 10.1172/jci.insight.131195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Toll-like receptor 3 (TLR3) is a pathogen recognition molecule associated with viral infection with double-stranded RNA (dsRNA) as its ligand. We evaluated the role of TLR3 in bacterial pneumonia using Klebsiella pneumoniae (KP). WT and TLR3-/- mice were subjected to a lethal model of KP. Alveolar macrophage polarization, bactericidal activity, and phagocytic capacity were compared. RNA-sequencing was performed on alveolar macrophages from the WT and TLR3-/- mice. Adoptive transfers of alveolar macrophages from TLR3-/- mice to WT mice with KP were evaluated for survival. Expression of TLR3 in postmortem human lung samples from patients who died from gram-negative pneumonia and pathological grading of pneumonitis was determined. Mortality was significantly lower in TLR3-/-, and survival improved in WT mice following antibody neutralization of TLR3 and with TLR3/dsRNA complex inhibitor. Alveolar macrophages from TLR3-/- mice demonstrated increased bactericidal and phagocytic capacity. RNA-sequencing showed an increased production of chemokines in TLR3-/- mice. Adoptive transfer of alveolar macrophages from the TLR3-/- mice restored the survival in WT mice. Human lung samples demonstrated a good correlation between the grade of pneumonitis and TLR3 expression. These data represent a paradigm shift in understanding the mechanistic role of TLR3 in bacterial pneumonia.
Collapse
Affiliation(s)
| | | | - Boya Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Samantha Swamy
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jashitha Mooliyil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Georgia Kralovich
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Bivin Thomas
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Monita Karmakar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Sanjeev Lalwani
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Arulselvi Subramanian
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Bethany B Moore
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
14
|
Zhang B, Swamy S, Balijepalli S, Panicker S, Mooliyil J, Sherman MA, Parkkinen J, Raghavendran K, Suresh MV. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J 2019; 33:13294-13309. [PMID: 31530014 DOI: 10.1096/fj.201901047rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, is associated with reduced lung compliance and hypoxemia. Curcumin exhibits potent anti-inflammatory properties but has poor solubility and rapid plasma clearance. To overcome these physiochemical limitations and uncover the full therapeutic potential of curcumin in lung inflammation, in this study we utilized a novel water-soluble curcumin formulation (CDC) and delivered it directly into the lungs of C57BL/6 mice inoculated with a lethal dose of Klebsiella pneumoniae (KP). Administration of CDC led to a significant reduction in mortality, in bacterial presence within blood and lungs, as well as in lung injury, inflammation, and oxidative stress. The expression of Klebsiella hemolysin gene; TNF-α; IFN-β; nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3; hypoxia-inducible factor 1/2α; and NF-κB were also decreased following CDC treatment, suggesting modulation of the inflammasome complex and hypoxia signaling pathways as an underlying mechanism by which CDC reduces the severity of pneumonia. On a cellular level, CDC led to diminished cell death, improved viability, and protection of human lung epithelial cells in vitro. Overall, our studies demonstrate that CDC administration improves cell survival and reduces injury, inflammation, and mortality in a murine model of lethal gram-negative pneumonia. CDC, therefore, has promising anti-inflammatory potential in pneumonia and likely other inflammatory lung diseases, demonstrating the importance of optimizing the physicochemical properties of active natural products to optimize their clinical application.-Zhang, B., Swamy, S., Balijepalli, S., Panicker, S., Mooliyil, J., Sherman, M. A., Parkkinen, J., Raghavendran, K., Suresh, M. V. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha Swamy
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sreehari Panicker
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jashitha Mooliyil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew A Sherman
- Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Jaakko Parkkinen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
15
|
Jaldín-Fincati JR, Actis Dato V, Díaz NM, Sánchez MC, Barcelona PF, Chiabrando GA. Activated α 2-Macroglobulin Regulates LRP1 Levels at the Plasma Membrane through the Activation of a Rab10-dependent Exocytic Pathway in Retinal Müller Glial Cells. Sci Rep 2019; 9:13234. [PMID: 31519919 PMCID: PMC6744500 DOI: 10.1038/s41598-019-49072-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Activated α2-macroglobulin (α2M*) and its receptor, low-density lipoprotein receptor-related protein 1 (LRP1), have been linked to proliferative retinal diseases. In Müller glial cells (MGCs), the α2M*/LRP1 interaction induces cell signaling, cell migration, and extracellular matrix remodeling, processes closely associated with proliferative disorders. However, the mechanism whereby α2M* and LRP1 participate in the aforementioned pathologies remains incompletely elucidated. Here, we investigate whether α2M* regulates both the intracellular distribution and sorting of LRP1 to the plasma membrane (PM) and how this regulation is involved in the cell migration of MGCs. Using a human Müller glial-derived cell line, MIO-M1, we demonstrate that the α2M*/LRP1 complex is internalized and rapidly reaches early endosomes. Afterward, α2M* is routed to degradative compartments, while LRP1 is accumulated at the PM through a Rab10-dependent exocytic pathway regulated by PI3K/Akt. Interestingly, Rab10 knockdown reduces both LRP1 accumulation at the PM and cell migration of MIO-M1 cells induced by α2M*. Given the importance of MGCs in the maintenance of retinal homeostasis, unravelling this molecular mechanism can potentially provide new therapeutic targets for the treatment of proliferative retinopathies.
