1
|
Agrawal V, Kropski JA, Gokey JJ, Kobeck E, Murphy MB, Murray KT, Fortune NL, Moore CS, Meoli DF, Monahan K, Su YR, Blackwell T, Gupta DK, Talati MH, Gladson S, Carrier EJ, West JD, Hemnes AR. Myeloid Cell Derived IL1β Contributes to Pulmonary Hypertension in HFpEF. Circ Res 2023; 133:885-898. [PMID: 37929582 PMCID: PMC10655859 DOI: 10.1161/circresaha.123.323119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) in heart failure with preserved ejection fraction (HFpEF) is a common and highly morbid syndrome, but mechanisms driving PH-HFpEF are poorly understood. We sought to determine whether a well-accepted murine model of HFpEF also displays features of PH, and we sought to identify pathways that might drive early remodeling of the pulmonary vasculature in HFpEF. METHODS Eight-week-old male and female C57BL/6J mice received either Nγ-nitro-L-arginine methyl ester and high-fat diet or control water and diet for 2, 5, and 12 weeks. The db/db mice were studied as a second model of HFpEF. Early pathways regulating PH were identified by bulk and single-cell RNA sequencing. Findings were confirmed by immunostain in lungs of mice or lung slides from clinically performed autopsies of patients with PH-HFpEF. ELISA was used to verify IL-1β (interleukin-1 beta) in mouse lung, mouse plasma, and also human plasma from patients with PH-HFpEF obtained at the time of right heart catheterization. Clodronate liposomes and an anti-IL-1β antibody were utilized to deplete macrophages and IL-1β, respectively, to assess their impact on pulmonary vascular remodeling in HFpEF in mouse models. RESULTS Nγ-nitro-L-arginine methyl ester/high-fat diet-treated mice developed PH, small vessel muscularization, and right heart dysfunction. Inflammation-related gene ontologies were overrepresented in bulk RNA sequencing analysis of whole lungs, with an increase in CD68+ cells in both murine and human PH-HFpEF lungs. Cytokine profiling showed an increase in IL-1β in mouse and human plasma. Finally, clodronate liposome treatment in mice prevented PH in Nγ-nitro-L-arginine methyl ester/high-fat diet-treated mice, and IL-1β depletion also attenuated PH in Nγ-nitro-L-arginine methyl ester/high-fat diet-treated mice. CONCLUSIONS We report a novel model for the study of PH and right heart remodeling in HFpEF, and we identify myeloid cell-derived IL-1β as an important contributor to PH in HFpEF.
Collapse
Affiliation(s)
- Vineet Agrawal
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Tennessee Valley Healthcare System Nashville Veteran Affairs Hospital, Nashville, TN
| | - Jonathan A. Kropski
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jason J. Gokey
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Elizabeth Kobeck
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Matthew B. Murphy
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Katherine T. Murray
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Niki L. Fortune
- Tennessee Valley Healthcare System Nashville Veteran Affairs Hospital, Nashville, TN
| | - Christy S. Moore
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - David F. Meoli
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Tennessee Valley Healthcare System Nashville Veteran Affairs Hospital, Nashville, TN
| | - Ken Monahan
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yan Ru Su
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Thomas Blackwell
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Deepak K. Gupta
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Megha H. Talati
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Santhi Gladson
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Erica J. Carrier
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - James D. West
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Anna R. Hemnes
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
Agrawal V, Kropski JA, Gokey JJ, Kobeck E, Murphy M, Murray KT, Fortune NL, Moore CS, Meoli DF, Monahan K, Su YR, Blackwell T, Gupta DK, Talati MH, Gladson S, Carrier EJ, West JD, Hemnes AR. Myeloid Cell Derived IL1β Contributes to Pulmonary Vascular Remodeling in Heart Failure with Preserved Ejection Fraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541302. [PMID: 37292652 PMCID: PMC10245772 DOI: 10.1101/2023.05.18.541302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Pulmonary hypertension (PH) in heart failure with preserved ejection fraction (HFpEF) is a common and highly morbid syndrome, but mechanisms driving PH-HFpEF are not well understood. We sought to determine whether a well-accepted murine model of HFpEF also displays features of PH in HFpEF, and we sought to identify pathways that might drive early remodeling of the pulmonary vasculature in HFpEF. Methods Eight week old male and female C57/BL6J mice were given either L-NAME and high fat diet (HFD) or control water/diet for 2,5, and 12 weeks. Bulk RNA sequencing and single cell RNA sequencing was performed to identify early and cell-specific pathways that might regulate pulmonary vascular remodeling in PH-HFpEF. Finally, clodronate liposome and IL1β antibody treatments were utilized to deplete macrophages or IL1β, respectively, to assess their impact on pulmonary vascular remodeling in HFpEF. Results Mice given L-NAME/HFD developed PH, small vessel muscularization, and right heart dysfunction after 2 weeks of treatment. Inflammation-related gene ontologies were over-represented in bulk RNA sequencing analysis of whole lungs, with an increase in CD68+ cells in both murine and human PH-HFpEF lungs. Cytokine profiling of mouse lung and plasma showed an increase in IL1β, which was confirmed in plasma from patients with HFpEF. Single cell sequencing of mouse lungs also showed an increase in M1-like, pro-inflammatory populations of Ccr2+ monocytes and macrophages, and transcript expression of IL1β was primarily restricted to myeloid-type cells. Finally, clodronate liposome treatment prevented the development of PH in L-NAME/HFD treated mice, and IL1β antibody treatment also attenuated PH in L-NAME/HFD treated mice. Conclusions Our study demonstrated that a well-accepted model of HFpEF recapitulates features of pulmonary vascular remodeling commonly seen in patients with HFpEF, and we identified myeloid cell derived IL1β as an important contributor to PH in HFpEF.
