1
|
Li J, Chin CR, Ying HY, Meydan C, Teater MR, Xia M, Farinha P, Takata K, Chu CS, Jiang Y, Eagles J, Passerini V, Tang Z, Rivas MA, Weigert O, Pugh TJ, Chadburn A, Steidl C, Scott DW, Roeder RG, Mason CE, Zappasodi R, Béguelin W, Melnick AM. Loss of CREBBP and KMT2D cooperate to accelerate lymphomagenesis and shape the lymphoma immune microenvironment. Nat Commun 2024; 15:2879. [PMID: 38570506 PMCID: PMC10991284 DOI: 10.1038/s41467-024-47012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.
Collapse
Affiliation(s)
- Jie Li
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher R Chin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Hsia-Yuan Ying
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew R Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pedro Farinha
- BC Cancer Centre for Lymphoid Cancer, Department of Pathology and Laboratorial Medicine, University of British Columbia, Vancouver, Canada
| | - Katsuyoshi Takata
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, Canada
| | - Chi-Shuen Chu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Yiyue Jiang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jenna Eagles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Verena Passerini
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians University (LMU) Hospital, Munich, Germany
| | - Zhanyun Tang
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Martin A Rivas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Oliver Weigert
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians University (LMU) Hospital, Munich, Germany
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, Canada
| | - David W Scott
- BC Cancer Centre for Lymphoid Cancer, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Robert G Roeder
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Roberta Zappasodi
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
2
|
Boddu PC, Gupta A, Roy R, De La Pena Avalos B, Herrero AO, Neuenkirchen N, Zimmer J, Chandhok N, King D, Nannya Y, Ogawa S, Lin H, Simon M, Dray E, Kupfer G, Verma AK, Neugebauer KM, Pillai MM. Transcription elongation defects link oncogenic splicing factor mutations to targetable alterations in chromatin landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.25.530019. [PMID: 36891287 PMCID: PMC9994134 DOI: 10.1101/2023.02.25.530019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human disease remains unexplored. Here, we investigated the impact of non-synonymous mutations in SF3B1 and U2AF1, two commonly mutated splicing factors in cancer, on transcription. We find that the mutations impair RNA Polymerase II (RNAPII) transcription elongation along gene bodies leading to transcription-replication conflicts, replication stress and altered chromatin organization. This elongation defect is linked to disrupted pre-spliceosome assembly due to impaired association of HTATSF1 with mutant SF3B1. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC complex, which, when modulated, normalize transcription defects and their downstream effects. Our findings shed light on the mechanisms by which oncogenic mutant spliceosomes impact chromatin organization through their effects on RNAPII transcription elongation and present a rationale for targeting the Sin3/HDAC complex as a potential therapeutic strategy. GRAPHICAL ABSTRACT HIGHLIGHTS Oncogenic mutations of SF3B1 and U2AF1 cause a gene-body RNAPII elongation defectRNAPII transcription elongation defect leads to transcription replication conflicts, DNA damage response, and changes to chromatin organization and H3K4me3 marksThe transcription elongation defect is linked to disruption of the early spliceosome formation through impaired interaction of HTATSF1 with mutant SF3B1.Changes to chromatin organization reveal potential therapeutic strategies by targeting the Sin3/HDAC pathway.
Collapse
|
3
|
Li J, Chin CR, Ying HY, Meydan C, Teater MR, Xia M, Farinha P, Takata K, Chu CS, Rivas MA, Chadburn A, Steidl C, Scott DW, Roeder RG, Mason CE, Béguelin W, Melnick AM. Cooperative super-enhancer inactivation caused by heterozygous loss of CREBBP and KMT2D skews B cell fate decisions and yields T cell-depleted lymphomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528351. [PMID: 36824887 PMCID: PMC9949106 DOI: 10.1101/2023.02.13.528351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Mutations affecting enhancer chromatin regulators CREBBP and KMT2D are highly co-occurrent in germinal center (GC)-derived lymphomas and other tumors, even though regulating similar pathways. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d (C+K) indeed accelerated lymphomagenesis. C+K haploinsufficiency induced GC hyperplasia by altering cell fate decisions, skewing B cells away from memory and plasma cell differentiation. C+K deficiency particularly impaired enhancer activation for immune synapse genes involved in exiting the GC reaction. This effect was especially severe at super-enhancers for immunoregulatory and differentiation genes. Mechanistically, CREBBP and KMT2D formed a complex, were highly co-localized on chromatin, and were required for each-other's stable recruitment to enhancers. Notably, C+K lymphomas in mice and humans manifested significantly reduced CD8 + T-cell abundance. Hence, deficiency of C+K cooperatively induced an immune evasive phenotype due at least in part to failure to activate key immune synapse super-enhancers, associated with altered immune cell fate decisions. SIGNIFICANCE Although CREBBP and KMT2D have similar enhancer regulatory functions, they are paradoxically co-mutated in lymphomas. We show that their combined loss causes specific disruption of super-enhancers driving immune synapse genes. Importantly, this leads to reduction of CD8 cells in lymphomas, linking super-enhancer function to immune surveillance, with implications for immunotherapy resistance.
