1
|
Shi Z, Han S. Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins. Heliyon 2025; 11:e41629. [PMID: 39866414 PMCID: PMC11761934 DOI: 10.1016/j.heliyon.2025.e41629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters. Addressing the variable statin therapeutic outcomes is a pressing clinical challenge. Transcription factors and epigenetic modifications regulate the metabolic enzymes and transporters involved in statin metabolism and disposition and, therefore, hold promise as 'personalized' targets for achieving optimized statin therapy. In this review, we explore the potential for customizing therapy by targeting the metabolism of statin medications. The biochemical bases of adverse reactions to statin drugs and their correlation with polymorphisms in metabolic enzymes and transporters are summarized. Next, we mainly focus on the regulatory roles of transcription factors and epigenetic modifications in regulating the gene expression of statin biochemical machinery. The recommendations for future therapies are finally proposed by targeting the central regulatory factors of statin metabolism.
Collapse
Affiliation(s)
- Zhuangqi Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
2
|
Patel S, Armbruster H, Pardo G, Archambeau B, Kim NH, Jeter J, Wu R, Kendra K, Contreras CM, Spaccarelli N, Dulmage B, Pootrakul L, Carr DR, Verschraegen C. Hedgehog pathway inhibitors for locally advanced and metastatic basal cell carcinoma: A real-world single-center retrospective review. PLoS One 2024; 19:e0297531. [PMID: 38687774 PMCID: PMC11060576 DOI: 10.1371/journal.pone.0297531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/27/2023] [Indexed: 05/02/2024] Open
Abstract
Basal cell carcinoma (BCC) is highly curable by surgical excision or radiation. In rare cases, BCC can be locally destructive or difficult to surgically remove. Hedgehog inhibition (HHI) with vismodegib or sonidegib induces a 50-60% response rate. Long-term toxicity includes muscle spasms and weight loss leading to dose decreases. This retrospective chart review also investigates the impact of CoQ10 and calcium supplementation in patients treated with HHI drugs at a single academic medical center from 2012 to 2022. We reviewed the charts of adult patients diagnosed with locally advanced or metastatic BCC treated with vismodegib or sonidegib primarily for progression-free survival (PFS). Secondary objectives included overall survival, BCC-specific survival, time to and reasons for discontinuation, overall response rate, safety and tolerability, use of CoQ10 and calcium supplements, and insurance coverage. Of 55 patients assessable for outcome, 34 (61.8%) had an overall clinical benefit, with 25 (45.4%) having a complete response and 9 (16.3%) a partial response. Stable disease was seen in 14 (25.4%) and 7 (12.7%) progressed. Of the 34 patients who responded to treatment, 9 recurred. Patients who were rechallenged with HHI could respond again. The median overall BCC-specific survival rate at 5 years is 89%. Dose reductions or discontinuations for vismodegib and sonidegib occurred in 59% versus 24% of cases, or 30% versus 9% of cases, respectively. With CoQ10 and calcium supplementation, only 17% required a dose reduction versus 42% without. HHI is highly effective for treating advanced BCC but may require dosing decreases. Sonidegib was better tolerated than vismodegib. CoQ10 and calcium supplementation can effectively prevent muscle spasms.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Pharmacy, The James Cancer Hospital, Columbus, OH, United States of America
| | - Heather Armbruster
- Department of Pharmacy, The James Cancer Hospital, Columbus, OH, United States of America
| | - Gretchen Pardo
- Department of Pharmacy, The James Cancer Hospital, Columbus, OH, United States of America
| | - Brianna Archambeau
- Department of Pharmacy, The James Cancer Hospital, Columbus, OH, United States of America
| | | | - Joanne Jeter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States of America
| | - Richard Wu
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States of America
| | - Kari Kendra
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States of America
| | - Carlo M. Contreras
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - Natalie Spaccarelli
- Department of Dermatology, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - Brittany Dulmage
- Department of Dermatology, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - Llana Pootrakul
- Department of Dermatology, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - David R. Carr
- Department of Dermatology, The Ohio State University Wexner Medical Center, Columbus, OH, Unites States of America
| | - Claire Verschraegen
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States of America
| |
Collapse
|
3
|