Collapse
Affiliation(s)
- Javier R Jaldín-Fincati
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.,Department of Biological Sciences, University of Toronto at Scarborough, Toronto, ON, Canada
| | - Virginia Actis Dato
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Nicolás M Díaz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - María C Sánchez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Pablo F Barcelona
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.
| | - Gustavo A Chiabrando
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina.
| |
Collapse
|
16
|
Tao T, Sun J, Peng Y, Li Y, Wang P, Chen X, Zhao W, Zheng YY, Wei L, Wang W, Zhou Y, Liu J, Shi YS, Zhu MS. Golgi-resident TRIO regulates membrane trafficking during neurite outgrowth. J Biol Chem 2019; 294:10954-10968. [PMID: 31152060 PMCID: PMC6635450 DOI: 10.1074/jbc.ra118.007318] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/21/2019] [Indexed: 11/06/2022] Open
Abstract
Neurite outgrowth requires coordinated cytoskeletal rearrangements in the growth cone and directional membrane delivery from the neuronal soma. As an essential Rho guanine nucleotide exchange factor (GEF), TRIO is necessary for cytoskeletal dynamics during neurite outgrowth, but its participation in the membrane delivery is unclear. Using co-localization studies, live-cell imaging, and fluorescence recovery after photobleaching analysis, along with neurite outgrowth assay and various biochemical approaches, we here report that in mouse cerebellar granule neurons, TRIO protein pools at the Golgi and regulates membrane trafficking by controlling the directional maintenance of both RAB8 (member RAS oncogene family 8)- and RAB10-positive membrane vesicles. We found that the spectrin repeats in Golgi-resident TRIO confer RAB8 and RAB10 activation by interacting with and activating the RAB GEF RABIN8. Constitutively active RAB8 or RAB10 could partially restore the neurite outgrowth of TRIO-deficient cerebellar granule neurons, suggesting that TRIO-regulated membrane trafficking has an important functional role in neurite outgrowth. Our results also suggest cross-talk between Rho GEF and Rab GEF in controlling both cytoskeletal dynamics and membrane trafficking during neuronal development. They further highlight how protein pools localized to specific organelles regulate crucial cellular activities and functions. In conclusion, our findings indicate that TRIO regulates membrane trafficking during neurite outgrowth in coordination with its GEF-dependent function in controlling cytoskeletal dynamics via Rho GTPases.
Collapse
Affiliation(s)
- Tao Tao
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Jie Sun
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Yajing Peng
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Yeqiong Li
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Pei Wang
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Xin Chen
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Wei Zhao
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Yan-Yan Zheng
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Lisha Wei
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Wei Wang
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Yuwei Zhou
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Jianghuai Liu
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Yun Stone Shi
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and
| | - Min-Sheng Zhu
- Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology of the Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing 210061, China and.