Collapse
|
4
|
Chen L, Xu W, Liu K, Jiang Z, Han Y, Jin H, Zhang L, Shen W, Jia S, Sun Q, Meng A. 5' Half of specific tRNAs feeds back to promote corresponding tRNA gene transcription in vertebrate embryos. SCIENCE ADVANCES 2021; 7:eabh0494. [PMID: 34797706 PMCID: PMC8604414 DOI: 10.1126/sciadv.abh0494] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
5′tRFls are small transfer RNA (tRNA) fragments derived from 5′ half of mature tRNAs. However, it is unknown whether 5′tRFls could feed back to regulate tRNA biogenesis. Here, we show that 5′tRFlGly/GCC and 5′tRFlGlu/CTC function to promote transcription of corresponding tRNA genes and are essential for vertebrate early embryogenesis. During zebrafish embryogenesis, dynamics of 5′tRFlGly/GCC and 5′tRFlGlu/CTC levels correlates with that of tRNAGly/GCC and tRNAGlu/CTC levels. Morpholino-mediated knockdown of 5′tRFlGly/GCC or 5′tRFlGlu/CTC down-regulates tRNAGly/GCC or tRNAGlu/CTC levels, respectively, and causes embryonic lethality that is efficiently rescued by coinjection of properly refolded corresponding tRNA. In zebrafish embryos, tRNA:DNA and 5′tRFl:DNA hybrids commonly exist on the template strand of tRNA genes. Mechanistically, unstable 5′tRFl:DNA hybrid may prevent the formation of transcriptionally inhibitory stable tRNA:DNA hybrids on the same tRNA loci so as to facilitate tRNA gene transcription. The uncovered mechanism may be implicated in other physiological and pathological processes.
Collapse
Affiliation(s)
- Luxi Chen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- The Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kunpeng Liu
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- The Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng Jiang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Han
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hongbin Jin
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Zhang
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shunji Jia
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianwen Sun
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- The Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Guangzhou Laboratory, Guangzhou 510320, Guangdong Province, China
- Corresponding author.
| |
Collapse
|
5
|
Khan M, Hou S, Azam S, Lei H. Sequence-dependent recruitment of SRSF1 and SRSF7 to intronless lncRNA NKILA promotes nuclear export via the TREX/TAP pathway. Nucleic Acids Res 2021; 49:6420-6436. [PMID: 34096602 PMCID: PMC8216466 DOI: 10.1093/nar/gkab445] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
The TREX-TAP pathway is vital for mRNA export. For spliced mRNA, the TREX complex is recruited during splicing; however, for intronless mRNA, recruitment is sequence dependent. However, the export of cytoplasmic long noncoding RNA (lncRNA) is poorly characterized. We report the identification of a cytoplasmic accumulation region (CAR-N) in the intronless lncRNA, NKILA. CAR-N removal led to strong nuclear retention of NKILA, and CAR-N insertion promoted the export of cDNA transcripts. In vitro RNP purification via CAR-N, mass spectrometry, and siRNA screening revealed that SRSF1 and SRSF7 were vital to NKILA export, and identified a cluster of SRSF1/7 binding sites within a 55 nucleotide sequence in CAR-N. Significant nuclear enrichment of NKILA was observed for NKILA lacking CAR-N or the cluster of binding sites in knock-in models. Depletion of TREX-TAP pathway components resulted in strong nuclear retention of NKILA. RNA and protein immunoprecipitation verified that SRSF1/7 were bound to NKILA and interacted with UAP56 and ALYREF. Moreover, NKILA lacking CAR-N was unable to inhibit breast cancer cell migration. We concluded that the binding of SRSF1/7 to clustered motifs in CAR-N facilitated TREX recruitment, promoting the export of NKILA, and confirmed the importance of NKILA localization to its function.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China.,School of Food Science and Technology, Dalian Polytechnic University, Dalian 1160343, P.R. China
| | - Sikandar Azam
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, USA
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 9 West Section, Lvshun South Rd, Dalian 116044, P.R. China
| |
Collapse
|
6
|
Abstract
The majority of the mammalian genome is transcribed into non-coding RNAs, many of which co-evolve with RNA-binding proteins (RBPs) to function as biochemically defined and tractable ribonucleoproteins (RNPs). Here, we applied icSHAPE- a robust and versatile RNA structural probing pipeline- to endogenous RNPs purified from nuclei, providing base-resolution structural rationale for RNP activity and subcellular localization. Combining with genetic and biochemical reconstitutions, structural and functional alternations can be directly attributed to a given RBP without ambiguity. For complete details on the use and execution of this protocol, please refer to Chen et al. (2018).
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Steven E. Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Hardivillé S, Banerjee PS, Selen Alpergin ES, Smith DM, Han G, Ma J, Talbot CC, Hu P, Wolfgang MJ, Hart GW. TATA-Box Binding Protein O-GlcNAcylation at T114 Regulates Formation of the B-TFIID Complex and Is Critical for Metabolic Gene Regulation. Mol Cell 2019; 77:1143-1152.e7. [PMID: 31866147 DOI: 10.1016/j.molcel.2019.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/14/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
Abstract
In eukaryotes, gene expression is performed by three RNA polymerases that are targeted to promoters by molecular complexes. A unique common factor, the TATA-box binding protein (TBP), is thought to serve as a platform to assemble pre-initiation complexes competent for transcription. Here, we describe a novel molecular mechanism of nutrient regulation of gene transcription by dynamic O-GlcNAcylation of TBP. We show that O-GlcNAcylation at T114 of TBP blocks its interaction with BTAF1, hence the formation of the B-TFIID complex, and its dynamic cycling on and off of DNA. Transcriptomic and metabolomic analyses of TBPT114A CRISPR/Cas9-edited cells showed that loss of O-GlcNAcylation at T114 increases TBP binding to BTAF1 and directly impacts expression of 408 genes. Lack of O-GlcNAcylation at T114 is associated with a striking reprogramming of cellular metabolism induced by a profound modification of the transcriptome, leading to gross alterations in lipid storage.