Collapse
|
3
|
Zhou YQ, Bonafiglia QA, Zhang H, Heximer SP, Bendeck MP. Comprehensive ultrasound imaging of right ventricular remodeling under surgically induced pressure overload in mice. Am J Physiol Heart Circ Physiol 2023; 324:H391-H410. [PMID: 36607797 DOI: 10.1152/ajpheart.00590.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study reports a new methodology for right heart imaging by ultrasound in mice under right ventricular (RV) pressure overload. Pulmonary artery constriction (PAC) or sham surgeries were performed on C57BL/6 male mice at 8 wk of age. Ultrasound imaging was conducted at 2, 4, and 8 wk postsurgery using both classical and advanced ultrasound imaging modalities including electrocardiogram (ECG)-based kilohertz visualization, anatomical M-mode, and strain imaging. Based on pulsed Doppler, the PAC group demonstrated dramatically enhanced pressure gradient in the main pulmonary artery (MPA) as compared with the sham group. By the application of advanced imaging modalities in novel short-axis views of the ventricles, the PAC group demonstrated increased thickness of RV free wall, enlarged RV chamber, and reduced RV fractional shortening compared with the sham group. The PAC group also showed prolonged RV contraction, asynchronous interplay between RV and left ventricle (LV), and passive leftward motion of the interventricular septum (IVS) at early diastole. Consequently, the PAC group exhibited prolongation of LV isovolumic relaxation time, without change in LV wall thickness or systolic function. Significant correlations were found between the maximal pressure gradient in MPA measured by Doppler and the RV systolic pressure by catheterization, as well as the morphological and functional parameters of RV by ultrasound.NEW & NOTEWORTHY The established protocol overcomes the challenges in right heart imaging in mice, thoroughly elucidating the changes of RV, the dynamics of IVS, and the impact on LV and provides new insights into the pathophysiological mechanism of RV remodeling.
Collapse
Affiliation(s)
- Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Quinn A Bonafiglia
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hangjun Zhang
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Scott P Heximer
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle P Bendeck
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Pathophysiological characterization of the Townes mouse model for sickle cell disease. Transl Res 2023; 254:77-91. [PMID: 36323381 DOI: 10.1016/j.trsl.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
A deeper pathophysiologic understanding of available mouse models of sickle cell disease (SCD), such as the Townes model, will help improve preclinical studies. We evaluated groups of Townes mice expressing either normal adult human hemoglobin (HbA), sickle cell trait (HbAS), or SCD (HbS), comparing younger versus older adults, and females versus males. We obtained hematologic parameters in steady-state and hypoxic conditions and evaluated metabolic markers and cytokines from serum. Kidney function was evaluated by measuring the urine protein/creatinine ratio and urine osmolality. In vivo studies included von Frey assay, non-invasive plethysmography, and echocardiography. Histopathological evaluations were performed in lung, liver, spleen, and kidney tissues. HbS mice displayed elevated hemolysis markers and white blood cell counts, with some increases more pronounced in older adults. After extended in vivo hypoxia, hemoglobin, platelet counts, and white blood cell counts decreased significantly in HbS mice, whereas they remained stable in HbA mice. Cytokine analyses showed increased TNF-alpha in HbS mice. Kidney function assays revealed worsened kidney function in HbS mice. The von Frey assay showed a lower threshold to response in the HbS mice than controls, with more noticeable differences in males. Echocardiography in HbS mice suggested left ventricular hypertrophy and dilatation. Plethysmography suggested obstructive lung disease and inflammatory changes in HbS mice. Histopathological studies showed vascular congestion, increased iron deposition, and disruption of normal tissue architecture in HbS mice. These data correlate with clinical manifestations in SCD patients and highlight analyses and groups to be included in preclinical therapeutic studies.
Collapse
|
5
|
Todd EA, Williams M, Kamiar A, Rasmussen MA, Shehadeh LA. Echocardiography protocol: A tool for infrequently used parameters in mice. Front Cardiovasc Med 2022; 9:1038385. [PMID: 36620641 PMCID: PMC9810757 DOI: 10.3389/fcvm.2022.1038385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Echocardiography is frequently used to evaluate cardiac function in rodent models of cardiovascular disease. Whereas methods to acquire the commonly used echocardiography parameters are well-described in published protocols or manuals, many important parameters are ill-defined and often open to subjective interpretation. Such lack of uniformity has engendered conflicting interpretations of the same parameters in published literature. In particular, parameters such as mitral regurgitation, mitral stenosis, pulmonary regurgitation, and aortic regurgitation that are required to define more esoteric etiologies in rarer mouse models often remain equivocal. The aim of this methods paper is to provide a practical guide to the acquisition and interpretation of infrequently used echocardiography parameters and set a framework for comprehensive analyses of right ventricle (RV), pulmonary artery (PA) pulmonary valve (PV), left atrium (LA), mitral valve (MV), and aortic valve (AoV) structure and function.