Gavilán-Carrera B, Soriano-Maldonado A, Mediavilla-García JD, Lavie CJ, Vargas-Hitos JA. Prescribing statin therapy in physically (in)active individuals vs prescribing physical activity in statin-treated patients: A four-scenario practical approach. Pharmacol Res 2023; 197:106962. [PMID: 37866703 DOI: 10.1016/j.phrs.2023.106962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Statins are among the most commonly prescribed medications worldwide. Statin-associated muscle symptoms (SAMS) represent a frequent statin-related adverse effect associated with statin discontinuation and increased cardiovascular disease (CVD) events. Emerging evidence indicate that the majority of SAMS might not be actually caused by statins, and the nocebo/drucebo effect (i.e. adverse effects caused by negative expectations) might also explain SAMS. Physical activity (PA) is a cornerstone in the management of CVD risk. However, evidence of increased creatine-kinase levels in statin-treated athletes exposed to a marathon has been generalized, at least to some extent, to the general population and other types of PA. This generalization is likely inappropriate and might induce fear around PA in statin users. In addition, the guidelines for lipid management focus on aerobic PA while the potential of reducing sedentary behavior and undertaking resistance training have been overlooked. The aim of this report is to provide a novel proposal for the concurrent prescription of statin therapy and PA addressing the most common and clinically relevant scenarios by simultaneously considering the different stages of statin therapy and the history of PA. These scenarios include i) statin therapy initiation in physically inactive patients, ii) PA/exercise initiation in statin-treated patients, iii) statin therapy initiation in physically active patients, and iv) statin therapy in athletes and very active individuals performing SAMS-risky activities.
Collapse
Affiliation(s)
- Blanca Gavilán-Carrera
- Department of Internal Medicine, Virgen de las Nieves University Hospital, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain; PA-HELP "Physical Activity for HEaLth Promotion" Research Group, University of Granada, Granada, Spain; Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Alberto Soriano-Maldonado
- Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain; SPORT Research Group (CTS-1024), CIBIS (Centro de Investigación para el Bienestar y la Inclusión Social) Research Center, University of Almería, Almería, Spain.
| | | | - Carl J Lavie
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the UQ School of Medicine, New Orleans, LA, USA
| | - José Antonio Vargas-Hitos
- Department of Internal Medicine, Virgen de las Nieves University Hospital, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
4
|
Fernandes MSDS, Fidelis DEDS, Aidar FJ, Badicu G, Greco G, Cataldi S, Santos GCJ, de Souza RF, Ardigò LP. Coenzyme Q10 Supplementation in Athletes: A Systematic Review. Nutrients 2023; 15:3990. [PMID: 37764774 PMCID: PMC10535924 DOI: 10.3390/nu15183990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND To summarize available evidence in the literature on the impacts of CoQ10 supplementation on metabolic, biochemical, and performance outcomes in athletes. METHODS Six databases, Cochrane Library (33 articles), PubMed (90 articles), Scopus (55 articles), Embase (60 articles), SPORTDiscus (1056 articles), and Science Direct (165 articles), were researched. After applying the eligibility criteria, articles were selected for peer review independently as they were identified by June 2022. The protocol for this systematic review was registered on PROSPERO (CRD42022357750). RESULTS Of the 1409 articles found, 16 were selected for this systematic review. After CoQ10 supplementation, a decrease in oxidative stress markers was observed, followed by higher antioxidant activity. On the other hand, lower levels of liver damage markers (ALT); Aspartate aminotransferase (AST); and Gamma-glutamyl transpeptidase (γGT) were identified. Finally, we found a reduction in fatigue indicators such as Creatine Kinase (CK) and an increase in anaerobic performance. CONCLUSIONS This systematic review concludes that supplementation with orally administered CoQ10 (30-300 mg) was able to potentiate plasma antioxidant activity and anaerobic performance, reducing markers linked to oxidative stress and liver damage in athletes from different modalities aged 17 years old and older.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Graduate Program in Neuropsychiatry and Behavioral Sciences, Center for Medical Sciences, Federal University of Pernambuco, Recife 50740-600, Pernambuco, Brazil;
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil;
| | - Débora Eduarda da Silvia Fidelis
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil;
| | - Felipe J. Aidar
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil; (F.J.A.); (R.F.d.S.)