Collapse
Affiliation(s)
- Stéphan Hardivillé
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Partha S Banerjee
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ebru S Selen Alpergin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Danielle M Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guanghui Han
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junfeng Ma
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ping Hu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
8
|
Hou S, Qu D, Li Y, Zhu B, Liang D, Wei X, Tang W, Zhang Q, Hao J, Guo W, Wang W, Zhao S, Wang Q, Azam S, Khan M, Zhao H, Zhang L, Lei H. XAB2 depletion induces intron retention in POLR2A to impair global transcription and promote cellular senescence. Nucleic Acids Res 2019; 47:8239-8254. [PMID: 31216022 PMCID: PMC6735682 DOI: 10.1093/nar/gkz532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
XAB2 is a multi-functional protein participating processes including transcription, splicing, DNA repair and mRNA export. Here, we report POLR2A, the largest catalytic subunit of RNA polymerase II, as a major target gene down-regulated after XAB2 depletion. XAB2 depletion led to severe splicing defects of POLR2A with significant intron retention. Such defects resulted in substantial loss of POLR2A at RNA and protein levels, which further impaired global transcription. Treatment of splicing inhibitor madrasin induced similar reduction of POLR2A. Screen using TMT-based quantitative proteomics identified several proteins involved in mRNA surveillance including Dom34 with elevated expression. Inhibition of translation or depletion of Dom34 rescued the expression of POLR2A by stabilizing its mRNA. Immuno-precipitation further confirmed that XAB2 associated with spliceosome components important to POLR2A expression. Domain mapping revealed that TPR motifs 2–4 and 11 of XAB2 were critical for POLR2A expression by interacting with SNW1. Finally, we showed POLR2A mediated cell senescence caused by XAB2 deficiency. Depletion of XAB2 or POLR2A induced cell senescence by up-regulation of p53 and p21, re-expression of POLR2A after XAB2 depletion alleviated cellular senescence. These data together support that XAB2 serves as a guardian of POLR2A expression to ensure global gene expression and antagonize cell senescence.
Collapse
Affiliation(s)
- Shuai Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Dajun Qu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Yue Li
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Baohui Zhu
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Xinyue Wei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wei Tang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qian Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Jiaojiao Hao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Weijie Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Siqi Zhao
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Qi Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Sikandar Azam
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Misbah Khan
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| | - Haidong Zhao
- Breast Disease and Reconstruction Center, Breast Cancer Key Lab of Dalian, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Azam S, Hou S, Zhu B, Wang W, Hao T, Bu X, Khan M, Lei H. Nuclear retention element recruits U1 snRNP components to restrain spliced lncRNAs in the nucleus. RNA Biol 2019; 16:1001-1009. [PMID: 31107149 DOI: 10.1080/15476286.2019.1620061] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
In contrast to cytoplasmic localization of spliced mRNAs, many spliced lncRNAs are localized in the nucleus. To investigate the mechanism, we used lncRNA MEG3 as a reporter and mapped a potent nuclear retention element (NRE), deletion of this element led to striking export of MEG3 from the nucleus to the cytoplasm. Insertion of the NRE resulted in nuclear retention of spliced lncRNA as well as spliced mRNA. We further purified RNP assembled on the NRE in vitro and identified the proteins by mass spectrometry. Screen using siRNA revealed depletion of U1 snRNP components SNRPA, SNRNP70 or SNRPD2 caused significant cytoplasmic localization of MEG3 reporter transcripts. Co-knockdown these factors in HFF1 cells resulted in an increased cytoplasmic distribution of endogenous lncRNAs. Together, these data support a model that U1 snRNP components restrain spliced lncRNAs in the nucleus via the interaction with nuclear retention element.
Collapse
Affiliation(s)
- Sikandar Azam
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Shuai Hou
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Baohui Zhu
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Weijie Wang
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Tian Hao
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Xiangxue Bu
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Misbah Khan
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| | - Haixin Lei
- a Institute of Cancer Stem Cell, Cancer Center , Dalian Medical University , Dalian , P.R. China
| |
Collapse
|
10
|
Yu L, Jearawiriyapaisarn N, Lee MP, Hosoya T, Wu Q, Myers G, Lim KC, Kurita R, Nakamura Y, Vojtek AB, Rual JF, Engel JD. BAP1 regulation of the key adaptor protein NCoR1 is critical for γ-globin gene repression. Genes Dev 2018; 32:1537-1549. [PMID: 30463901 PMCID: PMC6295165 DOI: 10.1101/gad.318436.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Human globin gene production transcriptionally "switches" from fetal to adult synthesis shortly after birth and is controlled by macromolecular complexes that enhance or suppress transcription by cis elements scattered throughout the locus. The DRED (direct repeat erythroid-definitive) repressor is recruited to the ε-globin and γ-globin promoters by the orphan nuclear receptors TR2 (NR2C1) and TR4 (NR2C2) to engender their silencing in adult erythroid cells. Here we found that nuclear receptor corepressor-1 (NCoR1) is a critical component of DRED that acts as a scaffold to unite the DNA-binding and epigenetic enzyme components (e.g., DNA methyltransferase 1 [DNMT1] and lysine-specific demethylase 1 [LSD1]) that elicit DRED function. We also describe a potent new regulator of γ-globin repression: The deubiquitinase BRCA1-associated protein-1 (BAP1) is a component of the repressor complex whose activity maintains NCoR1 at sites in the β-globin locus, and BAP1 inhibition in erythroid cells massively induces γ-globin synthesis. These data provide new mechanistic insights through the discovery of novel epigenetic enzymes that mediate γ-globin gene repression.