Collapse
Affiliation(s)
- Emily Ann Todd
- Department of Medical Education, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Monique Williams
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Ali Kamiar
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Monica Anne Rasmussen
- Department of Medical Education, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Lina A. Shehadeh
- Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
6
|
Trittmann JK, Almazroue H, Nelin LD, Shaffer TA, Celestine CR, Green HW, Malbrue RA. PATET ratio by Doppler echocardiography: noninvasive detection of pediatric pulmonary arterial hypertension. Pediatr Res 2022; 92:631-636. [PMID: 34795389 PMCID: PMC9114166 DOI: 10.1038/s41390-021-01840-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/09/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022]
Abstract
Pulmonary artery acceleration time (PAT) and PAT: ejection time (PATET) ratio are echocardiographic measurements of pulmonary arterial hypertension (PAH). These noninvasive quantitative measurements are ideal to follow longitudinally through the clinical course of PAH, especially as it relates to the need for and/or response to treatment. This review article focuses on the current literature of PATET measurement for infants and children as it relates to the shortening of the PATET ratio in PAH. At the same time, further development of PATET as an outcome measure for PAH in preclinical models, particularly mice, such that the field can move forward to human clinical studies that are both safe and effective. Here, we present what is known about PATET in infants and children and discuss what is known in preclinical models with particular emphasis on neonatal mouse models. In both animal models and human disease, PATET allows for longitudinal measurements in the same individual, leading to more precise determinations of disease/model progression and/or response to therapy. IMPACT: PATET ratio is a quantitative measurement by a noninvasive technique, Doppler echocardiography, providing clinicians a more precise/accurate, safe, and longitudinal assessment of pediatric PAH. We present a brief history/state of the art of PATET ratio to predict PAH in adults, children, infants, and fetuses, as well as in small animal models of PAH. In a preliminary study, PATET shortened by 18% during acute hypoxic exposure compared to pre-hypoxia. Studies are needed to establish PATET, especially in mouse models of disease, such as bronchopulmonary, as a routine measure of PAH.
Collapse
Affiliation(s)
- Jennifer K. Trittmann
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH,Department of Pediatrics, The Ohio State University, College of Medicine, Columbus, OH,Jennifer K. Trittmann, MD, MPH, Center for Perinatal Research, Abigail Wexner Research Institute at, Nationwide Children’s Hospital and, The Ohio State University, College of Medicine, Columbus, OH, USA,
| | - Hanadi Almazroue
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Leif D. Nelin
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH,Department of Pediatrics, The Ohio State University, College of Medicine, Columbus, OH
| | - Terri A. Shaffer
- Animal Resources Core, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH
| | - Charanda R. Celestine
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, Baton Rouge, LA, USA
| | - Henry W. Green
- Louisiana State University, School of Veterinary Medicine, Department of Veterinary Clinical Sciences, Baton Rouge, LA, USA
| | - Raphael A. Malbrue
- Animal Resources Core, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH,The Ohio State University, College of Veterinary Medicine, Columbus, OH
| |
Collapse
|
7
|
Albuquerque B, Chen X, Hirenallur-Shanthappa D, Zhao Y, Stansfield JC, Zhang BB, Sheikh A, Wu Z. Neutralization of GDF15 Prevents Anorexia and Weight Loss in the Monocrotaline-Induced Cardiac Cachexia Rat Model. Cells 2022; 11:cells11071073. [PMID: 35406637 PMCID: PMC8997866 DOI: 10.3390/cells11071073] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Growth and differentiation factor 15 (GDF15) is a cytokine reported to cause anorexia and weight loss in animal models. Neutralization of GDF15 was efficacious in mitigating cachexia and improving survival in cachectic tumor models. Interestingly, elevated circulating GDF15 was reported in patients with pulmonary arterial hypertension and heart failure, but it is unclear whether GDF15 contributes to cachexia in these disease conditions. In this study, rats treated with monocrotaline (MCT) manifested a progressive decrease in body weight, food intake, and lean and fat mass concomitant with elevated circulating GDF15, as well as development of right-ventricular dysfunction. Cotreatment of GDF15 antibody mAb2 with MCT prevented MCT-induced anorexia and weight loss, as well as preserved lean and fat mass. These results indicate that elevated GDF15 by MCT is causal to anorexia and weight loss. GDF15 mAb2 is efficacious in mitigating MCT-induced cachexia in vivo. Furthermore, the results suggest GDF15 inhibition is a potential therapeutic approach to alleviate cardiac cachexia in patients.
Collapse
Affiliation(s)
- Bina Albuquerque
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA; (B.A.); (Y.Z.); (B.B.Z.); (A.S.)
| | - Xian Chen
- Comparative Medicine, Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA; (X.C.); (D.H.-S.)
| | - Dinesh Hirenallur-Shanthappa
- Comparative Medicine, Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA; (X.C.); (D.H.-S.)
| | - Yang Zhao
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA; (B.A.); (Y.Z.); (B.B.Z.); (A.S.)
| | - John C. Stansfield
- Biostatistics, Early Clinical Development, Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA;
| | - Bei B. Zhang
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA; (B.A.); (Y.Z.); (B.B.Z.); (A.S.)
| | - Abdul Sheikh
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA; (B.A.); (Y.Z.); (B.B.Z.); (A.S.)
