1
|
Sevcikova Tomaskova Z, Mackova K. From function to structure: how myofibrillogenesis influences the transverse-axial tubular system development and its peculiarities. Front Physiol 2025; 16:1576133. [PMID: 40352140 PMCID: PMC12062141 DOI: 10.3389/fphys.2025.1576133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/21/2025] [Indexed: 05/14/2025] Open
Abstract
The transverse-axial tubular system (TATS) is the extension of sarcolemma growing to the cell interior, providing sufficient calcium signaling to induce calcium release from sarcoplasmic reticulum cisternae and stimulate the contraction of neighboring myofibrils. Interestingly, the development of TATS is delayed and matures during the post-partum period. It starts with small invaginations near the sarcolemma, proceeding to grow an irregular network that is later assembled into the notably transversally oriented tubular network. Accumulating evidence supports the idea that the development of TATS is linked to cell dimensions, calcium signaling, and increasing myofibrillar content orchestrated by electromechanical stimulation. However, the overall mechanism has not yet been described. The topic of this review is the development of TATS with an emphasis on the irregular phase of tubule growth. The traditional models of BIN1-related tubulation are also discussed. We summarized the recently described protein interactions during TATS development, mainly mediated by costameric and sarcomeric proteins, supporting the idea of the coupling sites between TATS and the myofibrils. We hypothesize that the formation and final organization of the tubular system is driven by the simultaneous development of the contractile apparatus under cycling electromechanical stimulus.
Collapse
Affiliation(s)
| | - Katarina Mackova
- Department of Biophysics and Electrophysiology, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Paulke NJ, Fleischhacker C, Wegener JB, Riedemann GC, Cretu C, Mushtaq M, Zaremba N, Möbius W, Zühlke Y, Wedemeyer J, Liebmann L, Gorshkova AA, Kownatzki-Danger D, Wagner E, Kohl T, Wichmann C, Jahn O, Urlaub H, Toischer K, Hasenfuß G, Moser T, Preobraschenski J, Lenz C, Rog-Zielinska EA, Lehnart SE, Brandenburg S. Dysferlin Enables Tubular Membrane Proliferation in Cardiac Hypertrophy. Circ Res 2024; 135:554-574. [PMID: 39011635 DOI: 10.1161/circresaha.124.324588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Cardiac hypertrophy compensates for increased biomechanical stress of the heart induced by prevalent cardiovascular pathologies but can result in heart failure if left untreated. Here, we hypothesized that the membrane fusion and repair protein dysferlin is critical for the integrity of the transverse-axial tubule (TAT) network inside cardiomyocytes and contributes to the proliferation of TAT endomembranes during pressure overload-induced cardiac hypertrophy. METHODS Stimulated emission depletion and electron microscopy were used to localize dysferlin in mouse and human cardiomyocytes. Data-independent acquisition mass spectrometry revealed the cardiac dysferlin interactome and proteomic changes of the heart in dysferlin-knockout mice. After transverse aortic constriction, we compared the hypertrophic response of wild-type versus dysferlin-knockout hearts and studied TAT network remodeling mechanisms inside cardiomyocytes by live-cell membrane imaging. RESULTS We localized dysferlin in a vesicular compartment in nanometric proximity to contact sites of the TAT network with the sarcoplasmic reticulum, a.k.a. junctional complexes for Ca2+-induced Ca2+ release. Interactome analyses demonstrated a novel protein interaction of dysferlin with the membrane-tethering sarcoplasmic reticulum protein juncophilin-2, a putative interactor of L-type Ca2+ channels and ryanodine receptor Ca2+ release channels in junctional complexes. Although the dysferlin-knockout caused a mild progressive phenotype of dilated cardiomyopathy, global proteome analysis revealed changes preceding systolic failure. Following transverse aortic constriction, dysferlin protein expression was significantly increased in hypertrophied wild-type myocardium, while dysferlin-knockout animals presented markedly reduced left-ventricular hypertrophy. Live-cell membrane imaging showed a profound reorganization of the TAT network in wild-type left-ventricular myocytes after transverse aortic constriction with robust proliferation of axial tubules, which critically depended on the increased expression of dysferlin within newly emerging tubule components. CONCLUSIONS Dysferlin represents a new molecular target in cardiac disease that protects the integrity of tubule-sarcoplasmic reticulum junctional complexes for regulated excitation-contraction coupling and controls TAT network reorganization and tubular membrane proliferation in cardiomyocyte hypertrophy induced by pressure overload.
Collapse
Affiliation(s)
- Nora Josefine Paulke
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Carolin Fleischhacker
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Justus B Wegener
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Gabriel C Riedemann
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Constantin Cretu
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience and InnerEarLab (C.C., J.P.), University Medical Center Göttingen, Germany
| | - Mufassra Mushtaq
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Nina Zaremba
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy, City Campus (W.M.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Yannik Zühlke
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Jasper Wedemeyer
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Lorenz Liebmann
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Anastasiia A Gorshkova
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Daniel Kownatzki-Danger
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Now with Institute of Transfusion Medicine, University Hospital Schleswig-Holstein; Kiel, Germany (D.K.-D)
| | - Eva Wagner
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Tobias Kohl
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
| | - Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab and Center for Biostructural Imaging of Neurodegeneration (C.W.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Olaf Jahn
- Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy (O.J.), University Medical Center Göttingen, Germany
- Neuroproteomics Group, Department of Molecular Neurobiology (O.J.)
| | - Henning Urlaub
- Department of Clinical Chemistry (H.U., C.L.), University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany (H.U., C.L.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Karl Toischer
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany (K.T., G.H., S.E.L.)
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany (K.T., G.H., S.E.L.)
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab (T.M.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Julia Preobraschenski
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience and InnerEarLab (C.C., J.P.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Christof Lenz
- Department of Clinical Chemistry (H.U., C.L.), University Medical Center Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany (H.U., C.L.)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Germany (E.A.R.-Z.)