Collapse
Affiliation(s)
- Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Natee Jearawiriyapaisarn
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Mary P Lee
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Tomonori Hosoya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Qingqing Wu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Anne B Vojtek
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
11
|
An Activity Switch in Human Telomerase Based on RNA Conformation and Shaped by TCAB1. Cell 2018; 174:218-230.e13. [PMID: 29804836 DOI: 10.1016/j.cell.2018.04.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/22/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022]
Abstract
Ribonucleoprotein enzymes require dynamic conformations of their RNA constituents for regulated catalysis. Human telomerase employs a non-coding RNA (hTR) with a bipartite arrangement of domains-a template-containing core and a distal three-way junction (CR4/5) that stimulates catalysis through unknown means. Here, we show that telomerase activity unexpectedly depends upon the holoenzyme protein TCAB1, which in turn controls conformation of CR4/5. Cells lacking TCAB1 exhibit a marked reduction in telomerase catalysis without affecting enzyme assembly. Instead, TCAB1 inactivation causes unfolding of CR4/5 helices that are required for catalysis and for association with the telomerase reverse-transcriptase (TERT). CR4/5 mutations derived from patients with telomere biology disorders provoke defects in catalysis and TERT binding similar to TCAB1 inactivation. These findings reveal a conformational "activity switch" in human telomerase RNA controlling catalysis and TERT engagement. The identification of two discrete catalytic states for telomerase suggests an intramolecular means for controlling telomerase in cancers and progenitor cells.
Collapse
|
12
|
Optimizing In Vitro Pre-mRNA 3' Cleavage Efficiency: Reconstitution from Anion-Exchange Separated HeLa Cleavage Factors and from Adherent HeLa Cell Nuclear Extract. Methods Mol Biol 2018. [PMID: 27832541 DOI: 10.1007/978-1-4939-6518-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Eukaryotic RNA processing steps during mRNA maturation present the cell with opportunities for gene expression regulation. One such step is the pre-mRNA 3' cleavage reaction, which defines the downstream end of the 3' untranslated region and, in nearly all mRNA, prepares the message for addition of the poly(A) tail. The in vitro reconstitution of 3' cleavage provides an experimental means to investigate the roles of the various multi-subunit cleavage factors. Anion-exchange chromatography is the simplest procedure for separating the core mammalian cleavage factors. Here we describe a method for optimizing the in vitro reconstitution of 3' cleavage activity from the DEAE-sepharose separated HeLa cleavage factors and show how to ensure, or avoid, dependence on creatine phosphate. Important reaction components needed for optimal processing are discussed. We also provide an optimized procedure for preparing small-scale HeLa nuclear extracts from adherent cells for use in 3' cleavage in vitro.
Collapse
|
13
|
Paolella BR, Gibson WJ, Urbanski LM, Alberta JA, Zack TI, Bandopadhayay P, Nichols CA, Agarwalla PK, Brown MS, Lamothe R, Yu Y, Choi PS, Obeng EA, Heckl D, Wei G, Wang B, Tsherniak A, Vazquez F, Weir BA, Root DE, Cowley GS, Buhrlage SJ, Stiles CD, Ebert BL, Hahn WC, Reed R, Beroukhim R. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. eLife 2017; 6. [PMID: 28177281 PMCID: PMC5357138 DOI: 10.7554/elife.23268] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent. One of these, the pre-mRNA splicing factor SF3B1, is also frequently mutated in cancer. We validated SF3B1 as a CYCLOPS gene and found that human cancer cells harboring partial SF3B1 copy-loss lack a reservoir of SF3b complex that protects cells with normal SF3B1 copy number from cell death upon partial SF3B1 suppression. These data provide a catalog of copy-number associated gene dependencies and identify partial copy-loss of wild-type SF3B1 as a novel, non-driver cancer gene dependency.