| |
Collapse
|
17
|
Sun Y, Medina Cruz A, Hadley KC, Galant NJ, Law R, Vernon RM, Morris VK, Robertson J, Chakrabartty A. Physiologically Important Electrolytes as Regulators of TDP-43 Aggregation and Droplet-Phase Behavior. Biochemistry 2018; 58:590-607. [DOI: 10.1021/acs.biochem.8b00842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yulong Sun
- University Health Network, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Alison Medina Cruz
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Kevin C. Hadley
- University Health Network, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Natalie J. Galant
- University Health Network, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Ryan Law
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Robert M. Vernon
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Vanessa K. Morris
- University Health Network, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
- School of Biological Sciences, University of Canterbury, Ilam, Christchurch 8041, New Zealand
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Avijit Chakrabartty
- University Health Network, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
- Department of Biochemistry, University of Toronto, TMDT 4-305, 101 College Street, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
18
|
Srivastava S, Panda D. A centrosomal protein STARD9 promotes microtubule stability and regulates spindle microtubule dynamics. Cell Cycle 2018; 17:2052-2068. [PMID: 30160609 DOI: 10.1080/15384101.2018.1513764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Centrosomal proteins play important roles in the spindle assembly and the segregation of chromosomes in the eukaryotic cells. STARD9, a recently identified centrosomal protein, was reported to influence the spindle pole assembly. However, the role of STARD9 in maintaining the stability and organization of microtubules are not known. Here, we show that STARD9 regulates the assembly and dynamics of both interphase and mitotic microtubules. The knockdown of STARD9 in HeLa or HCT116 cells with siRNA or shRNA induced a strong depolymerization of the interphase microtubules. The over-expression of the motor domain of STARD9 stabilizes microtubules against cold and nocodazole suggesting that STARD9 stabilizes microtubules in HeLa cells. Using fluorescent recovery after photobleaching, we showed that the knockdown of STARD9 strongly reduced microtubule dynamics in the live spindles of HeLa cells. The reassembly of microtubules in the STARD9-depleted cells was strongly reduced as compared to the microtubules in the control cells implying the role of STARD9 in the nucleation of microtubules. Further, the depletion of STARD9 inhibited chromosome separation and the STARD9-depleted HeLa cells were blocked at mitosis. Interestingly, the frequency of multipolar spindle formation increased significantly in the STARD9-depleted HeLa cells in the presence of vinblastine and the STARD9-depleted cells showed much higher sensitivity towards vinblastine than the control cells indicating a new approach for cancer chemotherapy. The evidence suggests that STARD9 regulates the assembly and stability of both interphase and spindle microtubules and thereby, play important roles in the cell cycle progression.
Collapse
Affiliation(s)
- Shalini Srivastava
- a Department of Biosciences & Bioengineering , Indian Institute of Technology Bombay , Mumbai , India
| | - Dulal Panda
- a Department of Biosciences & Bioengineering , Indian Institute of Technology Bombay , Mumbai , India
| |
Collapse
|
19
|
Rubio JM, Astudillo AM, Casas J, Balboa MA, Balsinde J. Regulation of Phagocytosis in Macrophages by Membrane Ethanolamine Plasmalogens. Front Immunol 2018; 9:1723. [PMID: 30087680 PMCID: PMC6066501 DOI: 10.3389/fimmu.2018.01723] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022] Open
Abstract
Macrophages, as professional phagocytes of the immune system, possess the ability to detect and clear invading pathogens and apoptotic cells through phagocytosis. Phagocytosis involves membrane reorganization and remodeling events on the cell surface, which play an essential role in innate immunity and tissue homeostasis and the control of inflammation. In this work, we report that cells deficient in membrane ethanolamine plasmalogen demonstrate a reduced capacity to phagocytize opsonized zymosan particles. Amelioration of plasmalogen deficiency in these cells by incubation with lysoplasmalogen results in a significant augmentation of the phagocytic capacity of the cells. In parallel with these increases, restoration of plasmalogen levels in the cells also increases the number and size of lipid rafts in the membrane, reduces membrane fluidity down to levels found in cells containing normal plasmalogen levels, and improves receptor-mediated signaling. Collectively, these results suggest that membrane plasmalogen level determines characteristics of the plasma membrane such as fluidity and the formation of microdomains that are necessary for efficient signal transduction leading to optimal phagocytosis by macrophages.
Collapse
Affiliation(s)
- Julio M Rubio
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alma M Astudillo
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Departamento de Bioquímica y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | - María A Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
20
|
Verdugo M, Ogra Y, Quiroz W. Mechanisms underlying the toxic effects of antimony species in human embryonic kidney cells (HEK-293) and their comparison with arsenic species. J Toxicol Sci 2017; 41:783-792. [PMID: 27853107 DOI: 10.2131/jts.41.783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antimony cytotoxicity was assessed in human embryonic kidney cells (HEK-293). Uptake, mitochondrial respiratory activity, ROS generation and diffusional kinetics were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, the toxic effect induced by Sb was compared with As toxicity in regard to ROS generation and diffusional kinetics, which provides information on the protein aggregation process. Our results show a favored uptake of Sb(III) and a more severe effect, decreasing the mitochondrial activity more than in the presence of Sb(V). In comparison with As, the Sb species did not generate a significant increase in ROS generation, which was observed with As(III) and As(V). FRAP analysis yielded important information on the diffusion and binding dynamics of live cells in presence of these metalloids. The mobile fraction showed a strong decrease with the As species and Sb(III). The diffusion rate and the koff-rate were significantly decreased for the As and Sb species but were more strong in the presence of As(III).