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany (K.T., G.H., S.E.L.)
| | - Sören Brandenburg
- Department of Cardiology and Pneumology (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., K.T., G.H., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center (N.J.P., C.F., J.B.W., G.C.R., M.M., N.Z., Y.Z., J.W., L.L., A.A.G., D.K.-D., E.W., T.K., S.E.L., S.B.), University Medical Center Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany (W.M., C.W., H.U., K.T., G.H., T.M., J.P., C.L., S.E.L., S.B.)
| |
Collapse
|
3
|
Lookin O, de Tombe P, Boulali N, Gergely C, Cloitre T, Cazorla O. Cardiomyocyte sarcomere length variability: Membrane fluorescence versus second harmonic generation myosin imaging. J Gen Physiol 2023; 155:213827. [PMID: 36695814 PMCID: PMC9930136 DOI: 10.1085/jgp.202213289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Sarcomere length (SL) and its variation along the myofibril strongly regulate integrated coordinated myocyte contraction. It is therefore important to obtain individual SL properties. Optical imaging by confocal fluorescence (for example, using ANEPPS) or transmitted light microscopy is often used for this purpose. However, this allows for the visualization of structures related to Z-disks only. In contrast, second-harmonic generation (SHG) microscopy visualizes A-band sarcomeric structures directly. Here, we compared averaged SL and its variability in isolated relaxed rat cardiomyocytes by imaging with ANEPPS and SHG. We found that SL variability, evaluated by several absolute and relative measures, is two times smaller using SHG vs. ANEPPS, while both optical methods give the same average (median) SL. We conclude that optical methods with similar optical spatial resolution provide valid estimations of average SL, but the use of SHG microscopy for visualization of sarcomeric A-bands may be the "gold standard" for evaluation of SL variability due to the absence of optical interference between the sarcomere center and non-sarcomeric structures. This contrasts with sarcomere edges where t-tubules may not consistently colocalize to Z-disks. The use of SHG microscopy instead of fluorescent imaging can be a prospective tool to map sarcomere variability both in vitro and in vivo conditions and to reveal its role in the functional behavior of living myocardium.
Collapse
Affiliation(s)
- Oleg Lookin
- Institute of Immunology and Physiology , Ural Branch of Russian Academy of Sciences , Yekaterinburg, Russia
| | - Pieter de Tombe
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France.,Physiology and Biophysics, University of Illinois at Chicago , Chicago, IL, USA
| | - Najlae Boulali
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France
| | - Csilla Gergely
- L2C, University of Montpellier , CNRS , Montpellier, France
| | | | - Olivier Cazorla
- Laboratory "Physiologie et Médecine Expérimentale du Coeur et des Muscles", Phymedexp, INSERM, CNRS, Montpellier University , Montpellier, France
| |
Collapse
|
4
|
Brandenburg S, Drews L, Schönberger HL, Jacob CF, Paulke NJ, Beuthner BE, Topci R, Kohl T, Neuenroth L, Kutschka I, Urlaub H, Kück F, Leha A, Friede T, Seidler T, Jacobshagen C, Toischer K, Puls M, Hasenfuß G, Lenz C, Lehnart SE. Direct proteomic and high-resolution microscopy biopsy analysis identifies distinct ventricular fates in severe aortic stenosis. J Mol Cell Cardiol 2022; 173:1-15. [PMID: 36084744 DOI: 10.1016/j.yjmcc.2022.08.363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/03/2022] [Accepted: 08/31/2022] [Indexed: 01/06/2023]
Abstract
The incidence of aortic valve stenosis (AS), the most common reason for aortic valve replacement (AVR), increases with population ageing. While untreated AS is associated with high mortality, different hemodynamic subtypes range from normal left-ventricular function to severe heart failure. However, the molecular nature underlying four different AS subclasses, suggesting vastly different myocardial fates, is unknown. Here, we used direct proteomic analysis of small left-ventricular biopsies to identify unique protein expression profiles and subtype-specific AS mechanisms. Left-ventricular endomyocardial biopsies were harvested from patients during transcatheter AVR, and inclusion criteria were based on echocardiographic diagnosis of severe AS and guideline-defined AS-subtype classification: 1) normal ejection fraction (EF)/high-gradient; 2) low EF/high-gradient; 3) low EF/low-gradient; and 4) paradoxical low-flow/low-gradient AS. Samples from non-failing donor hearts served as control. We analyzed 25 individual left-ventricular biopsies by data-independent acquisition mass spectrometry (DIA-MS), and 26 biopsies by histomorphology and cardiomyocytes by STimulated Emission Depletion (STED) superresolution microscopy. Notably, DIA-MS reliably detected 2273 proteins throughout each individual left-ventricular biopsy, of which 160 proteins showed significant abundance changes between AS-subtype and non-failing samples including the cardiac ryanodine receptor (RyR2). Hierarchical clustering segregated unique proteotypes that identified three hemodynamic AS-subtypes. Additionally, distinct proteotypes were linked with AS-subtype specific differences in cardiomyocyte hypertrophy. Furthermore, superresolution microscopy of immunolabeled biopsy sections showed subcellular RyR2-cluster fragmentation and disruption of the functionally important association with transverse tubules, which occurred specifically in patients with systolic dysfunction and may hence contribute to depressed left-ventricular function in AS.
Collapse
Affiliation(s)
- Sören Brandenburg
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany.
| | - Lena Drews
- Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Hanne-Lea Schönberger
- Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Christoph F Jacob
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Nora Josefine Paulke
- Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Bo E Beuthner
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Rodi Topci
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany
| | - Tobias Kohl
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany
| | - Lisa Neuenroth
- Department of Clinical Chemistry, University Medical Center Göttingen, Germany
| | - Ingo Kutschka
- Clinic of Cardiothoracic & Vascular Surgery, University Medical Center Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany
| | - Fabian Kück
- Department of Medical Statistics, University Medical Center Göttingen, Germany
| | - Andreas Leha
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Department of Medical Statistics, University Medical Center Göttingen, Germany
| | - Tim Friede
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Department of Medical Statistics, University Medical Center Göttingen, Germany
| | - Tim Seidler
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Claudius Jacobshagen
- Department of Cardiology, Intensive Care & Angiology, Vincentius-Diakonissen-Hospital Karlsruhe, Germany
| | - Karl Toischer
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Miriam Puls
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany
| | - Gerd Hasenfuß
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Christof Lenz
- Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Department of Clinical Chemistry, University Medical Center Göttingen, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; Leducq Transatlantic Network of Excellence CURE-PLaN, Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany
| | - Stephan E Lehnart
- Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany; Cellular Biophysics & Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Germany; Collaborative Research Center SFB1002 "Modulatory Units in Heart Failure", University of Göttingen, Germany; Collaborative Research Center SFB1190 "Compartmental Gates and Contact Sites in Cells", University of Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; Leducq Transatlantic Network of Excellence CURE-PLaN, Clinic of Cardiology & Pneumology, University Medical Center Göttingen, Germany.