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development & Medical, Cambridge, MA 02139, USA; (B.A.); (Y.Z.); (B.B.Z.); (A.S.)
- Correspondence:
| |
Collapse
|
8
|
González‐Tajuelo R, de la Fuente‐Fernández M, Morales‐Cano D, Muñoz‐Callejas A, González‐Sánchez E, Silván J, Serrador JM, Cadenas S, Barreira B, Espartero‐Santos M, Gamallo C, Vicente‐Rabaneda EF, Castañeda S, Pérez‐Vizcaíno F, Cogolludo Á, Jiménez‐Borreguero LJ, Urzainqui A. Spontaneous Pulmonary Hypertension Associated With Systemic Sclerosis in P-Selectin Glycoprotein Ligand 1-Deficient Mice. Arthritis Rheumatol 2020; 72:477-487. [PMID: 31509349 PMCID: PMC7065124 DOI: 10.1002/art.41100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pulmonary arterial hypertension (PAH), one of the major complications of systemic sclerosis (SSc), is a rare disease with unknown etiopathogenesis and noncurative treatments. As mice deficient in P-selectin glycoprotein ligand 1 (PSGL-1) develop a spontaneous SSc-like syndrome, we undertook this study to analyze whether they develop PAH and to examine the molecular mechanisms involved. METHODS Doppler echocardiography was used to estimate pulmonary pressure, immunohistochemistry was used to assess vascular remodeling, and myography of dissected pulmonary artery rings was used to analyze vascular reactivity. Angiotensin II (Ang II) levels were quantified by enzyme-linked immunosorbent assay, and Western blotting was used to measure Ang II type 1 receptor (AT1 R), AT2 R, endothelial cell nitric oxide synthase (eNOS), and phosphorylated eNOS expression in lung lysates. Flow cytometry allowed us to determine cytokine production by immune cells and NO production by endothelial cells. In all cases, there were 4-8 mice per experimental group. RESULTS PSGL-1-/- mice showed lung vessel wall remodeling and a reduced mean ± SD expression of pulmonary AT2 R (expression ratio [relative to β-actin] in female mice age >18 months: wild-type mice 0.799 ± 0.508 versus knockout mice 0.346 ± 0.229). With aging, female PSGL-1-/- mice had impaired up-regulation of estrogen receptor α (ERα) and developed lung vascular endothelial dysfunction coinciding with an increase in mean ± SEM pulmonary Ang II levels (wild-type 48.70 ± 5.13 pg/gm lung tissue versus knockout 78.02 ± 28.09 pg/gm lung tissue) and a decrease in eNOS phosphorylation, leading to reduced endothelial NO production. These events led to a reduction in the pulmonary artery acceleration time:ejection time ratio in 33% of aged female PSGL-1-/- mice, indicating pulmonary hypertension. Importantly, we found expanded populations of interferon-γ-producing PSGL-1-/- T cells and B cells and a reduced presence of regulatory T cells. CONCLUSION The absence of PSGL-1 induces a reduction in Treg cells, NO production, and ERα expression and causes an increase in Ang II in the lungs of female mice, favoring the development of PAH.
Collapse
Affiliation(s)
- Rafael González‐Tajuelo
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | | | - Daniel Morales‐Cano
- University Complutense of Madrid School of Medicine and Ciber Enfermedades RespiratoriasMadridSpain
| | - Antonio Muñoz‐Callejas
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Elena González‐Sánchez
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Javier Silván
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Juan Manuel Serrador
- Centro de Biología Molecular Severo Ochoa (CBMSO) and Instituto de Física Teórica CSIC/Universidad Autónoma de Madrid (UAM)MadridSpain
| | - Susana Cadenas
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, and CBMSO, CSIC‐UAMMadridSpain
| | - Bianca Barreira
- University Complutense of Madrid School of Medicine and Ciber Enfermedades RespiratoriasMadridSpain
| | - Marina Espartero‐Santos
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Carlos Gamallo
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Esther F. Vicente‐Rabaneda
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| | - Santos Castañeda
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, and Catedra UAM‐ROCHEMadridSpain
| | - Francisco Pérez‐Vizcaíno
- University Complutense of Madrid School of Medicine and Ciber Enfermedades RespiratoriasMadridSpain
| | - Ángel Cogolludo
- University Complutense of Madrid School of Medicine and Ciber Enfermedades RespiratoriasMadridSpain
| | | | - Ana Urzainqui
- Fundación de Investigación Biomédica‐Hospital de la PrincesaIIS‐Princesa, Servicio de InmunlogíaMadridSpain
| |
Collapse
|
9
|
Agrawal V, Fortune N, Yu S, Fuentes J, Shi F, Nichols D, Gleaves L, Poovey E, Wang TJ, Brittain EL, Collins S, West JD, Hemnes AR. Natriuretic peptide receptor C contributes to disproportionate right ventricular hypertrophy in a rodent model of obesity-induced heart failure with preserved ejection fraction with pulmonary hypertension. Pulm Circ 2019; 9:2045894019878599. [PMID: 31903184 PMCID: PMC6923530 DOI: 10.1177/2045894019895452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/21/2019] [Indexed: 01/02/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) currently has no therapies that improve mortality. Right ventricular dysfunction and pulmonary hypertension are common in HFpEF, and thought to be driven by obesity and metabolic syndrome. Thus, we hypothesized that an animal model of obesity-induced HFpEF with pulmonary hypertension would provide insight into the pathogenesis of right ventricular failure in HFpEF. Two strains of mice, one susceptible (AKR) and one resistant (C3H) to obesity-induced HFpEF, were fed high fat (60% fat) or control diet for 0, 2, or 20 weeks and evaluated by cardiac catheterization and echocardiography for development of right ventricular dysfunction, pulmonary hypertension, and HFpEF. AKR, but not C3H, mice developed right ventricular dysfunction, pulmonary hypertension, and HFpEF. NPRC, which antagonizes beneficial natriuretic peptide signaling, was found in RNA sequencing to be the most differentially upregulated gene in the right ventricle, but not left ventricle or lung, of AKR mice that developed pulmonary hypertension and HFpEF. Overexpression of NPRC in H9C2 cells increased basal cell size and increased expression of hypertrophic genes, MYH7 and NPPA. In conclusion, we have shown that NPRC contributes to right ventricular modeling in obesity-induced pulmonary hypertension-HFpEF by increasing cardiomyocyte hypertrophy. NPRC may represent a promising therapeutic target for right ventricular dysfunction in pulmonary hypertension-HFpEF.