Collapse
Affiliation(s)
- Brenton R Paolella
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - William J Gibson
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - Laura M Urbanski
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - John A Alberta
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Travis I Zack
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - Pratiti Bandopadhayay
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - Caitlin A Nichols
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - Pankaj K Agarwalla
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Meredith S Brown
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - Rebecca Lamothe
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - Yong Yu
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Peter S Choi
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - Esther A Obeng
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States.,Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Dirk Heckl
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - Guo Wei
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States
| | - Belinda Wang
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - Aviad Tsherniak
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States
| | - Francisca Vazquez
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States
| | - Barbara A Weir
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States
| | - David E Root
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States
| | - Glenn S Cowley
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - Charles D Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Benjamin L Ebert
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States.,Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| | - William C Hahn
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| |
Collapse
|
14
|
Schiffmacher AT, Xie V, Taneyhill LA. Cadherin-6B proteolysis promotes the neural crest cell epithelial-to-mesenchymal transition through transcriptional regulation. J Cell Biol 2016; 215:735-747. [PMID: 27856599 PMCID: PMC5146998 DOI: 10.1083/jcb.201604006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 09/19/2016] [Accepted: 10/25/2016] [Indexed: 12/25/2022] Open
Abstract
Cadherin proteolysis reduces cell–cell adhesion and generates cleavage products that could possess independent functions. Here, Schiffmacher et al. reveal that the intracellular C-terminal fragment generated by Cadherin-6B proteolysis promotes chick cranial neural crest cell EMT through positive transcriptional feedback into the neural crest gene regulatory network. During epithelial-to-mesenchymal transitions (EMTs), cells disassemble cadherin-based junctions to segregate from the epithelia. Chick premigratory cranial neural crest cells reduce Cadherin-6B (Cad6B) levels through several mechanisms, including proteolysis, to permit their EMT and migration. Serial processing of Cad6B by a disintegrin and metalloproteinase (ADAM) proteins and γ-secretase generates intracellular C-terminal fragments (CTF2s) that could acquire additional functions. Here we report that Cad6B CTF2 possesses a novel pro-EMT role by up-regulating EMT effector genes in vivo. After proteolysis, CTF2 remains associated with β-catenin, which stabilizes and redistributes both proteins to the cytosol and nucleus, leading to up-regulation of β-catenin, CyclinD1, Snail2, and Snail2 promoter-based GFP expression in vivo. A CTF2 β-catenin–binding mutant, however, fails to alter gene expression, indicating that CTF2 modulates β-catenin–responsive EMT effector genes. Notably, CTF2 association with the endogenous Snail2 promoter in the neural crest is β-catenin dependent. Collectively, our data reveal how Cad6B proteolysis orchestrates multiple pro-EMT regulatory inputs, including CTF2-mediated up-regulation of the Cad6B repressor Snail2, to ensure proper cranial neural crest EMT.
Collapse
Affiliation(s)
- Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | - Vivien Xie
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742
| |
Collapse
|
15
|
Fluorogenic Real-Time Reporters of DNA Repair by MGMT, a Clinical Predictor of Antitumor Drug Response. PLoS One 2016; 11:e0152684. [PMID: 27035132 PMCID: PMC4818092 DOI: 10.1371/journal.pone.0152684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/17/2016] [Indexed: 01/26/2023] Open
Abstract
Common alkylating antitumor drugs, such as temozolomide, trigger their cytotoxicity by methylating the O6-position of guanosine in DNA. However, the therapeutic effect of these drugs is dampened by elevated levels of the DNA repair enzyme, O6-methylguanine DNA methyltransferase (MGMT), which directly reverses this alkylation. As a result, assessing MGMT levels in patient samples provides an important predictor of therapeutic response; however, current methods available to measure this protein are indirect, complex and slow. Here we describe the design and synthesis of fluorescent chemosensors that report directly on MGMT activity in a single step within minutes. The chemosensors incorporate a fluorophore and quencher pair, which become separated by the MGMT dealkylation reaction, yielding light-up responses of up to 55-fold, directly reflecting repair activity. Experiments show that the best-performing probe retains near-native activity at mid-nanomolar concentrations. A nuclease-protected probe, NR-1, was prepared and tested in tumor cell lysates, demonstrating an ability to evaluate relative levels of MGMT repair activity in twenty minutes. In addition, a probe was employed to evaluate inhibitors of MGMT, suggesting utility for discovering new inhibitors in a high-throughput manner. Probe designs such as that of NR-1 may prove valuable to clinicians in selection of patients for alkylating drug therapies and in assessing resistance that arises during treatment.
Collapse
|
16
|
Floor SN, Doudna JA. Tunable protein synthesis by transcript isoforms in human cells. eLife 2016; 5:e10921. [PMID: 26735365 DOI: 10.7554/elife.10921.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/05/2016] [Indexed: 05/25/2023] Open
Abstract
Eukaryotic genes generate multiple RNA transcript isoforms though alternative transcription, splicing, and polyadenylation. However, the relationship between human transcript diversity and protein production is complex as each isoform can be translated differently. We fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed regulatory features that control ribosome occupancy and translational output of each transcript isoform. We extracted a panel of 5' and 3' untranslated regions that control protein production from an unrelated gene in cells over a 100-fold range. Select 5' untranslated regions exert robust translational control between cell lines, while 3' untranslated regions can confer cell type-specific expression. These results expose the large dynamic range of transcript-isoform-specific translational control, identify isoform-specific sequences that control protein output in human cells, and demonstrate that transcript isoform diversity must be considered when relating RNA and protein levels.