| |
Collapse
|
5
|
Kurekova S, Tomaskova ZS, Andelova N, Macejova D, Cervienkova M, Brtko J, Ferko M, Grman M, Mackova K. The effect of all-trans retinoic acid on the mitochondrial function and survival of cardiomyoblasts exposed to local photodamage. Cell Biol Int 2022; 46:947-964. [PMID: 35191136 DOI: 10.1002/cbin.11784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/30/2021] [Accepted: 02/12/2022] [Indexed: 11/06/2022]
Abstract
This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Simona Kurekova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Zuzana Sevcikova Tomaskova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Dana Macejova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| | - Michaela Cervienkova
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237, Bratislava, Slovakia
| | - Julius Brtko
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 84104, Bratislava, Slovakia
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| | - Katarina Mackova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 840 05, Bratislava, Slovakia
| |
Collapse
|
6
|
Khokhlova A, Myachina T, Volzhaninov D, Butova X, Kochurova A, Berg V, Gette I, Moroz G, Klinova S, Minigalieva I, Solovyova O, Danilova I, Sokolova K, Kopylova G, Shchepkin D. Type 1 Diabetes Impairs Cardiomyocyte Contractility in the Left and Right Ventricular Free Walls but Preserves It in the Interventricular Septum. Int J Mol Sci 2022; 23:ijms23031719. [PMID: 35163643 PMCID: PMC8836009 DOI: 10.3390/ijms23031719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) leads to ischemic heart disease and diabetic cardiomyopathy. We tested the hypothesis that T1D differently affects the contractile function of the left and right ventricular free walls (LV, RV) and the interventricular septum (IS) using a rat model of alloxan-induced T1D. Single-myocyte mechanics and cytosolic Ca2+ concentration transients were studied on cardiomyocytes (CM) from LV, RV, and IS in the absence and presence of mechanical load. In addition, we analyzed the phosphorylation level of sarcomeric proteins and the characteristics of the actin-myosin interaction. T1D similarly affected the characteristics of actin-myosin interaction in all studied regions, decreasing the sliding velocity of native thin filaments over myosin in an in vitro motility assay and its Ca2+ sensitivity. A decrease in the thin-filament velocity was associated with increased expression of β-myosin heavy-chain isoform. However, changes in the mechanical function of single ventricular CM induced by T1D were different. T1D depressed the contractility of CM from LV and RV; it decreased the auxotonic tension amplitude and the slope of the active tension–length relationship. Nevertheless, the contractile function of CM from IS was principally preserved.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
- Institute of Physics and Technology, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
- Correspondence:
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Denis Volzhaninov
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Xenia Butova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Anastasia Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Valentina Berg
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Irina Gette
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Gleb Moroz
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia;
| | - Svetlana Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Popova 30, 620014 Yekaterinburg, Russia; (S.K.); (I.M.)
| | - Ilzira Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Popova 30, 620014 Yekaterinburg, Russia; (S.K.); (I.M.)
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
- Institute of Physics and Technology, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia;
| | - Irina Danilova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Ksenia Sokolova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Galina Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Daniil Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| |
Collapse
|
7
|
Wegener JW, Wagdi A, Wagner E, Katschinski DM, Hasenfuss G, Bruegmann T, Lehnart SE. The RyR2-R2474S Mutation Sensitizes Cardiomyocytes and Hearts to Catecholaminergic Stress-Induced Oxidation of the Mitochondrial Glutathione Pool. Front Physiol 2021; 12:777770. [PMID: 34955889 PMCID: PMC8696262 DOI: 10.3389/fphys.2021.777770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
Missense mutations in the cardiac ryanodine receptor type 2 (RyR2) characteristically cause catecholaminergic arrhythmias. Reminiscent of the phenotype in patients, RyR2-R2474S knockin mice develop exercise-induced ventricular tachyarrhythmias. In cardiomyocytes, increased mitochondrial matrix Ca2+ uptake was recently linked to non-linearly enhanced ATP synthesis with important implications for cardiac redox metabolism. We hypothesize that catecholaminergic stimulation and contractile activity amplify mitochondrial oxidation pathologically in RyR2-R2474S cardiomyocytes. To investigate this question, we generated double transgenic RyR2-R2474S mice expressing a mitochondria-restricted fluorescent biosensor to monitor the glutathione redox potential (EGSH). Electrical field pacing-evoked RyR2-WT and RyR2-R2474S cardiomyocyte contractions resulted in a small but significant baseline EGSH increase. Importantly, β-adrenergic stimulation resulted in excessive EGSH oxidization of the mitochondrial matrix in RyR2-R2474S cardiomyocytes compared to baseline and RyR2-WT control. Physiologically β-adrenergic stimulation significantly increased mitochondrial EGSH further in intact beating RyR2-R2474S but not in RyR2-WT control Langendorff perfused hearts. Finally, this catecholaminergic EGSH increase was significantly attenuated following treatment with the RyR2 channel blocker dantrolene. Together, catecholaminergic stimulation and increased diastolic Ca2+ leak induce a strong, but dantrolene-inhibited mitochondrial EGSH oxidization in RyR2-R2474S cardiomyocytes.
Collapse
Affiliation(s)
- Jörg W Wegener
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center Göttingen, Georg August University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), Georg-August University of Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Ahmed Wagdi
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg August University of Göttingen, Göttingen, Germany
| | - Eva Wagner
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center Göttingen, Georg August University of Göttingen, Göttingen, Germany
| | - Dörthe M Katschinski
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg August University of Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center Göttingen, Georg August University of Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Tobias Bruegmann
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), Georg-August University of Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Institute of Cardiovascular Physiology, University Medical Center Göttingen, Georg August University of Göttingen, Göttingen, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pulmonology, Heart Research Center Göttingen, University Medical Center Göttingen, Georg August University of Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), Georg-August University of Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Müllenbroich MC, Kelly A, Acker C, Bub G, Bruegmann T, Di Bona A, Entcheva E, Ferrantini C, Kohl P, Lehnart SE, Mongillo M, Parmeggiani C, Richter C, Sasse P, Zaglia T, Sacconi L, Smith GL. Novel Optics-Based Approaches for Cardiac Electrophysiology: A Review. Front Physiol 2021; 12:769586. [PMID: 34867476 PMCID: PMC8637189 DOI: 10.3389/fphys.2021.769586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022] Open
Abstract
Optical techniques for recording and manipulating cellular electrophysiology have advanced rapidly in just a few decades. These developments allow for the analysis of cardiac cellular dynamics at multiple scales while largely overcoming the drawbacks associated with the use of electrodes. The recent advent of optogenetics opens up new possibilities for regional and tissue-level electrophysiological control and hold promise for future novel clinical applications. This article, which emerged from the international NOTICE workshop in 2018, reviews the state-of-the-art optical techniques used for cardiac electrophysiological research and the underlying biophysics. The design and performance of optical reporters and optogenetic actuators are reviewed along with limitations of current probes. The physics of light interaction with cardiac tissue is detailed and associated challenges with the use of optical sensors and actuators are presented. Case studies include the use of fluorescence recovery after photobleaching and super-resolution microscopy to explore the micro-structure of cardiac cells and a review of two photon and light sheet technologies applied to cardiac tissue. The emergence of cardiac optogenetics is reviewed and the current work exploring the potential clinical use of optogenetics is also described. Approaches which combine optogenetic manipulation and optical voltage measurement are discussed, in terms of platforms that allow real-time manipulation of whole heart electrophysiology in open and closed-loop systems to study optimal ways to terminate spiral arrhythmias. The design and operation of optics-based approaches that allow high-throughput cardiac electrophysiological assays is presented. Finally, emerging techniques of photo-acoustic imaging and stress sensors are described along with strategies for future development and establishment of these techniques in mainstream electrophysiological research.