Collapse
Affiliation(s)
- Vineet Agrawal
- Division of Cardiology,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Niki Fortune
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Sheeline Yu
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Julio Fuentes
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Fubiao Shi
- Division of Cardiology,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - David Nichols
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Linda Gleaves
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Emily Poovey
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Thomas J. Wang
- Division of Cardiology,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Evan L. Brittain
- Division of Cardiology,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Sheila Collins
- Division of Cardiology,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - James D. West
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary, and
Critical Care Medicine,
Vanderbilt
University Medical Center, Nashville, TN,
USA
| |
Collapse
|
10
|
Zhu Z, Godana D, Li A, Rodriguez B, Gu C, Tang H, Minshall RD, Huang W, Chen J. Echocardiographic assessment of right ventricular function in experimental pulmonary hypertension. Pulm Circ 2019; 9:2045894019841987. [PMID: 30942120 PMCID: PMC6566495 DOI: 10.1177/2045894019841987] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Echocardiography, a non-invasive and cost-effective method for monitoring cardiac function, is commonly used for evaluation and pre-clinical diagnostics of pulmonary hypertension (PH). Previous echocardiographic studies in experimental models of PH are fragmentary in terms of the evaluation of right ventricle (RV) function. In this study, three rodent models of PH: a mouse model of hypoxia-induced PH, a rat model of hypoxia+Sugen induced PH and a rat model of monocrotaline-induced PH, were employed to measure RV fractional area change (RVFAC), RV free wall thickness (RVFWT), pulmonary acceleration time (PAT), pulmonary ejection time (PET), and tricuspid annular plane systolic excursion (TAPSE). We found that, in these models, RVFWT significantly increased, but RVFAC, PAT, or PAT/PET ratios and TAPSE values significantly decreased. Accurate and complete TAPSE patterns were demonstrated in the three rodent models of PH. The RV echocardiography data matched the corresponding invasive hemodynamic and heart histologic data in each model. This serves as a reference study for real-time and non-invasive evaluation of RV function in rodent models of PH using echocardiography.
Collapse
Affiliation(s)
- Zhongkai Zhu
- 1 Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China.,2 Department of Medicine, Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine.,3 Research Resources Center, Cardiovascular Research Core, University of Illinois at Chicago, Chicago, IL, USA
| | - Dureti Godana
- 2 Department of Medicine, Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine.,3 Research Resources Center, Cardiovascular Research Core, University of Illinois at Chicago, Chicago, IL, USA
| | - Ailing Li
- 1 Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bianca Rodriguez
- 2 Department of Medicine, Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine.,3 Research Resources Center, Cardiovascular Research Core, University of Illinois at Chicago, Chicago, IL, USA
| | - Chenxin Gu
- 5 College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiyang Tang
- 4 State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,5 College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Richard D Minshall
- 6 Department of Anesthesiology and Pharmacology, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Huang
- 1 Department of Cardiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiwang Chen
- 2 Department of Medicine, Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine.,3 Research Resources Center, Cardiovascular Research Core, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
11
|
Bai Y, Shi XB, Zhang YQ, Wang YL, Liu XY, Esteve-Pastor MA. Differences of Matrix Metalloproteinase 2 Expression between Left and Right Ventricles in Response to Nandrolone Decanoate and/or Swimming Training in Mice. Chin Med J (Engl) 2018; 131:207-212. [PMID: 29336370 PMCID: PMC5776852 DOI: 10.4103/0366-6999.222330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: Matrix metalloproteinase (MMP)-2 plays an important role in the remodeling of left ventricles (LVs) and right ventricles (RVs). We investigated the differences of MMP-2 expression between LV and RV in response to nandrolone decanoate (ND), swimming training (ST), and combined ND and ST (NS) in mice, based on their structural, functional, and biochemical characteristics. Methods: Totally 28 male C57B1 mice (6 weeks old; 20–23 g) were divided into four groups, including the control (n = 7), ND (n = 6), ST (n = 8), and NS (n = 7) groups. After respective treatments for 8 weeks, echocardiographic examination was used to assess the cardiac structure and function. Van Gieson stain was used to examine the fibrosis of LV and RV in response to different treatments, and Western blotting analysis was performed to explore different MMP-2 expressions between LV and RV in response to ND and/or ST. Analysis of variance was used for comparing the four groups. Results: At 8 weeks, right ventricular dimension/body weight in the ND group was larger than the other three groups (F = 7.12, P < 0.05) according to the echocardiographic examination. Fibrosis induced by ND administration was increased more in RV (2.59%) than that in LV (2.21%). MMP-2 expression of the ND group in RV was significantly greater than the control and NS groups in RV and the corresponding ND group in LV. Conclusion: The experimental data support the hypothesis that ND administration induces greater MMP-2 expression increase in RV compared to LV, leading to consequent RV dilation.
