1
|
Lin TK, Leu JY, Lai YL, Chang YC, Chung YC, Liu HW. Application of Microwave-Assisted Water Extraction (MAWE) to Fully Realize Various Physiological Activities of Melaleuca quinquenervia Leaf Extract. PLANTS (BASEL, SWITZERLAND) 2024; 13:3362. [PMID: 39683155 DOI: 10.3390/plants13233362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Melaleuca quinquenervia is widely grown in tropical areas worldwide. Studies have demonstrated that extracts of its buds, leaves, and branches obtained through hydrodistillation, steam distillation, or solvent extraction exhibit physiological activities, including anti-melanogenic, antibacterial, and antioxidant properties; nevertheless, such extracts are mostly not effectively collected or adequately utilized. Accordingly, this study applied a rapid, effective, and easy-to-operate microwave-assisted water extraction (MAWE) technique for the first time to prepare M. quinquenervia leaf extract (MLE) with improved physiological activities. The results indicated that the optimal irradiation time and liquid/solid ratio for the production of the MLE were 180 s and 20 mL/g, respectively. Under optimal conditions, the freeze-dried MLE achieved a high yield (6.28% ± 0.08%) and highly effective broad-spectrum physiological activities. The MLE exhibited strong antioxidant, antiaging, and anti-inflammatory activities and excellent antityrosinase and antimicrobial activities. Additionally, the MLE was noncytotoxic at concentrations of ≤300 mg/L, at which it exhibited pharmacological activity. The results also indicated that the MLE comprised a total of 24 chemical compounds and 17 phenolic compounds. Among these compounds, luteolin contributed to antityrosinase activity. The extract's antiaging activity was attributed to ellagic acid and quercetin, its anti-inflammatory activity resulted from ellagic acid and kaempferol, and its antimicrobial activity resulted from quercetin and 3-O-methylellagic acid. In conclusion, the MAWE-derived MLE may be useful as a functional ingredient in cosmetic products, health foods, and botanical drugs.
Collapse
Affiliation(s)
- Ting-Kang Lin
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Jyh-Yih Leu
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yi-Lin Lai
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan
| | - Yu-Chi Chang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei City 115311, Taiwan
| | - Hsia-Wei Liu
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
2
|
Azevedo-Barbosa H, Ferreira-Silva GÁ, do Vale BP, Hawkes JA, Ionta M, Carvalho DT. Synthesis and Structure-Activity Relationship Studies of Novel Aryl Sulfonamides and Their Activity against Human Breast Cancer Cell Lines. Chem Biodivers 2022; 19:e202200831. [PMID: 36305872 DOI: 10.1002/cbdv.202200831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/27/2022] [Indexed: 12/27/2022]
Abstract
A series of structural analogs of aryl sulfonamide hybrid compounds were synthesised and their cytotoxic activity was evaluated against three human breast cancer cell lines (MCF-7, MDA-MB-231 and Hs 578T). The compounds were designed through electronic, hydrophobic and steric modifications using the chemical structure of N-{4-[(2-hydroxy-3-methoxy-5-propylphenyl)sulfamoyl]phenyl}acetamide (referred to as compound 7) as a starting point to then assess a structure-activity relationship (SAR) study. From the data generated, we observed that compounds 9, 10 and 11 (which have modifications in the substituents of the aryl sulfonamide), efficiently reduced the cell viability of MCF-7 and MDA-MB-231 cell cultures. Based on initial data, we selected compounds 10 and 11 for further investigations into their antiproliferative and/or cytotoxic profile against MDA-MB-231 cells, and we noted that compound 10 was the most promising compound in the series. Compound 10 promoted morphological changes and altered the dynamics of cell cycle progression in MDA-MB-231 cells, inducing arrest in G1/S transition. Taken together, these results show that the dihydroeugenol-aryl-sulfonamide hybrid compound 10 (which has an electron withdrawing nitro group) displays promising antiproliferative activity against MDA-MB-231 cell lines.