Collapse
Affiliation(s)
| | - Allen Kelly
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Corey Acker
- Center for Cell Analysis and Modeling, UConn Health, Farmington, CT, United States
| | - Gil Bub
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Tobias Bruegmann
- Institute for Cardiovascular Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Anna Di Bona
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Emilia Entcheva
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States
| | | | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Stephan E. Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, Göttingen, Germany
- Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Marco Mongillo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Claudia Richter
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Leonardo Sacconi
- European Laboratory for Nonlinear Spectroscopy, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- National Institute of Optics, National Research Council, Florence, Italy
| | - Godfrey L. Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Belevych AE, Bogdanov V, Terentyev DA, Gyorke S. Acute Detubulation of Ventricular Myocytes Amplifies the Inhibitory Effect of Cholinergic Agonist on Intracellular Ca 2+ Transients. Front Physiol 2021; 12:725798. [PMID: 34512394 PMCID: PMC8427700 DOI: 10.3389/fphys.2021.725798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022] Open
Abstract
Muscarinic receptors expressed in cardiac myocytes play a critical role in the regulation of heart function by the parasympathetic nervous system. How the structural organization of cardiac myocytes affects the regulation of Ca2+ handling by muscarinic receptors is not well-defined. Using confocal Ca2+ imaging, patch-clamp techniques, and immunocytochemistry, the relationship between t-tubule density and cholinergic regulation of intracellular Ca2+ in normal murine ventricular myocytes and myocytes with acute disruption of the t-tubule system caused by formamide treatment was studied. The inhibitory effect of muscarinic receptor agonist carbachol (CCh, 10 μM) on the amplitude of Ca2+ transients, evoked by field-stimulation in the presence of 100 nM isoproterenol (Iso), a β-adrenergic agonist, was directly proportional to the level of myocyte detubulation. The timing of the maximal rate of fluorescence increase of fluo-4, a Ca2+-sensitive dye, was used to classify image pixels into the regions functionally coupled or uncoupled to the sarcolemmal Ca2+ influx (ICa). CCh decreased the fraction of coupled regions and suppressed Ca2+ propagation from sarcolemma inside the cell. Formamide treatment reduced ICa density and decreased sarcoplasmic reticulum (SR) Ca2+ content. CCh did not change SR Ca2+ content in Iso-stimulated control and formamide-treated myocytes. CCh inhibited peak ICa recorded in the presence of Iso by ∼20% in both the control and detubulated myocytes. Reducing ICa amplitude up to 40% by changing the voltage step levels from 0 to –25 mV decreased Ca2+ transients in formamide-treated but not in control myocytes in the presence of Iso. CCh inhibited CaMKII activity, whereas CaMKII inhibition with KN93 mimicked the effect of CCh on Ca2+ transients in formamide-treated myocytes. It was concluded that the downregulation of t-tubules coupled with the diminished efficiency of excitation–contraction coupling, increases the sensitivity of Ca2+ release and propagation to muscarinic receptor-mediated inhibition of both ICa and CaMKII activity.
Collapse
Affiliation(s)
- Andriy E Belevych
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Vladimir Bogdanov
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dmitry A Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States.,Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
10
|
Rao AN, Campbell HM, Guan X, Word TA, Wehrens XH, Xia Z, Cooper TA. Reversible cardiac disease features in an inducible CUG repeat RNA-expressing mouse model of myotonic dystrophy. JCI Insight 2021; 6:143465. [PMID: 33497365 PMCID: PMC8021116 DOI: 10.1172/jci.insight.143465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion in the DMPK gene. Expression of pathogenic expanded CUG repeat (CUGexp) RNA causes multisystemic disease by perturbing the functions of RNA-binding proteins, resulting in expression of fetal protein isoforms in adult tissues. Cardiac involvement affects 50% of individuals with DM1 and causes 25% of disease-related deaths. We developed a transgenic mouse model for tetracycline-inducible and heart-specific expression of human DMPK mRNA containing 960 CUG repeats. CUGexp RNA is expressed in atria and ventricles and induced mice exhibit electrophysiological and molecular features of DM1 disease, including cardiac conduction delays, supraventricular arrhythmias, nuclear RNA foci with Muscleblind protein colocalization, and alternative splicing defects. Importantly, these phenotypes were rescued upon loss of CUGexp RNA expression. Transcriptome analysis revealed gene expression and alternative splicing changes in ion transport genes that are associated with inherited cardiac conduction diseases, including a subset of genes involved in calcium handling. Consistent with RNA-Seq results, calcium-handling defects were identified in atrial cardiomyocytes isolated from mice expressing CUGexp RNA. These results identify potential tissue-specific mechanisms contributing to cardiac pathogenesis in DM1 and demonstrate the utility of reversible phenotypes in our model to facilitate development of targeted therapeutic approaches.
Collapse
Affiliation(s)
| | - Hannah M Campbell
- Department of Molecular Physiology and Biophysics, and.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Xiangnan Guan
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Tarah A Word
- Department of Molecular Physiology and Biophysics, and
| | - Xander Ht Wehrens
- Department of Molecular Physiology and Biophysics, and.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Thomas A Cooper
- Department of Molecular and Cellular Biology.,Department of Molecular Physiology and Biophysics, and.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
11
|
Medvedev RY, Sanchez-Alonso JL, Mansfield CA, Judina A, Francis AJ, Pagiatakis C, Trayanova N, Glukhov AV, Miragoli M, Faggian G, Gorelik J. Local hyperactivation of L-type Ca 2+ channels increases spontaneous Ca 2+ release activity and cellular hypertrophy in right ventricular myocytes from heart failure rats. Sci Rep 2021; 11:4840. [PMID: 33649357 PMCID: PMC7921450 DOI: 10.1038/s41598-021-84275-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Right ventricle (RV) dysfunction is an independent predictor of patient survival in heart failure (HF). However, the mechanisms of RV progression towards failing are not well understood. We studied cellular mechanisms of RV remodelling in a rat model of left ventricle myocardial infarction (MI)-caused HF. RV myocytes from HF rats show significant cellular hypertrophy accompanied with a disruption of transverse-axial tubular network and surface flattening. Functionally these cells exhibit higher contractility with lower Ca2+ transients. The structural changes in HF RV myocytes correlate with more frequent spontaneous Ca2+ release activity than in control RV myocytes. This is accompanied by hyperactivated L-type Ca2+ channels (LTCCs) located specifically in the T-tubules of HF RV myocytes. The increased open probability of tubular LTCCs and Ca2+ sparks activation is linked to protein kinase A-mediated channel phosphorylation that occurs locally in T-tubules. Thus, our approach revealed that alterations in RV myocytes in heart failure are specifically localized in microdomains. Our findings may indicate the development of compensatory, though potentially arrhythmogenic, RV remodelling in the setting of LV failure. These data will foster better understanding of mechanisms of heart failure and it could promote an optimized treatment of patients.