Collapse
Affiliation(s)
- Ying Bai
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xu-Bo Shi
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yu-Qiong Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yue-Li Wang
- Department of Echocardiography, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing 100029, China
| | - Xin-Yao Liu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - María Asunción Esteve-Pastor
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBER-CV, Murcia 30120, Spain
| |
Collapse
|
12
|
Lindsey ML, Kassiri Z, Virag JAI, de Castro Brás LE, Scherrer-Crosbie M. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 2018; 314:H733-H752. [PMID: 29351456 PMCID: PMC5966769 DOI: 10.1152/ajpheart.00339.2017] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death, and translational research is needed to understand better mechanisms whereby the left ventricle responds to injury. Mouse models of heart disease have provided valuable insights into mechanisms that occur during cardiac aging and in response to a variety of pathologies. The assessment of cardiovascular physiological responses to injury or insult is an important and necessary component of this research. With increasing consideration for rigor and reproducibility, the goal of this guidelines review is to provide best-practice information regarding how to measure accurately cardiac physiology in animal models. In this article, we define guidelines for the measurement of cardiac physiology in mice, as the most commonly used animal model in cardiovascular research. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/guidelines-for-measuring-cardiac-physiology-in-mice/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center , Jackson, Mississippi.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton, Alberta , Canada
| | - Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | | |
Collapse
|
13
|
Trammell AW, Talati M, Blackwell TR, Fortune NL, Niswender KD, Fessel JP, Newman JH, West JD, Hemnes AR. Pulmonary vascular effect of insulin in a rodent model of pulmonary arterial hypertension. Pulm Circ 2017; 7:624-634. [PMID: 28704134 PMCID: PMC5841889 DOI: 10.1086/689908] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with metabolic derangements including insulin resistance, although their effects on the cardiopulmonary disease are unclear. We hypothesized that insulin resistance promotes pulmonary hypertension (PH) development and mutations in type 2 bone morphogenetic protein receptor (BMPR2) cause cellular insulin resistance. Using a BMPR2 transgenic murine model of PAH and two models of inducible diabetes mellitus, we explored the impact of hyperglycemia and/or hyperinsulinemia on development and severity of PH. We assessed insulin signaling and insulin-mediated glucose uptake in human endothelial cells with and without mutations in BMPR2. PH developed in control mice fed a Western diet and PH in BMPR2 mutant mice was increased by Western diet. Pulmonary artery pressure correlated strongly with fasting plasma insulin but not glucose. Reactive oxygen species were increased in lungs of insulin-resistant animals. BMPR2 mutation impaired insulin-mediated endothelial glucose uptake via reduced glucose transporter translocation despite intact insulin signaling. Experimental hyperinsulinemia is strongly associated with PH in both control and BMPR2-mutant mice, though to a greater degree in those with BMPR2 mutation. Human pulmonary endothelial cells with BMPR2 mutation have evidence of reduced glucose uptake due to impaired glucose transporter translocation. These experiments support a role for hyperinsulinemia in pulmonary vascular disease.