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, 500068 Braşov, Romania
| | - Gianpiero Greco
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, 70124 Bari, Italy; (G.G.); (S.C.)
| | - Stefania Cataldi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Study of Bari, 70124 Bari, Italy; (G.G.); (S.C.)
| | | | - Raphael Frabrício de Souza
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil; (F.J.A.); (R.F.d.S.)
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, 5812 Oslo, Norway;
| |
Collapse
|
5
|
Kuhlman AB, Mikkelsen LB, Regnersgaard S, Heinrichsen S, Nielsen FH, Frandsen J, Orlando P, Silvestri S, Larsen S, Helge JW, Dela F. The effect of 8 weeks of physical training on muscle performance and maximal fat oxidation rates in patients treated with simvastatin and coenzyme Q10 supplementation. J Physiol 2021; 600:569-581. [PMID: 34891216 DOI: 10.1113/jp281475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/25/2021] [Indexed: 11/08/2022] Open
Abstract
Statins are prescribed for the treatment of elevated cholesterol, but they may negatively affect metabolism, muscle performance, and the response to training. Coenzyme Q10 (CoQ10) supplementation may alleviate these effects. Combined simvastatin and CoQ10 treatment during physical training has never been tested. We studied the response to 8 weeks training (maximal oxygen uptake ( V ̇ O 2 max ), fat oxidation (MFO), the workload at which MFO occurred, and muscle strength) in statin naive dyslipidaemic patients who received simvastatin (40 mg/day) with (S + Q, n = 9) or without (S + Pl, n = 10) CoQ10 supplementation (2 × 200 mg/day) or placebo (Pl + Pl, n = 7) in a randomized, double-blind placebo-controlled study. V ̇ O 2 max and maximal workload increased with training (main effect of time, P < 0.05). MFO increased from 0.29 ± 0.10, 0.26 ± 0.10, and 0.38 ± 0.09 to 0.42 ± 0.09, 0.38 ± 0.10 and 0.48 ± 0.16 g/min in S + Q, S + Pl, and Pl + Pl, respectively (main effect of time, P = 0.0013). The workload at MFO increased from 75 ± 25, 56 ± 23, and 72 ± 17 to 106 ± 25, 84 ± 13 and 102 ± 31 W in S + Q, S + Pl, and Pl + Pl, respectively (main effect of time, P < 0.0001). Maximal voluntary contraction and rate of force development were unchanged. Exercise improved aerobic physical capacity and simvastatin with or without CoQ10 supplementation did not inhibit this adaptation. The similar increases in MFO and in the workload at which MFO occurred in response to training shows that the ability to adapt substrate selection and oxidation rates is preserved with simvastatin treatment, despite the potential negative impact of simvastatin at the mitochondrial level. CoQ10 supplementation does not augment this adaptation. KEY POINTS: Simvastatins are prescribed for treatment of elevated cholesterol, but they may negatively affect metabolism, muscle performance and the response to training. Coenzyme Q10 (CoQ10) supplementation may alleviate some of these effects. We found that simvastatin treatment does not negatively affect training-induced adaptations of substrate oxidation during exercise. Likewise, maximal oxygen uptake increases with physical training also in patients in treatment with simvastatin. CoQ10 supplementation in simvastatin-treated patients presents no advantage in the adaptations to physical training Simvastatin treatment decreases plasma concentrations of total CoQ10, but this can be alleviated by simultaneous supplementation with CoQ10.