Collapse
Affiliation(s)
- Helloana Azevedo-Barbosa
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| | - Guilherme Álvaro Ferreira-Silva
- LABAInt - Laboratory of Integrative Animal Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Bianca Pereira do Vale
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| | - Jamie Anthony Hawkes
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| | - Marisa Ionta
- LABAInt - Laboratory of Integrative Animal Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Diogo Teixeira Carvalho
- LQFar - Laboratory of Pharmaceutical Chemistry Research, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, 700, Gabriel Monteiro da Silva, 37130-001, Alfenas, MG, Brazil
| |
Collapse
|
3
|
Submerged fermentation with Lactobacillus brevis significantly improved the physiological activities of Citrus aurantium flower extract. Heliyon 2022; 8:e10498. [PMID: 36097484 PMCID: PMC9463378 DOI: 10.1016/j.heliyon.2022.e10498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/10/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
|
4
|
Parham S, Zargar Kharazi A. Cellulosic textile/clove nanocomposite as an antimicrobial wound dressing: In vitro and in vivo study. Colloids Surf B Biointerfaces 2022; 217:112659. [PMID: 35763896 DOI: 10.1016/j.colsurfb.2022.112659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 01/10/2023]
Abstract
Clove (Syzygium aromaticum) is one of the useful herbal medicine to prevent the bacteria infection. This herbal medicine plant shows high antimicrobial, antioxidant, and anti-inflammation activities because the essential oil and extract of this herb contains a rich source of phenolic compounds. The important phenolic compound of the herb is eugenol. In this study, we endeavored to develop the flexible cellulosic textile nanocomposite by dipping the cellulosic textile in a nano emulsion containing clove herbal medicine (32%wt). This nanocomposite was subjected to detail analyzes using Fourier Transform Infrared Spectroscopy (FTIR), field-emission scanning electron microscope (FESEM) and gas chromatography-mass spectrometry (GC-MS). The mean size of this nano emulsion as measured by electron microscopy is between 100 and 300 nm. The presence of eugenol in this nano emulsion has been confirmed by GC-MS. The wound dressing shows high antimicrobial activity against E. coli (3 ± 0.11 mm), P. aeruginosa (2.8 ± 0.06 mm), S. epidemidis (2.9 ± 0.09 mm), and S. aureus (2.6 ± 0.07 mm). This nano composite showed significant improvement in in vivo wound healing and in vitro cellular compatibility. Nearly 85% of the operation wound was healed during14 days. Accordingly, cellulosic textile/clove wound dressing can be a potential candidate for biomedical application and pre-clinical surveys.
Collapse
Affiliation(s)
- Shokoh Parham
- Department of Biomaterials, Nanotechnology and Tissue Engineering, Faculty of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials, Nanotechnology and Tissue Engineering, Faculty of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Zayed A, Sobeh M, Farag MA. Dissecting dietary and semisynthetic volatile phenylpropenes: A compile of their distribution, food properties, health effects, metabolism and toxicities. Crit Rev Food Sci Nutr 2022; 63:11105-11124. [PMID: 35708064 DOI: 10.1080/10408398.2022.2087175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phenylpropenes represent a major subclass of plant volatiles, including eugenol, and (E)-anethole. They contribute to the flavor and aroma of many chief herbs and spices, to exert distinct notes in food, i.e., spicy anise- and clove-like to fruit. Asides from their culinary use, they appear to exert general health effects, whereas some effects are specific, e.g., eugenol being a natural local anesthetic. This review represents the most comprehensive overview of phenylpropenes with respect to their chemical structures, different health effects, and their food applications as flavor and food preservatives. Side effects and toxicities of these compounds represent the second main part of this review, as some were reported for certain metabolites generated inside the body. Several metabolic reactions mediating for phenylpropenes metabolism in rodents via cytochrome P450 (CYP450) and sulfotransferase (SULT) enzymes are presented being involved in their toxicities. Such effects can be lessened by influencing their pharmacokinetics through a matrix-derived combination effect via administration of herbal extracts containing SULT inhibitors, i.e., nevadensin in sweet basil. Moreover, structural modification of phenylpropanes appears to improve their effects and broaden their applications. Hence, such review capitalizing on phenylpropenes can help optimize their applications in nutraceuticals, cosmeceuticals, and food applications.