Collapse
Affiliation(s)
- Marcelo Verdugo
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | |
Collapse
|
21
|
Yuste SB, Abad E, Baumgaertner A. Anomalous diffusion and dynamics of fluorescence recovery after photobleaching in the random-comb model. Phys Rev E 2016; 94:012118. [PMID: 27575088 DOI: 10.1103/physreve.94.012118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 06/06/2023]
Abstract
We address the problem of diffusion on a comb whose teeth display varying lengths. Specifically, the length ℓ of each tooth is drawn from a probability distribution displaying power law behavior at large ℓ,P(ℓ)∼ℓ^{-(1+α)} (α>0). To start with, we focus on the computation of the anomalous diffusion coefficient for the subdiffusive motion along the backbone. This quantity is subsequently used as an input to compute concentration recovery curves mimicking fluorescence recovery after photobleaching experiments in comblike geometries such as spiny dendrites. Our method is based on the mean-field description provided by the well-tested continuous time random-walk approach for the random-comb model, and the obtained analytical result for the diffusion coefficient is confirmed by numerical simulations of a random walk with finite steps in time and space along the backbone and the teeth. We subsequently incorporate retardation effects arising from binding-unbinding kinetics into our model and obtain a scaling law characterizing the corresponding change in the diffusion coefficient. Finally, we show that recovery curves obtained with the help of the analytical expression for the anomalous diffusion coefficient cannot be fitted perfectly by a model based on scaled Brownian motion, i.e., a standard diffusion equation with a time-dependent diffusion coefficient. However, differences between the exact curves and such fits are small, thereby providing justification for the practical use of models relying on scaled Brownian motion as a fitting procedure for recovery curves arising from particle diffusion in comblike systems.
Collapse
Affiliation(s)
- S B Yuste
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEX), Universidad de Extremadura, E-06071 Badajoz, Spain
| | - E Abad
- Departamento de Física Aplicada and Instituto de Computación Científica Avanzada (ICCAEX), Centro Universitario de Mérida, Universidad de Extremadura, E-06800 Mérida, Spain
| | - A Baumgaertner
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEX), Universidad de Extremadura, E-06071 Badajoz, Spain
| |
Collapse
|
22
|
Responses to cell loss become restricted as the supporting cells in mammalian vestibular organs grow thick junctional actin bands that develop high stability. J Neurosci 2014; 34:1998-2011. [PMID: 24478379 DOI: 10.1523/jneurosci.4355-13.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sensory hair cell (HC) loss is a major cause of permanent hearing and balance impairments for humans and other mammals. Yet, fish, amphibians, reptiles, and birds readily replace HCs and recover from such sensory deficits. It is unknown what prevents replacement in mammals, but cell replacement capacity declines contemporaneously with massive postnatal thickening of F-actin bands at the junctions between vestibular supporting cells (SCs). In non-mammals, SCs can give rise to regenerated HCs, and the bands remain thin even in adults. Here we investigated the stability of the F-actin bands between SCs in ears from chickens and mice and Madin-Darby canine kidney cells. Pharmacological experiments and fluorescence recovery after photobleaching (FRAP) of SC junctions in utricles from mice that express a γ-actin-GFP fusion protein showed that the thickening F-actin bands develop increased resistance to depolymerization and exceptional stability that parallels a sharp decline in the cell replacement capacity of the maturing mammalian ear. The FRAP recovery rate and the mobile fraction of γ-actin-GFP both decreased as the bands thickened with age and became highly stabilized. In utricles from neonatal mice, time-lapse recordings in the vicinity of dying HCs showed that numerous SCs change shape and organize multicellular actin purse strings that reseal the epithelium. In contrast, adult SCs appeared resistant to deformation, with resealing responses limited to just a few neighboring SCs that did not form purse strings. The exceptional stability of the uniquely thick F-actin bands at the junctions of mature SCs may play an important role in restricting dynamic repair responses in mammalian vestibular epithelia.
Collapse
|
23
|
|
24
|
Schoborg T, Rickels R, Barrios J, Labrador M. Chromatin insulator bodies are nuclear structures that form in response to osmotic stress and cell death. ACTA ACUST UNITED AC 2013; 202:261-76. [PMID: 23878275 PMCID: PMC3718971 DOI: 10.1083/jcb.201304181] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins. Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization.
Collapse
Affiliation(s)
- Todd Schoborg
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|