Collapse
Affiliation(s)
- Roman Y Medvedev
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.,Dipartimento Di Cardiochirurgia, Università Degli Studi Di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126, Verona, Italy.,Department of Medicine, Cardiovascular Medicine, Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Jose L Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Catherine A Mansfield
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Aleksandra Judina
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Alice J Francis
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | | | - Natalia Trayanova
- Department of Biomedical Engineering and Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, USA
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, Madison School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Michele Miragoli
- Humanitas Clinical and Research Center - IRCCS, Rozzano, MI, Italy.,Dipartimento Di Medicina E Chirurgia, Università Degli Studi di Parma, Via Gramsci 14, 43124, Parma, Italy
| | - Giuseppe Faggian
- Dipartimento Di Cardiochirurgia, Università Degli Studi Di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126, Verona, Italy
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
12
|
Liu C, Spinozzi S, Feng W, Chen Z, Zhang L, Zhu S, Wu T, Fang X, Ouyang K, Evans SM, Chen J. Homozygous G650del nexilin variant causes cardiomyopathy in mice. JCI Insight 2020; 5:138780. [PMID: 32814711 PMCID: PMC7455123 DOI: 10.1172/jci.insight.138780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/09/2020] [Indexed: 01/28/2023] Open
Abstract
Nexilin (NEXN) was recently identified as a component of the junctional membrane complex required for development and maintenance of cardiac T-tubules. Loss of Nexn in mice leads to a rapidly progressive dilated cardiomyopathy (DCM) and premature death. A 3 bp deletion (1948-1950del) leading to loss of the glycine in position 650 (G650del) is classified as a variant of uncertain significance in humans and may function as an intermediate risk allele. To determine the effect of the G650del variant on cardiac structure and function, we generated a G645del-knockin (G645del is equivalent to human G650del) mouse model. Homozygous G645del mice express about 30% of the Nexn expressed by WT controls and exhibited a progressive DCM characterized by reduced T-tubule formation, with disorganization of the transverse-axial tubular system. On the other hand, heterozygous Nexn global KO mice and genetically engineered mice encoding a truncated Nexn missing the first N-terminal actin-binding domain exhibited normal cardiac function, despite expressing only 50% and 20% of the Nexn, respectively, expressed by WT controls, suggesting that not only quantity but also quality of Nexn is necessary for a proper function. These findings demonstrated that Nexn G645 is crucial for Nexn's function in tubular system organization and normal cardiac function.
Collapse
Affiliation(s)
- Canzhao Liu
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | - Wei Feng
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Ze’e Chen
- Department of Medicine, UCSD, La Jolla, California, USA
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Lunfeng Zhang
- Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Siting Zhu
- Department of Medicine, UCSD, La Jolla, California, USA
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tongbin Wu
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Xi Fang
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Sylvia M. Evans
- Department of Medicine, UCSD, La Jolla, California, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, California, USA
| | - Ju Chen
- Department of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
13
|
Spinozzi S, Liu C, Chen Z, Feng W, Zhang L, Ouyang K, Evans SM, Chen J. Nexilin Is Necessary for Maintaining the Transverse-Axial Tubular System in Adult Cardiomyocytes. Circ Heart Fail 2020; 13:e006935. [PMID: 32635769 PMCID: PMC7583668 DOI: 10.1161/circheartfailure.120.006935] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/31/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND NEXN (nexilin) is a protein of the junctional membrane complex required for development of cardiac T-tubules. Global and cardiomyocyte-specific loss of Nexn in mice leads to a rapidly progressive dilated cardiomyopathy and premature death. Therefore, little is known as to the role of NEXN in adult cardiomyocytes. Transverse-axial tubular system remodeling are well-known features in heart failure. Although NEXN is required during development for T-tubule formation, its role, if any, in mature T-tubules remains to be addressed. METHODS Nexn inducible adult cardiomyocyte-specific KO mice were generated. Comprehensive morphological and functional analyses were performed. Heart samples (n>3) were analyzed by molecular, biochemical, and electron microscopy analyses. Isolated single adult cardiomyocytes were analyzed by confocal microscopy, and myocyte shortening/re-lengthening and Ca2+ transient studies were conducted. RESULTS Inducible cardiomyocyte-specific loss of Nexn in adult mice resulted in a dilated cardiomyopathy with reduced cardiac function (13% reduction in percentage fractional shortening; P<0.05). In vivo and in vitro analyses of adult mouse heart samples revealed that NEXN was essential for optimal contraction and calcium handling and was required for maintenance of T-tubule network organization (transverse tubular component in Nexn inducible adult cardiomyocyte-specific KO mice reduced by 40% with respect to controls, P<0.05). CONCLUSIONS Results here reported reveal NEXN to be a pivotal component of adult junctional membrane complexes required for maintenance of transverse-axial tubular architecture. These results demonstrate that NEXN plays an essential role in the adult cardiomyocyte and give further understanding of pathological mechanisms responsible for cardiomyopathy in patients carrying mutations in the NEXN gene.