Collapse
Affiliation(s)
- Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Tanta, Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mansour Sobeh
- AgroBioSciences, Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Takubo T, Kikuchi N, Nishiwaki H, Yamauchi S. Stereocontrolled syntheses of (-)- and (+)-γ-diisoeugenol along with optically active eight stereoisomers of 7,8'-epoxy-8,7'-neolignan. Org Biomol Chem 2021; 19:2168-2176. [PMID: 33624684 DOI: 10.1039/d1ob00008j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It was shown that reduction of the tertiary benzylic hydroxy group of (2R,3S,4R,5S)-3,5-bis(4-benzyloxy-3-methoxyphenyl)-2,4-dimethyltetrahydro-3-furanol 17 followed by the intramolecular Friedel-Crafts reaction gave exclusively indane with (7S,7'S,8R,8'R)-2,7'-cyclo-7,8'-neolignan structure 18 along with (7S,7'R,8S,8'R)-7,8'-epoxy-8,7'-neolignan structure 19. Indane 18 was converted to (-)-γ-diisoeugenol ((-)-4). On the other hand, (2S,3R,4R,5S)-3,5-bis(4-benzyloxy-3-methoxyphenyl)-2,4-dimethyltetrahydro-3-furanol 22 did not afford indane, but the tetrahydrofuran structure with (7S,7'S,8S,8'S)-7,8'-epoxy-8,7'-neolignan structure 23 and 7'-epi-23.
Collapse
Affiliation(s)
- Tatsuaki Takubo
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | - Nao Kikuchi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | - Hisashi Nishiwaki
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | - Satoshi Yamauchi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| |
Collapse
|
7
|
Shastry RP, Kanekar S, Pandial AS, Rekha PD. Isoeugenol suppresses multiple quorum sensing regulated phenotypes and biofilm formation of Pseudomonas aeruginosa PAO1. Nat Prod Res 2021; 36:1663-1667. [PMID: 33719769 DOI: 10.1080/14786419.2021.1899174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The potential strategy to prevent bacterial pathogenicity is disabling quorum sensing circuits with structural mimicking molecules. Here, we analyzed a synthetic molecule isoeugenol, for inhibition of quorum sensing regulated phenotype and biofilm formation. Isoeugenol was an effective inhibitor, i.e., more than 70% of virulence factors were inhibited including pyocyanin, rhamnolipid, exopolysaccharide, swarming motility and biofilm formation. Interestingly, these quorum sensing regulated phenotypes in Pseudomonas aeruginosa PAO1 were inhibited without affecting the planktonic cells. Moreover, the presence of isoeugenol exhibited more than 70% inhibition of biofilm formation through inhibition of the quorum sensing systems. Furthermore, docking studies suggest that isoeugenol bound to the quorum sensor regulators such as LasI, LasR PqsE and SidA with considerable binding interactions. Our results demonstrate the utility of isoeugenol as a blocker of quorum sensing, which will be functioning as an antivirulence compound.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | - Saptami Kanekar
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | - Aleema Suzna Pandial
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| | - P D Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, India
| |
Collapse
|
8
|
Sardari S, Mobaiend A, Ghassemifard L, Kamali K, Khavasi N. Therapeutic Effect of Thyme (Thymus Vulgaris) Essential Oil on Patients with COVID19: A Randomized Clinical Trial. ACTA ACUST UNITED AC 2021. [DOI: 10.30699/jambs.29.133.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Qin H, Li BC, Dai WF, Xiang C, Qin Y, Jiao SY, Zhang M. Rapid determination of antioxidant molecules in volatiles of rose tea by gas chromatography-mass spectrometry combined with DPPH reaction. Journal of Food Science and Technology 2019; 56:4009-4015. [PMID: 31477972 DOI: 10.1007/s13197-019-03869-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/20/2019] [Accepted: 06/03/2019] [Indexed: 11/25/2022]
Abstract
Volatiles have been regarded as active substances in many foods, whose chemicals can be analyzed by GC-MS qualitatively and quantitatively. However, the activities of volatiles are often studied as a whole, and it has no an effective method to determine that which molecule is active in volatiles by far. In order to identify the antioxidant molecules in volatiles, a rapid determination method was developed by GC-FID/MS combined with DPPH radical reaction in this study. Three antioxidant molecules were identified and validated among 20 components in rose tea infusion. Their activity validation and the methodological evaluation indicated this method could be used for distinguishing antioxidant molecules in volatiles rapidly and effectively.