Collapse
Affiliation(s)
- Stephen N Floor
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
- Innovative Genomics Initiative, University of California, Berkeley, Berkeley, United States
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States
| |
Collapse
|
17
|
Floor SN, Doudna JA. Tunable protein synthesis by transcript isoforms in human cells. eLife 2016; 5. [PMID: 26735365 PMCID: PMC4764583 DOI: 10.7554/elife.10921] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/05/2016] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic genes generate multiple RNA transcript isoforms though alternative transcription, splicing, and polyadenylation. However, the relationship between human transcript diversity and protein production is complex as each isoform can be translated differently. We fractionated a polysome profile and reconstructed transcript isoforms from each fraction, which we term Transcript Isoforms in Polysomes sequencing (TrIP-seq). Analysis of these data revealed regulatory features that control ribosome occupancy and translational output of each transcript isoform. We extracted a panel of 5′ and 3′ untranslated regions that control protein production from an unrelated gene in cells over a 100-fold range. Select 5′ untranslated regions exert robust translational control between cell lines, while 3′ untranslated regions can confer cell type-specific expression. These results expose the large dynamic range of transcript-isoform-specific translational control, identify isoform-specific sequences that control protein output in human cells, and demonstrate that transcript isoform diversity must be considered when relating RNA and protein levels. DOI:http://dx.doi.org/10.7554/eLife.10921.001 To produce a protein, a gene’s DNA is first copied to make molecules of messenger RNA (mRNA). The mRNAs pass through a molecular machine known as the ribosome, which translates the genetic code to make a protein. Not all of an mRNA is translated to make a protein; the “untranslated” regions play crucial roles in regulating how much of the protein is produced. In animals, plants and other eukaryotes, many mRNAs are made up of small pieces that are “spliced” together. During this process, proteins are deposited on the mRNA to mark the splice junctions, which are then cleared when the mRNA is translated. Many different mRNAs can be produced from the same gene by splicing different combinations of RNA pieces. Each of these mRNA “isoforms” can, in principle, contain a unique set of features that control its translation. Hence each mRNA isoform can be translated differently so that different amounts of the corresponding protein product are produced. However, the relationship between the variety of isoforms and the control of translation is complex and not well understood. To address these questions, Floor and Doudna measured the translation of over 60,000 mRNA isoforms made from almost 14,000 human genes. The experiments show that untranslated regions at the end of the mRNA (known as the 3′ end) strongly influence translation, even if the protein coding regions remain the same. Furthermore, the data showed that mRNAs with more splice junctions are translated better, implying an mRNA has some sort of memory of how many junctions it had even after the protein markers have been cleared. Next, Floor and Doudna inserted regulatory sequences from differently translated isoforms into an unrelated “reporter” gene. This dramatically changed the amount of protein produced from the reporter gene, in a manner predicted by the earlier experiments. Untranslated regions at the beginning of the mRNAs (known as the 5′ end) controlled the amount of protein produced from the reporter consistently across different types of cells from the body. On the other hand, the 3′ regions can tune the level of protein production in particular types of cells. Floor and Doudna’s findings demonstrate that differences between mRNA isoforms of a gene can have a big effect on the level of protein production. Changes in the types of mRNA made from a gene are often associated with human diseases, and these findings suggest one reason why. Additionally, the ability to engineer translation of an mRNA using the data is likely to aid the development of mRNA-based therapies. DOI:http://dx.doi.org/10.7554/eLife.10921.002
Collapse
Affiliation(s)
- Stephen N Floor
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Innovative Genomics Initiative, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, California, United States
| |
Collapse
|
18
|
Hou S, Shi L, Lei H. Biotin-Streptavidin Affinity Purification of RNA-Protein Complexes Assembled In Vitro. Methods Mol Biol 2016; 1421:23-34. [PMID: 26965254 DOI: 10.1007/978-1-4939-3591-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
RNA-protein complexes are essential for the function of different RNAs, yet purification of specific RNA-protein complexes can be complicated and is a major obstacle in understanding the mechanism of regulatory RNAs. Here we present a protocol to purify RNA-protein complexes assembled in vitro based on biotin-streptavidin affinity. In vitro transcribed RNA is labeled with (32)P and biotin, ribonucleoprotein particles or RNPs are assembled by incubation of RNA in nuclear extract and fractionated using gel filtration, and RNP fractions are pooled for biotin-streptavidin affinity purification. The amount of RNA-protein complexes purified following this protocol is sufficient for mass spectrometry.
Collapse
Affiliation(s)
- Shuai Hou
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, Liaoning, 116044, People's Republic of China
| | - Lei Shi
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, Liaoning, 116044, People's Republic of China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian, Liaoning, 116044, People's Republic of China.
| |
Collapse
|
19
|
Lin CL, Taggart AJ, Lim KH, Cygan KJ, Ferraris L, Creton R, Huang YT, Fairbrother WG. RNA structure replaces the need for U2AF2 in splicing. Genome Res 2016; 26:12-23. [PMID: 26566657 PMCID: PMC4691745 DOI: 10.1101/gr.181008.114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 11/10/2015] [Indexed: 01/21/2023]
Abstract
RNA secondary structure plays an integral role in catalytic, ribosomal, small nuclear, micro, and transfer RNAs. Discovering a prevalent role for secondary structure in pre-mRNAs has proven more elusive. By utilizing a variety of computational and biochemical approaches, we present evidence for a class of nuclear introns that relies upon secondary structure for correct splicing. These introns are defined by simple repeat expansions of complementary AC and GT dimers that co-occur at opposite boundaries of an intron to form a bridging structure that enforces correct splice site pairing. Remarkably, this class of introns does not require U2AF2, a core component of the spliceosome, for its processing. Phylogenetic analysis suggests that this mechanism was present in the ancestral vertebrate lineage prior to the divergence of tetrapods from teleosts. While largely lost from land dwelling vertebrates, this class of introns is found in 10% of all zebrafish genes.