Collapse
MESH Headings
- Age Factors
- Animals
- Calcium/metabolism
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/physiopathology
- Disease Models, Animal
- Mice
- Mice, Knockout
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Microfilament Proteins/physiology
- Microtubules/metabolism
- Microtubules/physiology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
Collapse
Affiliation(s)
- Simone Spinozzi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Canzhao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ze’e Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei Feng
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Lunfeng Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kunfu Ouyang
- Drug Discovery Center, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Sylvia M. Evans
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Brandenburg S, Pawlowitz J, Eikenbusch B, Peper J, Kohl T, Mitronova GY, Sossalla S, Hasenfuss G, Wehrens XH, Kohl P, Rog-Zielinska EA, Lehnart SE. Junctophilin-2 expression rescues atrial dysfunction through polyadic junctional membrane complex biogenesis. JCI Insight 2019; 4:127116. [PMID: 31217359 DOI: 10.1172/jci.insight.127116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Atrial dysfunction is highly prevalent and associated with increased severity of heart failure. While rapid excitation-contraction coupling depends on axial junctions in atrial myocytes, the molecular basis of atrial loss of function remains unclear. We identified approximately 5-fold lower junctophilin-2 levels in atrial compared with ventricular tissue in mouse and human hearts. In atrial myocytes, this resulted in subcellular expression of large junctophilin-2 clusters at axial junctions, together with highly phosphorylated ryanodine receptor (RyR2) channels. To investigate the contribution of junctophilin-2 to atrial pathology in adult hearts, we developed a cardiomyocyte-selective junctophilin-2-knockdown model with 0 mortality. Junctophilin-2 knockdown in mice disrupted atrial RyR2 clustering and contractility without hypertrophy or interstitial fibrosis. In contrast, aortic pressure overload resulted in left atrial hypertrophy with decreased junctophilin-2 and RyR2 expression, disrupted axial junctions, and atrial fibrosis. Whereas pressure overload accrued atrial dysfunction and heart failure with 40% mortality, additional junctophilin-2 knockdown greatly exacerbated atrial dysfunction with 100% mortality. Strikingly, transgenic junctophilin-2 overexpression restored atrial contractility and survival through de novo biogenesis of polyadic junctional membrane complexes maintained after pressure overload. Our data show a central role of junctophilin-2 cluster disruption in atrial hypertrophy and identify transgenic augmentation of junctophilin-2 as a disease-mitigating rationale to improve atrial dysfunction and prevent heart failure deterioration.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Pawlowitz
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Benjamin Eikenbusch
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jonas Peper
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Kohl
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Gyuzel Y Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samuel Sossalla
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander Ht Wehrens
- Cardiovascular Research Institute - Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Peter Kohl
- University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Eva A Rog-Zielinska
- University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany.,BioMET, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
15
|
Brandenburg S, Pawlowitz J, Fakuade FE, Kownatzki-Danger D, Kohl T, Mitronova GY, Scardigli M, Neef J, Schmidt C, Wiedmann F, Pavone FS, Sacconi L, Kutschka I, Sossalla S, Moser T, Voigt N, Lehnart SE. Axial Tubule Junctions Activate Atrial Ca 2+ Release Across Species. Front Physiol 2018; 9:1227. [PMID: 30349482 PMCID: PMC6187065 DOI: 10.3389/fphys.2018.01227] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/14/2018] [Indexed: 01/10/2023] Open
Abstract
Rationale: Recently, abundant axial tubule (AT) membrane structures were identified deep inside atrial myocytes (AMs). Upon excitation, ATs rapidly activate intracellular Ca2+ release and sarcomeric contraction through extensive AT junctions, a cell-specific atrial mechanism. While AT junctions with the sarcoplasmic reticulum contain unusually large clusters of ryanodine receptor 2 (RyR2) Ca2+ release channels in mouse AMs, it remains unclear if similar protein networks and membrane structures exist across species, particularly those relevant for atrial disease modeling. Objective: To examine and quantitatively analyze the architecture of AT membrane structures and associated Ca2+ signaling proteins across species from mouse to human. Methods and Results: We developed superresolution microscopy (nanoscopy) strategies for intact live AMs based on a new custom-made photostable cholesterol dye and immunofluorescence imaging of membraneous structures and membrane proteins in fixed tissue sections from human, porcine, and rodent atria. Consistently, in mouse, rat, and rabbit AMs, intact cell-wide tubule networks continuous with the surface membrane were observed, mainly composed of ATs. Moreover, co-immunofluorescence nanoscopy showed L-type Ca2+ channel clusters adjacent to extensive junctional RyR2 clusters at ATs. However, only junctional RyR2 clusters were highly phosphorylated and may thus prime Ca2+ release at ATs, locally for rapid signal amplification. While the density of the integrated L-type Ca2+ current was similar in human and mouse AMs, the intracellular Ca2+ transient showed quantitative differences. Importantly, local intracellular Ca2+ release from AT junctions occurred through instantaneous action potential propagation via transverse tubules (TTs) from the surface membrane. Hence, sparse TTs were sufficient as electrical conduits for rapid activation of Ca2+ release through ATs. Nanoscopy of atrial tissue sections confirmed abundant ATs as the major network component of AMs, particularly in human atrial tissue sections. Conclusion: AT junctions represent a conserved, cell-specific membrane structure for rapid excitation-contraction coupling throughout a representative spectrum of species including human. Since ATs provide the major excitable membrane network component in AMs, a new model of atrial “super-hub” Ca2+ signaling may apply across biomedically relevant species, opening avenues for future investigations about atrial disease mechanisms and therapeutic targeting.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Pawlowitz
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Funsho E Fakuade
- Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Kownatzki-Danger
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Kohl
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Gyuzel Y Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Marina Scardigli
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Constanze Schmidt
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany.,Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Francesco S Pavone
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy.,Department of Physics, University of Florence, Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy and National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy
| | - Ingo Kutschka
- Department of Cardiothoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Samuel Sossalla
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Niels Voigt
- Heart Research Center Göttingen, Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Göttingen, Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Göttingen, Göttingen, Germany.,BioMET, The Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Bode D, Guthof T, Pieske BM, Heinzel FR, Hohendanner F. Isolation of Atrial Cardiomyocytes from a Rat Model of Metabolic Syndrome-related Heart Failure with Preserved Ejection Fraction. J Vis Exp 2018. [PMID: 30102264 DOI: 10.3791/57953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this article, we describe an optimized, Langendorff-based procedure for the isolation of single-cell atrial cardiomyocytes (ACMs) from a rat model of metabolic syndrome (MetS)-related heart failure with preserved ejection fraction (HFpEF). The prevalence of MetS-related HFpEF is rising, and atrial cardiomyopathies associated with atrial remodeling and atrial fibrillation are clinically highly relevant as atrial remodeling is an independent predictor of mortality. Studies with isolated single-cell cardiomyocytes are frequently used to corroborate and complement in vivo findings. Circulatory vessel rarefication and interstitial tissue fibrosis pose a potentially limiting factor for the successful single-cell isolation of ACMs from animal models of this disease. We have addressed this issue by employing a device capable of manually regulating the intraluminal pressure of cardiac cavities during the isolation procedure, substantially increasing the yield of morphologically and functionally intact ACMs. The acquired cells can be used in a variety of different experiments, such as cell culture and functional Calcium imaging (i.e., excitation-contraction-coupling). We provide the researcher with a step-by-step protocol, a list of optimized solutions, thorough instructions to prepare the necessary equipment, and a comprehensive troubleshooting guide. While the initial implementation of the procedure might be rather difficult, a successful adaptation will allow the reader to perform state-of-the-art ACM isolations in a rat model of MetS-related HFpEF for a broad spectrum of experiments.