Collapse
Affiliation(s)
- Hao Qin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Bao-Cai Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Wei-Feng Dai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Cheng Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Yi Qin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Shi-Yun Jiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| | - Mi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 China
| |
Collapse
|
10
|
Abstract
Urgent guidelines of modern chemistry have directed researchers' attention to the use of biomass not only as a source of food, feed, medicinal drugs, fragrances and energy, but also as fine chemicals. Certain easily isolable biomass components are now used as chemical reagents in the synthesis of novel products with a higher added value, replacing existing chemicals based on petroleum sources. Among these biomass components, the essential oils stand out as a valuable source of diverse terpenoid and phenylpropanoid compounds with many bio-medical applications. The aim of this work is to review existing materials in the utilization of the synthetic potential of essential oils extracted from some tropical plants towards their conversion in new functionalized heterocyclic compounds, which could be useful as a pharmacological model in drug research and development.
Collapse
Affiliation(s)
- Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Universidad Industrial de Santander, Parque Tecnológico Guatiguará, Km 2 Vía Refugio, Piedecuesta 681011, Colombia
| |
Collapse
|
11
|
Vargas-Méndez LY, Sanabria-Flórez PL, Saavedra-Reyes LM, Merchan-Arenas DR, Kouznetsov VV. Bioactivity of semisynthetic eugenol derivatives against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae infesting maize in Colombia. Saudi J Biol Sci 2018; 26:1613-1620. [PMID: 31762635 PMCID: PMC6864136 DOI: 10.1016/j.sjbs.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 01/28/2023] Open
Abstract
The anti-acetylcholinesterase, larvicidal, antifeedant activities and general toxicity of 15 semisynthetic eugenol derivatives based on clove oil (including the own oil), were evaluated against the maize armyworm, Spodoptera frugiperda (J.E. Smith). Therefore, promising eugenol molecules were classified with larvicidal, anti-acetylcholinesterase and antifeedant activities for controlling this pest. During structure–activity relationship studies and physicochemical profile analysis, it was found that among tested molecules 1–15, eugenol 1, prenyl eugenol 4, isoeugenol 8 and isoeugenol acetate 11 exhibited lethal effects LD50 at concentrations <1 mg/g of insect. On the other hand, eugenol 1, metallyl eugenol 3, isoeugenol 8 and isoeugenol acetate 11 showed a good antifeedant activity (CE50 = 158–209 µg/mL) with a high antifeedant index (70–78%) at concentration 1000 µg/mL, possessing a weak anti-acetylcholinesterase activity (IC50 = 21–31 μg/mL). According to their ecotoxicological profiles (LC50 = 2033.1–6303.8 µg/mL on Artemia salina larvae), isoeugenol 8 and its acetate derivative 11 could be potential used in control of the growth, feeding, or reproduction of S. frugiperda larvae, acting as moderate insecticidal acetylcholinesterase inhibitors and/or antifeedant molecules. Such structure–activity relationship studies could stimulate the identification of lead structures from natural sources for the development of larvicidal and deterrent products against S. frugiperda and related insect pests.
Collapse
Affiliation(s)
- Leonor Y Vargas-Méndez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental, Universidad Santo Tomás, A.A. 1076 Bucaramanga, Colombia
| | - Pedro L Sanabria-Flórez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental, Universidad Santo Tomás, A.A. 1076 Bucaramanga, Colombia
| | - Laura M Saavedra-Reyes
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental, Universidad Santo Tomás, A.A. 1076 Bucaramanga, Colombia
| | - Diego R Merchan-Arenas
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguará, Km 2 vía refugio, Universidad Industrial de Santander, Piedecuesta A.A. 681011, Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguará, Km 2 vía refugio, Universidad Industrial de Santander, Piedecuesta A.A. 681011, Colombia
| |
Collapse
|
12
|
Anticancer Properties of Essential Oils and Other Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3149362. [PMID: 29765461 PMCID: PMC5889900 DOI: 10.1155/2018/3149362] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
Abstract
Essential oils are secondary metabolites with a key-role in plants protection, consisting primarily of terpenes with a volatile nature and a diverse array of chemical structures. Essential oils exhibit a wide range of bioactivities, especially antimicrobial activity, and have long been utilized for treating various human ailments and diseases. Cancer cell prevention and cytotoxicity are exhibited through a wide range of mechanisms of action, with more recent research focusing on synergistic and antagonistic activity between specific essential oils major and minor components. Essential oils have been shown to possess cancer cell targeting activity and are able to increase the efficacy of commonly used chemotherapy drugs including paclitaxel and docetaxel, having also shown proimmune functions when administered to the cancer patient. The present review represents a state-of-the-art review of the research behind the application of EOs as anticancer agents both in vitro and in vivo. Cancer cell target specificity and the use of EOs in combination with conventional chemotherapeutic strategies are also explored.