Collapse
Affiliation(s)
- Aaron W Trammell
- 1 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Megha Talati
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Thomas R Blackwell
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Niki L Fortune
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kevin D Niswender
- 3 Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Joshua P Fessel
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John H Newman
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James D West
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Anna R Hemnes
- 2 Division of Allergy, Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
14
|
Cerrone M, Montnach J, Lin X, Zhao YT, Zhang M, Agullo-Pascual E, Leo-Macias A, Alvarado FJ, Dolgalev I, Karathanos TV, Malkani K, Van Opbergen CJM, van Bavel JJA, Yang HQ, Vasquez C, Tester D, Fowler S, Liang F, Rothenberg E, Heguy A, Morley GE, Coetzee WA, Trayanova NA, Ackerman MJ, van Veen TAB, Valdivia HH, Delmar M. Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm. Nat Commun 2017; 8:106. [PMID: 28740174 PMCID: PMC5524637 DOI: 10.1038/s41467-017-00127-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/02/2017] [Indexed: 12/19/2022] Open
Abstract
Plakophilin-2 (PKP2) is a component of the desmosome and known for its role in cell-cell adhesion. Mutations in human PKP2 associate with a life-threatening arrhythmogenic cardiomyopathy, often of right ventricular predominance. Here, we use a range of state-of-the-art methods and a cardiomyocyte-specific, tamoxifen-activated, PKP2 knockout mouse to demonstrate that in addition to its role in cell adhesion, PKP2 is necessary to maintain transcription of genes that control intracellular calcium cycling. Lack of PKP2 reduces expression of Ryr2 (coding for Ryanodine Receptor 2), Ank2 (coding for Ankyrin-B), Cacna1c (coding for CaV1.2) and Trdn (coding for triadin), and protein levels of calsequestrin-2 (Casq2). These factors combined lead to disruption of intracellular calcium homeostasis and isoproterenol-induced arrhythmias that are prevented by flecainide treatment. We propose a previously unrecognized arrhythmogenic mechanism related to PKP2 expression and suggest that mutations in PKP2 in humans may cause life-threatening arrhythmias even in the absence of structural disease.It is believed that mutations in desmosomal adhesion complex protein plakophilin 2 (PKP2) cause arrhythmia due to loss of cell-cell communication. Here the authors show that PKP2 controls the expression of proteins involved in calcium cycling in adult mouse hearts, and that lack of PKP2 can cause arrhythmia in a structurally normal heart.
Collapse
Affiliation(s)
- Marina Cerrone
- Leon H Charney Division of Cardiology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Jerome Montnach
- Leon H Charney Division of Cardiology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Xianming Lin
- Leon H Charney Division of Cardiology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Yan-Ting Zhao
- Center for Arrhythmia Research, Division of Cardiology, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Mingliang Zhang
- Leon H Charney Division of Cardiology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Esperanza Agullo-Pascual
- Leon H Charney Division of Cardiology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Alejandra Leo-Macias
- Leon H Charney Division of Cardiology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Francisco J Alvarado
- Department of Molecular and Integrative Physiology, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Igor Dolgalev
- Genome Technology Center, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Thomas V Karathanos
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, 3400N Charles St., Baltimore, MD, 21218, USA
| | - Kabir Malkani
- Leon H Charney Division of Cardiology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Chantal J M Van Opbergen
- Department of Medical Physiology Division of Heart & Lungs University Medical Centre Utrecht, Yalelaan 50, 3584CM, Utrecht, The Netherlands
| | - Joanne J A van Bavel
- Department of Medical Physiology Division of Heart & Lungs University Medical Centre Utrecht, Yalelaan 50, 3584CM, Utrecht, The Netherlands
| | - Hua-Qian Yang
- Department of Pediatrics, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Carolina Vasquez
- Leon H Charney Division of Cardiology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - David Tester
- Departments of Cardiovascular Diseases/Division of Heart Rhythm Services, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Steven Fowler
- Leon H Charney Division of Cardiology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Fengxia Liang
- Department of Cell Biology and Microscopy Core, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Adriana Heguy
- Genome Technology Center, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Gregory E Morley
- Leon H Charney Division of Cardiology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience and Biochemistry and Molecular Pharmacology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA
| | - Natalia A Trayanova
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, 3400N Charles St., Baltimore, MD, 21218, USA
| | - Michael J Ackerman
- Departments of Cardiovascular Diseases/Division of Heart Rhythm Services, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Toon A B van Veen
- Department of Medical Physiology Division of Heart & Lungs University Medical Centre Utrecht, Yalelaan 50, 3584CM, Utrecht, The Netherlands
| | - Hector H Valdivia
- Center for Arrhythmia Research, Division of Cardiology, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Mario Delmar
- Leon H Charney Division of Cardiology, NYU School of Medicine, 520 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
15
|
van der Feen DE, Weij M, Smit-van Oosten A, Jorna LM, Hagdorn QAJ, Bartelds B, Berger RMF. Shunt Surgery, Right Heart Catheterization, and Vascular Morphometry in a Rat Model for Flow-induced Pulmonary Arterial Hypertension. J Vis Exp 2017. [PMID: 28287603 DOI: 10.3791/55065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this protocol, PAH is induced by combining a 60 mg/kg monocrotalin (MCT) injection with increased pulmonary blood flow through an aorto-caval shunt (MCT+Flow). The shunt is created by inserting an 18-G needle from the abdominal aorta into the adjacent caval vein. Increased pulmonary flow has been demonstrated as an essential trigger for a severe form of PAH with distinct phases of disease progression, characterized by early medial hypertrophy followed by neointimal lesions and the progressive occlusion of the small pulmonary vessels. To measure the right heart and pulmonary hemodynamics in this model, right heart catheterization is performed by inserting a rigid cannula containing a flexible ball-tip catheter via the right jugular vein into the right ventricle. The catheter is then advanced into the main and the more distal pulmonary arteries. The histopathology of the pulmonary vasculature is assessed qualitatively, by scoring the pre- and intra-acinar vessels on the degree of muscularization and the presence of a neointima, and quantitatively, by measuring the wall thickness, the wall-lumen ratios, and the occlusion score.