Collapse
Affiliation(s)
- David Bode
- Department of Internal Medicine and Cardiology, Charité University Medicine; German Center for Cardiovascular Research (DZHK)
| | - Tim Guthof
- Department of Internal Medicine and Cardiology, Charité University Medicine
| | - Burkert M Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine; German Center for Cardiovascular Research (DZHK)
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité University Medicine; German Center for Cardiovascular Research (DZHK)
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité University Medicine; German Center for Cardiovascular Research (DZHK);
| |
Collapse
|
17
|
Bhogal NK, Hasan A, Gorelik J. The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. J Cardiovasc Dev Dis 2018; 5:jcdd5020025. [PMID: 29751502 PMCID: PMC6023514 DOI: 10.3390/jcdd5020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/28/2018] [Indexed: 12/26/2022] Open
Abstract
3′-5′-cyclic adenosine monophosphate (cAMP) is a signaling messenger produced in response to the stimulation of cellular receptors, and has a myriad of functional applications depending on the cell type. In the heart, cAMP is responsible for regulating the contraction rate and force; however, cAMP is also involved in multiple other functions. Compartmentation of cAMP production may explain the specificity of signaling following a stimulus. In particular, transverse tubules (T-tubules) and caveolae have been found to be critical structural components for the spatial confinement of cAMP in cardiomyocytes, as exemplified by beta-adrenergic receptor (β-ARs) signaling. Pathological alterations in cardiomyocyte microdomain architecture led to a disruption in compartmentation of the cAMP signal. In this review, we discuss the difference between atrial and ventricular cardiomyocytes in respect to microdomain organization, and the pathological changes of atrial and ventricular cAMP signaling in response to myocyte dedifferentiation. In addition, we review the role of localized phosphodiesterase (PDE) activity in constraining the cAMP signal. Finally, we discuss microdomain biogenesis and maturation of cAMP signaling with the help of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Understanding these mechanisms may help to overcome the detrimental effects of pathological structural remodeling.
Collapse
Affiliation(s)
- Navneet K Bhogal
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Alveera Hasan
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
18
|
Hofhuis J, Schueren F, Nötzel C, Lingner T, Gärtner J, Jahn O, Thoms S. The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code. Open Biol 2017; 6:rsob.160246. [PMID: 27881739 PMCID: PMC5133446 DOI: 10.1098/rsob.160246] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/21/2016] [Indexed: 01/19/2023] Open
Abstract
Translational readthrough gives rise to C-terminally extended proteins, thereby providing the cell with new protein isoforms. These may have different properties from the parental proteins if the extensions contain functional domains. While for most genes amino acid incorporation at the stop codon is far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physiologically extended by translational readthrough and the actual ratio of MDH1x (extended protein) to ‘normal' MDH1 is dependent on the cell type. In human cells, arginine and tryptophan are co-encoded by the MDH1x UGA stop codon. Readthrough is controlled by the 7-nucleotide high-readthrough stop codon context without contribution of the subsequent 50 nucleotides encoding the extension. All vertebrate MDH1x is directed to peroxisomes via a hidden peroxisomal targeting signal (PTS) in the readthrough extension, which is more highly conserved than the extension of lactate dehydrogenase B. The hidden PTS of non-mammalian MDH1x evolved to be more efficient than the PTS of mammalian MDH1x. These results provide insight into the genetic and functional co-evolution of these dually localized dehydrogenases.
Collapse
Affiliation(s)
- Julia Hofhuis
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Fabian Schueren
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Christopher Nötzel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep Sequencing Core Facility, University Medical Center Göttingen, University of Göttingen, 37077 Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Sven Thoms
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
19
|
Macková K, Zahradníková A, Hoťka M, Hoffmannová B, Zahradník I, Zahradníková A. Calcium release-dependent inactivation precedes formation of the tubular system in developing rat cardiac myocytes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:691-703. [PMID: 28913625 DOI: 10.1007/s00249-017-1249-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/21/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023]
Abstract
Developing cardiac myocytes undergo substantial structural and functional changes transforming the mechanism of excitation-contraction coupling from the embryonic form, based on calcium influx through sarcolemmal DHPR calcium channels, to the adult form, relying on local calcium release through RYR calcium channels of sarcoplasmic reticulum stimulated by calcium influx. We characterized day-by-day the postnatal development of the structure of sarcolemma, using techniques of confocal fluorescence microscopy, and the development of the calcium current, measured by the whole-cell patch-clamp in isolated rat ventricular myocytes. We characterized the appearance and expansion of the t-tubule system and compared it with the appearance and progress of the calcium current inactivation induced by the release of calcium ions from sarcoplasmic reticulum as structural and functional measures of direct DHPR-RYR interaction. The release-dependent inactivation of calcium current preceded the development of the t-tubular system by several days, indicating formation of the first DHPR-RYR couplons at the surface sarcolemma and their later spreading close to contractile myofibrils with the growing t-tubules. Large variability of both of the measured parameters among individual myocytes indicates uneven maturation of myocytes within the growing myocardium.
Collapse
Affiliation(s)
- Katarina Macková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Matej Hoťka
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Barbora Hoffmannová
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Ivan Zahradník
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia
| | - Alexandra Zahradníková
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05, Bratislava, Slovakia.
| |
Collapse
|
20
|
Yue X, Zhang R, Kim B, Ma A, Philipson KD, Goldhaber JI. Heterogeneity of transverse-axial tubule system in mouse atria: Remodeling in atrial-specific Na +-Ca 2+ exchanger knockout mice. J Mol Cell Cardiol 2017; 108:50-60. [PMID: 28529049 DOI: 10.1016/j.yjmcc.2017.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/18/2017] [Indexed: 01/20/2023]
Abstract
Transverse-axial tubules (TATs) are commonly assumed to be sparse or absent in atrial myocytes from small animals. Atrial myocytes from rats, cats and rabbits lack TATs, which results in a characteristic "V"-shaped Ca release pattern in confocal line-scan recordings due to the delayed rise of Ca in the center of the cell. To examine TAT expression in isolated mouse atrial myocytes, we loaded them with the membrane dye Di-4-ANEPPS to label TATs. We found that >80% of atrial myocytes had identifiable TATs. Atria from male mice had a higher TAT density than female mice, and TAT density correlated with cell width. Using the fluorescent Ca indicator Fluo-4-AM and confocal imaging, we found that wild type (WT) mouse atrial myocytes generate near-synchronous Ca transients, in contrast to the "V"-shaped pattern typically reported in other small animals such as rat. In atrial-specific Na-Ca exchanger (NCX) knockout (KO) mice, which develop sinus node dysfunction and atrial hypertrophy with dilation, we found a substantial loss of atrial TATs in isolated atrial myocytes. There was a greater loss of transverse tubules compared to axial tubules, resulting in a dominance of axial tubules. Consistent with the overall loss of TATs, NCX KO atrial myocytes displayed a "V"-shaped Ca transient with slower and reduced central (CT) Ca release and uptake in comparison to subsarcolemmal (SS) Ca release. We compared chemically detubulated (DT) WT cells to KO, and found similar slowing of CT Ca release and uptake. However, SS Ca transients in the WT DT cells had faster uptake kinetics than KO cells, consistent with the presence of NCX and normal sarcolemmal Ca efflux in the WT DT cells. We conclude that the remodeling of NCX KO atrial myocytes is accompanied by a loss of TATs leading to abnormal Ca release and uptake that could impact atrial contractility and rhythm.