Collapse
|
13
|
Akihisa T, Yokokawa S, Ogihara E, Matsumoto M, Zhang J, Kikuchi T, Koike K, Abe M. Melanogenesis-Inhibitory and Cytotoxic Activities of Limonoids, Alkaloids, and Phenolic Compounds from Phellodendron amurense Bark. Chem Biodivers 2017; 14. [PMID: 28425165 DOI: 10.1002/cbdv.201700105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/03/2017] [Indexed: 11/06/2022]
Abstract
Four limonoids, 1 - 4, five alkaloids, 5 - 9, and four phenolic compounds, 10 - 13, were isolated from a MeOH extract of the bark of Phellodendron amurense (Rutaceae). Among these, compound 13 was new, and its structure was established as rel-(1R,2R,3R)-5-hydroxy-3-(4-hydroxy-3-methoxyphenyl)-6-methoxy-1-(methoxycarbonylmethyl)indane-2-carboxylic acid methyl ester (γ-di(methyl ferulate)) based on the spectrometric analysis. Upon evaluation of compounds 1 - 13 against the melanogenesis in the B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), four compounds, limonin (1), noroxyhydrastinine (6), haplopine (7), and 4-methoxy-1-methylquinolin-2(1H)-one (8), exhibited potent melanogenesis-inhibitory activities with almost no toxicity to the cells. Western blot analysis revealed that compound 6 inhibited melanogenesis, at least in part, by inhibiting the expression of protein levels of tyrosinase, TRP-1, and TRP-2 in α-MSH-stimulated B16 melanoma cells. In addition, when compounds 1 - 13 were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), duodenum (AZ521), and breast (SK-BR-3) cancer cell lines, five compounds, berberine (5), 8, canthin-6-one (9), α-di-(methyl ferulate) (12), and 13, exhibited cytotoxicities against one or more cancer cell lines with IC50 values in the range of 2.6 - 90.0 μm. In particular, compound 5 exhibited strong cytotoxicity against AZ521 (IC50 2.6 μm) which was superior to that of the reference cisplatin (IC50 9.5 μm).
Collapse
Affiliation(s)
- Toshihiro Akihisa
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.,Akihisa Medical Clinic, 1086-3 Kamo, Sanda-shi, Hyogo, 669-1311, Japan
| | - Satoru Yokokawa
- College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Eri Ogihara
- College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Masahiro Matsumoto
- College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Jie Zhang
- Department of Natural Medicine Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, P. R. China
| | - Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki-shi, Osaka, 569-1094, Japan
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba, 274-8510, Japan
| | - Masahiko Abe
- Research Institute for Science & Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
14
|
Cenci AM, Ugalde ML, Steffens J, Valduga E, Cansian RL, Toniazzo G. Control of Penicillium sp. on the Surface of Italian Salami Using Essential Oils. Food Technol Biotechnol 2015; 53:342-347. [PMID: 27904367 PMCID: PMC5068374 DOI: 10.17113/ftb.53.03.15.3877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 05/06/2015] [Indexed: 11/12/2022] Open
Abstract
The goal of this study is to evaluate the in vitro effects of rosemary, salvia, oregano and clove oils at volume fractions of 1000, 750, 500, 250, 100, 50, 26, 10 and 5 µL/mL (100, 75, 50, 25, 10, 5, 3, 1 and 0.5%) on the growth of contaminating fungi in salami. The in vitro effect of the oils against fungal growth was indicated by zones of inhibition. Rosemary oil showed an inhibition zone of 9.6 mm only at the maximal volume fraction (1000 µL/mL). Salvia oil showed inhibition zones of 12.2, 11.2 and 10.5 mm only at the three highest fractions tested. Based on the inhibition zones, clove oil at 125 and 250 µL/mL, oregano oil at 250 and 500 µL/mL and a mixture (1:1 by volume) of the two oils at 100 µL/mL were selected to be applied to the surface of salamis. A significant reduction of fungal growth in all of the oil-treated samples was confirmed by visual inspection. A sensory analysis revealed that the samples treated with 125 µL/mL of clove oil or 100 µL/mL of a mixture of oregano and clove oil showed no significant flavour differences compared with the control. Carvacrol and eugenol were the principal compounds in oregano and clove oils, respectively, and were most likely responsible for the antifungal activity.