Collapse
Affiliation(s)
- Chien-Ling Lin
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Allison J Taggart
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Kian Huat Lim
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Kamil J Cygan
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA; Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912, USA
| | - Luciana Ferraris
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Robbert Creton
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Yen-Tsung Huang
- Departments of Epidemiology and Biostatistics, Brown University, Providence, Rhode Island 02912, USA
| | - William G Fairbrother
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA; Center for Computational Molecular Biology, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
20
|
Li H, Hou S, Hao T, Azam S, Liu C, Shi L, Lei H. HuR antagonizes the effect of an intronic pyrimidine-rich sequence in regulating WT1 +/-KTS isoforms. RNA Biol 2015; 12:1364-71. [PMID: 26512748 DOI: 10.1080/15476286.2015.1102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
WT1 + KTS and -KTS isoforms only differ in 3 amino acids in protein sequence but show significant functional difference. The +/-KTS isoforms were generated by alternative usage of 2 adjacent 5' splice sites at RNA level, however, how these 2 isoforms are regulated is still elusive. Here we report the identification of an intronic pyrimidine-rich sequence that is critical for the ratio of +/-KTS isoforms, deletion or partial replacement of the sequence led to full/significant shift to -KTS isoform. To identify trans-factors that can regulate +/-KTS isoforms via the binding to the element, we performed RNP assembly using in vitro transcribed RNA with or without the pyrimidine-rich sequence. Mass spectrometry analysis of purified RNPs showed that the element associated with many splicing factors. Co-transfection of these factors with WT1 reporter revealed that HuR promoted the production of -KTS isoform at the reporter level. RNA immuno-precipitation experiment indicated that HuR interacted with the pyrimidine-rich element in WT1 intron 9. We further presented evidence that transient or stable over-expression of HuR led to enhanced expression of endogenous -KTS isoform. Moreover, knockdown of HuR resulted in decreased expression of endogenous -KTS isoform in 293T, SW620, SNU-387 and AGS cell lines. Together, these data indicate that HuR binds to the pyrimidine-rich sequence and antagonize its effect in regulating WT1 +/-KTS isoforms.
Collapse
Affiliation(s)
- Hui Li
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China.,c Equal contribution
| | - Shuai Hou
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China.,c Equal contribution
| | - Tian Hao
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China
| | - Sikandar Azam
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China
| | - Caigang Liu
- b Breast Disease and Reconstruction Center; Breast Cancer Key Lab of Dalian; the Second Hospital of Dalian Medical University ; Dalian , P.R. China
| | - Lei Shi
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China
| | - Haixin Lei
- a Institute of Cancer Stem Cell; Cancer Center; Dalian Medical University ; Dalian , P.R. China
| |
Collapse
|
21
|
Edwards SK, Ono T, Wang S, Jiang W, Franzini RM, Jung JW, Chan KM, Kool ET. In Vitro Fluorogenic Real-Time Assay of the Repair of Oxidative DNA Damage. Chembiochem 2015; 16:1637-46. [PMID: 26073452 PMCID: PMC4586133 DOI: 10.1002/cbic.201500184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 01/09/2023]
Abstract
The repair of oxidative damage to DNA is essential to avoid mutations that lead to cancer. Oxidized DNA bases, such as 8-oxoguanine, are a main source of these mutations, and the enzyme 8-oxoguanine glycosylase 1 (OGG1) is the chief human enzyme that excises 8-oxoguanine from DNA. The activity of OGG1 has been linked to human inflammation responses and to cancer, and researchers are beginning to search for inhibitors of the enzyme. However, measuring the activity of the enzyme typically requires laborious gel-based measurements of radiolabeled DNAs. Here we report the design and properties of fluorogenic probes that directly report on the activity of OGG1 (and its bacterial homologue Fpg) in real time as the oxidized base is excised. The probes are short, modified DNA oligomers containing fluorescent DNA bases and are designed to utilize 8-oxoguanine itself as a fluorescence quencher. Screening of combinations of fluorophores and 8-oxoguanine revealed two fluorophores, pyrene and tCo, that are strongly quenched by the damaged base. We tested 42 potential probes containing these fluorophores: the optimum probe, OGR1, yields a 60-fold light-up signal in vitro with OGG1 and Fpg. It can report on oxidative repair activity in mammalian cell lysate and with bacterial cells overexpressing a repair enzyme. Such probes might prove useful in quantifying enzyme activity and performing competitive inhibition assays.
Collapse
Affiliation(s)
- Sarah K Edwards
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | - Toshikazu Ono
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
- Present Address: Department of Chemistry and Biochemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 (Japan)
| | - Shenliang Wang
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | - Wei Jiang
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | | | - Jong Wha Jung
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
- Present Address: College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 702-701 (Republic of Korea)
| | - Ke Min Chan
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
| | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA).
| |
Collapse
|
22
|
FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP. Proc Natl Acad Sci U S A 2015; 112:8608-13. [PMID: 26124092 DOI: 10.1073/pnas.1506282112] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pre-mRNA splicing is coupled to transcription by RNA polymerase II (RNAP II). We previously showed that U1 small nuclear ribonucleoprotein (snRNP) associates with RNAP II, and both RNAP II and U1 snRNP are also the most abundant factors associated with the protein fused-in-sarcoma (FUS), which is mutated to cause the neurodegenerative disease amyotrophic lateral sclerosis. Here, we show that an antisense morpholino that base-pairs to the 5' end of U1 snRNA blocks splicing in the coupled system and completely disrupts the association between U1 snRNP and both FUS and RNAP II, but has no effect on the association between FUS and RNAP II. Conversely, we found that U1 snRNP does not interact with RNAP II in FUS knockdown extracts. Moreover, using these extracts, we found that FUS must be present during the transcription reaction in order for splicing to occur. Together, our data lead to a model that FUS functions in coupling transcription to splicing via mediating an interaction between RNAP II and U1 snRNP.