Collapse
Affiliation(s)
- Xin Yue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, Shaanxi 710061, China; Cedars-Sinai Heart Institute, Division of Applied Cell Biology and Physiology, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Rui Zhang
- Cedars-Sinai Heart Institute, Division of Applied Cell Biology and Physiology, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Brian Kim
- Cedars-Sinai Heart Institute, Division of Applied Cell Biology and Physiology, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, Shaanxi 710061, China; Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education and Key Laboratory of Molecular Cardiology of Shaanxi Province, 277 Yanta West Road, Xi'an, Shaanxi 710061, China.
| | - Kenneth D Philipson
- Department of Physiology, David Geffen School of Medicine at UCLA, 650 Charles Young Drive South, Los Angeles, CA 90095, USA
| | - Joshua I Goldhaber
- Cedars-Sinai Heart Institute, Division of Applied Cell Biology and Physiology, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| |
Collapse
|
21
|
Calderon D, Bardot E, Dubois N. Probing early heart development to instruct stem cell differentiation strategies. Dev Dyn 2016; 245:1130-1144. [PMID: 27580352 DOI: 10.1002/dvdy.24441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/19/2022] Open
Abstract
Scientists have studied organs and their development for centuries and, along that path, described models and mechanisms explaining the developmental principles of organogenesis. In particular, with respect to the heart, new fundamental discoveries are reported continuously that keep changing the way we think about early cardiac development. These discoveries are driven by the need to answer long-standing questions regarding the origin of the earliest cells specified to the cardiac lineage, the differentiation potential of distinct cardiac progenitor cells, and, very importantly, the molecular mechanisms underlying these specification events. As evidenced by numerous examples, the wealth of developmental knowledge collected over the years has had an invaluable impact on establishing efficient strategies to generate cardiovascular cell types ex vivo, from either pluripotent stem cells or via direct reprogramming approaches. The ability to generate functional cardiovascular cells in an efficient and reliable manner will contribute to therapeutic strategies aimed at alleviating the increasing burden of cardiovascular disease and morbidity. Here we will discuss the recent discoveries in the field of cardiac progenitor biology and their translation to the pluripotent stem cell model to illustrate how developmental concepts have instructed regenerative model systems in the past and promise to do so in the future. Developmental Dynamics 245:1130-1144, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Damelys Calderon
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Evan Bardot
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Nicole Dubois
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| |
Collapse
|
22
|
Brandenburg S, Kohl T, Williams GSB, Gusev K, Wagner E, Rog-Zielinska EA, Hebisch E, Dura M, Didié M, Gotthardt M, Nikolaev VO, Hasenfuss G, Kohl P, Ward CW, Lederer WJ, Lehnart SE. Axial tubule junctions control rapid calcium signaling in atria. J Clin Invest 2016; 126:3999-4015. [PMID: 27643434 DOI: 10.1172/jci88241] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022] Open
Abstract
The canonical atrial myocyte (AM) is characterized by sparse transverse tubule (TT) invaginations and slow intracellular Ca2+ propagation but exhibits rapid contractile activation that is susceptible to loss of function during hypertrophic remodeling. Here, we have identified a membrane structure and Ca2+-signaling complex that may enhance the speed of atrial contraction independently of phospholamban regulation. This axial couplon was observed in human and mouse atria and is composed of voluminous axial tubules (ATs) with extensive junctions to the sarcoplasmic reticulum (SR) that include ryanodine receptor 2 (RyR2) clusters. In mouse AM, AT structures triggered Ca2+ release from the SR approximately 2 times faster at the AM center than at the surface. Rapid Ca2+ release correlated with colocalization of highly phosphorylated RyR2 clusters at AT-SR junctions and earlier, more rapid shortening of central sarcomeres. In contrast, mice expressing phosphorylation-incompetent RyR2 displayed depressed AM sarcomere shortening and reduced in vivo atrial contractile function. Moreover, left atrial hypertrophy led to AT proliferation, with a marked increase in the highly phosphorylated RyR2-pS2808 cluster fraction, thereby maintaining cytosolic Ca2+ signaling despite decreases in RyR2 cluster density and RyR2 protein expression. AT couplon "super-hubs" thus underlie faster excitation-contraction coupling in health as well as hypertrophic compensatory adaptation and represent a structural and metabolic mechanism that may contribute to contractile dysfunction and arrhythmias.
Collapse
|
23
|
Brandenburg S, Arakel EC, Schwappach B, Lehnart SE. The molecular and functional identities of atrial cardiomyocytes in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1882-93. [PMID: 26620800 DOI: 10.1016/j.bbamcr.2015.11.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Atrial cardiomyocytes are essential for fluid homeostasis, ventricular filling, and survival, yet their cell biology and physiology are incompletely understood. It has become clear that the cell fate of atrial cardiomyocytes depends significantly on transcription programs that might control thousands of differentially expressed genes. Atrial muscle membranes propagate action potentials and activate myofilament force generation, producing overall faster contractions than ventricular muscles. While atria-specific excitation and contractility depend critically on intracellular Ca(2+) signalling, voltage-dependent L-type Ca(2+) channels and ryanodine receptor Ca(2+) release channels are each expressed at high levels similar to ventricles. However, intracellular Ca(2+) transients in atrial cardiomyocytes are markedly heterogeneous and fundamentally different from ventricular cardiomyocytes. In addition, differential atria-specific K(+) channel expression and trafficking confer unique electrophysiological and metabolic properties. Because diseased atria have the propensity to perpetuate fast arrhythmias, we discuss our understanding about the cell-specific mechanisms that lead to metabolic and/or mitochondrial dysfunction in atrial fibrillation. Interestingly, recent work identified potential atria-specific mechanisms that lead to early contractile dysfunction and metabolic remodelling, suggesting highly interdependent metabolic, electrical, and contractile pathomechanisms. Hence, the objective of this review is to provide an integrated model of atrial cardiomyocytes, from tissue-specific cell properties, intracellular metabolism, and excitation-contraction (EC) coupling to early pathological changes, in particular metabolic dysfunction and tissue remodelling due to atrial fibrillation and aging. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Eric C Arakel
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, University Medical Center Göttingen, 37075 Göttingen, Germany; Department of Cardiology & Pulmonology, University Medical Center Göttingen, 37075 Göttingen, Germany; German Centre for Cardiovascular Research (DZHK) site Göttingen, 37075 Göttingen, Germany.
| |
Collapse
|