Collapse
Affiliation(s)
- Diederik E van der Feen
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen;
| | - Michel Weij
- Research and Development Facility, University Medical Center Groningen, University of Groningen
| | | | - Lysanne M Jorna
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen
| | - Quint A J Hagdorn
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen
| | - Beatrijs Bartelds
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen
| |
Collapse
|
16
|
Ma Z, Mao L, Rajagopal S. Hemodynamic Characterization of Rodent Models of Pulmonary Arterial Hypertension. J Vis Exp 2016. [PMID: 27167679 DOI: 10.3791/53335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease of the pulmonary vasculature characterized by endothelial cell apoptosis, smooth muscle proliferation and obliteration of pulmonary arterioles. This in turn results in right ventricular (RV) failure, with significant morbidity and mortality. Rodent models of PAH, in the mouse and the rat, are important for understanding the pathophysiology underlying this rare disease. Notably, different models of PAH may be associated with different degrees of pulmonary hypertension, RV hypertrophy and RV failure. Therefore, a complete hemodynamic characterization of mice and rats with PAH is critical in determining the effects of drugs or genetic modifications on the disease. Here we demonstrate standard procedures for assessment of right ventricular function and hemodynamics in both rat and mouse PAH models. Echocardiography is useful in determining RV function in rats, although obtaining standard views of the right ventricle is challenging in the awake mouse. Access for right heart catheterization is obtained by the internal jugular vein in closed-chest mice and rats. Pressures can be measured using polyethylene tubing with a fluid pressure transducer or a miniature micromanometer pressure catheter. Pressure-volume loop analysis can be performed in the open chest. After obtaining hemodynamics, the rodent is euthanized. The heart can be dissected to separate the RV free wall from the left ventricle (LV) and septum, allowing an assessment of RV hypertrophy using the Fulton index (RV/(LV+S)). Then samples can be harvested from the heart, lungs and other tissues as needed.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Department of Medicine, Duke University Medical Center
| | - Lan Mao
- Department of Medicine, Duke University Medical Center
| | | |
Collapse
|
17
|
Egemnazarov B, Schmidt A, Crnkovic S, Sydykov A, Nagy BM, Kovacs G, Weissmann N, Olschewski H, Olschewski A, Kwapiszewska G, Marsh LM. Pressure Overload Creates Right Ventricular Diastolic Dysfunction in a Mouse Model: Assessment by Echocardiography. J Am Soc Echocardiogr 2015; 28:828-43. [PMID: 25840639 DOI: 10.1016/j.echo.2015.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 10/23/2022]
Abstract
BACKGROUND Noninvasive diagnostic tools for right ventricular (RV) dysfunction measurements are increasingly being used, although their association with the pathologic mechanisms of dysfunction is poorly understood. Although investigations have focused mainly on RV systolic function, RV diastolic function remains mostly neglected. The aim of this study was to test which echocardiographic parameters best reflect RV diastolic function in mice. METHODS Pulmonary artery banding (PAB) was used to induce RV pressure overload in mice. Transthoracic echocardiography and invasive hemodynamic measurements were performed after 3 weeks in PAB and sham-operated mice. Subsequently, the hearts were investigated by histology and analyzed for gene expression. RESULTS PAB-induced pressure overload (RV systolic pressure PAB 52.6 ± 11.8 mm Hg vs sham 27.0 ± 2.7 mm Hg) resulted in RV hypertrophy and remodeling, as reflected by increased Fulton index (PAB 0.37 ± 0.05 vs sham 0.25 ± 0.02, P = .001). Masson's trichrome staining revealed increased interstitial fibrosis (PAB 12.25 ± 3.12% vs sham 3.97 ± 1.58%, P = .002). This was associated with significant systolic RV dysfunction as demonstrated by reduced contractility index and diastolic dysfunction as demonstrated by end-diastolic pressure (PAB 2.66 ± 0.83 mm Hg vs sham 1.49 ± 0.50 mm Hg, P < .001) and τ (PAB 40.0 ± 16.1 msec vs sham 13.0 ± 3.5 msec, P < .001). Messenger ribonucleic acid expression of β-myosin heavy chain, atrial and brain natriuretic peptides, collagen family members was elevated, and the sarco/endoplasmic reticulum Ca(2+)-ATPase was decreased. Echocardiography revealed significant increases in RV free wall thickness and isovolumic relaxation time and a decrease in left ventricular eccentricity index, E', and tricuspid annular plane systolic excursion. Isovolumic relaxation time and E' were significantly correlated with end-diastolic pressure (rs = 0.511 and -0.451) and τ (rs = 0.739 and -0.445, respectively). Moreover, E' was negatively correlated with the degree of RV fibrosis (rs = -0.717). CONCLUSIONS Within 3 weeks, PAB causes pressure overload-induced RV hypertrophy and remodeling with compensated systolic and diastolic dysfunction in mice. RV free wall thickness, tricuspid annular plane systolic excursion, E', E/E' ratio, and isovolumic relaxation time appear to be the most reliable echocardiographic parameters for the assessment of RV dysfunction.
Collapse
Affiliation(s)
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Akylbek Sydykov
- University of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Giessen, Germany
| | - Bence M Nagy
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gabor Kovacs
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Norbert Weissmann
- University of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Giessen, Germany
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Experimental Anesthesiology, Department of Anesthesia and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| |
Collapse
|