Collapse
|
23
|
Ilagan JO, Ramakrishnan A, Hayes B, Murphy ME, Zebari AS, Bradley P, Bradley RK. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res 2015; 25:14-26. [PMID: 25267526 PMCID: PMC4317169 DOI: 10.1101/gr.181016.114] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/25/2014] [Indexed: 01/30/2023]
Abstract
Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains.
Collapse
Affiliation(s)
- Janine O Ilagan
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Aravind Ramakrishnan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; Division of Medical Oncology, School of Medicine, University of Washington, Seattle, Washington 98109, USA
| | - Brian Hayes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Michele E Murphy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ahmad S Zebari
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Philip Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|
24
|
Soemedi R, Vega H, Belmont JM, Ramachandran S, Fairbrother WG. Genetic variation and RNA binding proteins: tools and techniques to detect functional polymorphisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:227-66. [PMID: 25201108 DOI: 10.1007/978-1-4939-1221-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At its most fundamental level the goal of genetics is to connect genotype to phenotype. This question is asked at a basic level evaluating the role of genes and pathways in genetic model organism. Increasingly, this question is being asked in the clinic. Genomes of individuals and populations are being sequenced and compared. The challenge often comes at the stage of analysis. The variant positions are analyzed with the hope of understanding human disease. However after a genome or exome has been sequenced, the researcher is often deluged with hundreds of potentially relevant variations. Traditionally, amino-acid changing mutations were considered the tractable class of disease-causing mutations; however, mutations that disrupt noncoding elements are the subject of growing interest. These noncoding changes are a major avenue of disease (e.g., one in three hereditary disease alleles are predicted to affect splicing). Here, we review some current practices of medical genetics, the basic theory behind biochemical binding and functional assays, and then explore technical advances in how variations that alter RNA protein recognition events are detected and studied. These advances are advances in scale-high-throughput implementations of traditional biochemical assays that are feasible to perform in any molecular biology laboratory. This chapter utilizes a case study approach to illustrate some methods for analyzing polymorphisms. The first characterizes a functional intronic SNP that deletes a high affinity PTB site using traditional low-throughput biochemical and functional assays. From here we demonstrate the utility of high-throughput splicing and spliceosome assembly assays for screening large sets of SNPs and disease alleles for allelic differences in gene expression. Finally we perform three pilot drug screens with small molecules (G418, tetracycline, and valproic acid) that illustrate how compounds that rescue specific instances of differential pre-mRNA processing can be discovered.
Collapse
Affiliation(s)
- Rachel Soemedi
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
25
|
Chi B, Wang K, Du Y, Gui B, Chang X, Wang L, Fan J, Chen S, Wu X, Li G, Cheng H. A Sub-Element in PRE enhances nuclear export of intronless mRNAs by recruiting the TREX complex via ZC3H18. Nucleic Acids Res 2014; 42:7305-18. [PMID: 24782531 PMCID: PMC4066777 DOI: 10.1093/nar/gku350] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Viral RNA elements that facilitate mRNA export are useful tools for identifying cellular RNA export factors. Here we show that hepatitis B virus post-transcriptional element (PRE) is one such element, and using PRE several new cellular mRNA export factors were identified. We found that PRE drastically enhances the cytoplasmic accumulation of cDNA transcripts independent of any viral protein. Systematic deletion analysis revealed the existence of a 116 nt functional Sub-Element of PRE (SEP1). The RNP that forms on the SEP1 RNA was affinity purified, in which TREX components as well as several other proteins were identified. TREX components and the SEP1-associating protein ZC3H18 are required for SEP1-mediated mRNA export. Significantly, ZC3H18 directly binds to the SEP1 RNA, interacts with TREX and is required for stable association of TREX with the SEP1-containing mRNA. Requirements for SEP1-mediated mRNA export are similar to those for splicing-dependent mRNA export. Consistent with these similarities, several SEP1-interacting proteins, including ZC3H18, ARS2, Acinus and Brr2, are required for efficient nuclear export of polyA RNAs. Together, our data indicate that SEP1 enhances mRNA export by recruiting TREX via ZC3H18. The new mRNA export factors that we identified might be involved in cap- and splicing-dependent TREX recruitment to cellular mRNAs.
Collapse
Affiliation(s)
- Binkai Chi
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Wang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanhua Du
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bin Gui
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xingya Chang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lantian Wang
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fan
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - She Chen
- National Institute of Biological Sciences, 7 Science Park Road, Zhong Guan Cun Life Science Park, Beijing 102206, China
| | - Xudong Wu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hong Cheng
- Shanghai Key Laboratory of Molecular Andrology, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
26
|
In vitro systems for coupling RNAP II transcription to splicing and polyadenylation. Methods Mol Biol 2014; 1126:169-77. [PMID: 24549664 DOI: 10.1007/978-1-62703-980-2_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Studies over the past several years have revealed that steps in gene expression are extensively coupled to one another both physically and functionally. Recently, in vitro systems were developed for understanding the mechanisms involved in coupling transcription by RNA polymerase II to RNA processing. Here we describe an efficient two-way system for coupling transcription to splicing and a robust three-way system for coupling transcription, splicing, and polyadenylation. In these systems a CMV-DNA construct is incubated in HeLa cell nuclear extracts in the presence of (32)P-UTP to generate the nascent transcript. Transcription is then stopped by addition of α-amanitin followed by continued incubation to allow RNA processing.
Collapse
|