Collapse
Affiliation(s)
- Aline Maria Cenci
- University of Erechim, Av. 7 de Setembro, 1621, 99700-000 Erechim, RS, Brazil
| | - Mariane Lobo Ugalde
- University of Erechim, Av. 7 de Setembro, 1621, 99700-000 Erechim, RS, Brazil
- Federal Institute of Farroupilha, Campus Júlio de Castilhos, Săo Joăo do Barro Preto s/n, CP. 38,
98130-000 Júlio de Castilhos, RS, Brazil
| | - Juliana Steffens
- University of Erechim, Av. 7 de Setembro, 1621, 99700-000 Erechim, RS, Brazil
| | - Eunice Valduga
- University of Erechim, Av. 7 de Setembro, 1621, 99700-000 Erechim, RS, Brazil
| | | | - Geciane Toniazzo
- University of Erechim, Av. 7 de Setembro, 1621, 99700-000 Erechim, RS, Brazil
| |
Collapse
|
15
|
Safavi M, Shams-Ardakani M, Foroumadi A. Medicinal plants in the treatment of Helicobacter pylori infections. PHARMACEUTICAL BIOLOGY 2015; 53:939-960. [PMID: 25430849 DOI: 10.3109/13880209.2014.952837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Helicobacter pylori is a small, spiral, Gram-negative bacillus that plays a role in the pathogenesis of a number of diseases ranging from asymptomatic gastritis to gastric cancer. Schedule compliance, antibiotic drug resistance, and side-effects of triple or quadruple therapy have led to research for novel candidates from plants. OBJECTIVE The purpose of this paper is to review the most potent medicinal plants of recently published literature with anti-H. pylori activity. For centuries, herbals have been used by traditional healers around the world to treat various gastrointestinal tract disorders such as dyspepsia, gastritis, and peptic ulcer disease. The mechanism of action by which these botanicals exert their therapeutic properties has not been completely and clearly elucidated. Anti-H. pylori properties may be one of the possible mechanisms by which gastroprotective herbs treat gastrointestinal tract disorders. MATERIALS AND METHODS Electronic databases such as PubMed, Google scholar, EBSCO, and local databases were explored for medicinal plants with anti-H. pylori properties between 1984 and 2013 using key words "medicinal plants" and "Helicobacter pylori" or "anti-Helicobacter pylori". RESULTS A total of 43 medicinal plant species belonging to 27 families including Amaryllidaceae, Anacardiaceae, Apiaceae, Apocynaceae, Asclepiadoideae, Asteraceae, Bignoniaceae, Clusiaceae, Chancapiedra, Combretaceae, Cyperaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Lamiaceae, Lauraceae, Lythraceae, Menispermaceae, Myristicaceae, Myrtaceae, Oleaceae, Papaveraceae, Plumbaginaceae, Poaceae, Ranunculaceae, Rosaceae, and Theaceae were studied as herbs with potent anti-H. pylori effects. CONCLUSION Traditional folk medicinal use of some of these plants to treat gastric infections is substantiated by the antibacterial activity of their extracts against H. pylori.
Collapse
Affiliation(s)
- Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST) , Tehran , Iran
| | | | | |
Collapse
|
16
|
Hossain MA, Harbi SRAL, Weli AM, Al-Riyami Q, Al-Sabahi JN. Comparison of chemical constituents and antimicrobial activities of three essential oils from three different brands' clove samples collected from Gulf region. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2014. [DOI: 10.1016/s2222-1808(14)60570-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Nehrenheim K, Meyer I, Brenden H, Vielhaber G, Krutmann J, Grether-Beck S. Dihydrodehydrodiisoeugenol enhances adipocyte differentiation and decreases lipolysis in murine and human cells. Exp Dermatol 2013; 22:638-43. [DOI: 10.1111/exd.12218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Katja Nehrenheim
- IUF - Leibniz Research Institute for Environmental Medicine; Düsseldorf; Germany
| | | | - Heidi Brenden
- IUF - Leibniz Research Institute for Environmental Medicine; Düsseldorf; Germany
| | | | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine; Düsseldorf; Germany
| | - Susanne Grether-Beck
- IUF - Leibniz Research Institute for Environmental Medicine; Düsseldorf; Germany
| |
Collapse
|