Collapse
Affiliation(s)
- Anja Birk Kuhlman
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Bluhme Mikkelsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Regnersgaard
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sophie Heinrichsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederikke Hyldahl Nielsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Frandsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| |
Collapse
|
6
|
Association between Metabolic Syndrome Components and Cardiac Autonomic Modulation among Children and Adolescents: A Systematic Review and Meta-Analysis. BIOLOGY 2021; 10:biology10080699. [PMID: 34439932 PMCID: PMC8389259 DOI: 10.3390/biology10080699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
Simple Summary The clustering of metabolic syndrome (MetS) risk factors is becoming more prevalent in young people (up to the age of 19 years) leading to the development of type 2 diabetes (T2D) and cardiovascular diseases in early adulthood. The impact of MetS risk factors on cardiac autonomic modulation (CAM) or vice versa have been noted to track from childhood to pre-adolescence and adolescence. Understating associations in this age group may help improve the clinical outcomes of the MetS, even when MetS symptoms are not visible. Potential damage from each individual MetS component and the ability to predict early cardiac damage or upcoming cardiovascular events is very important. Therefore, the present systematic review and meta-analysis investigated the associations between CAM and MetS risk factors individually to verify which MetS risk components were significantly correlated with which heart rate variability (HRV) indices before or at the onset of the MetS among young people. The purpose of this review was to outline the importance of potentially screening HRV indices in young people even with only one MetS risk factor, as a pre-indicator for early cardiovascular risk stratification. Cross-sectional studies that examined the relationship of MetS risk factors with HRV indices were searched using four databases including PubMed, the Cochrane clinical trials library, Medline and the Web of Science. Correlation coefficients with 95% confidence intervals (95% CI), and random effects meta-analyses of the association between MetS risk factors with HRV indices were performed. Our results propose that lipid profiles including high density lipoprotein (HDL) and triglycerides (TGs), waist circumference (WC) and blood pressure (BP) are associated with CAM in young people up to the age of 19 years. The use of HRV indices to predict future MetS risk, and relationships with individual risk factors including HDL, BP, WC and TGs, were established. Furthermore, arterial pressure, respiration, stress and physical activity must be taken into consideration for future studies along with CAM related to young people (up to the age of 19 years), and it is recommended to explore further the associations reported here, as CAM is not the only determinant of neurovisceral regulation. Abstract Background: the clustering of metabolic syndrome (MetS) risk factors is becoming more prevalent in children, leading to the development of type 2 diabetes (T2D) and cardiovascular diseases in early adulthood. The impact of MetS risk factors on cardiac autonomic modulation (CAM) or vice versa has been noted to track from childhood to pre-adolescence and adolescence. Understating associations in this age group may help to improve the clinical outcomes of the MetS, even when MetS symptoms are not visible. Potential damage from each individual MetS component and the ability to predict early cardiac damage or upcoming cardiovascular events is very important. Therefore, the present systematic review and meta-analysis investigated the associations between CAM and MetS risk factors individually to verify which of the MetS risk components were significantly correlated with heart rate variability (HRV) indices before or at the onset of the MetS among young people. The purpose of this review was to outline the importance of potentially screening HRV indices in young people even with only one MetS risk factor, as a pre-indicator for early cardiovascular risk stratification. Methods: cross-sectional studies that examined the relationship of MetS risk factors with HRV indices were searched using four databases including PubMed, the Cochrane clinical trials library, Medline and the Web of Science. Correlation coefficients with 95% confidence intervals (95% CI), and random effects meta-analyses of the association between MetS risk factors with HRV indices were performed. Results: out of 14 cross-sectional studies and one case-control study, 8 studies (10 data sets) provided association data for the meta-analysis. Our results indicated significant positive correlations for systolic blood pressure (SBP) (correlation coefficient 0.13 (95%CI: 0.06; 0.19), I2 = 47.26%) and diastolic blood pressure (DBP) (correlation coefficient 0.09 (95%CI: −0.01; 0.18), I2 = 0%) with a Low Frequency/High Frequency ratio (LF/HF). Significant negative correlations for waist circumference (WC) (correlation coefficient −0.12 (95%CI: −0.19; −0.04), I2 = 51.50%), Triglycerides (TGs) (correlation coefficient −0.09 (95%CI: −0.15; −0.02), I2 = 0%) and ≥2 MetS risk factors (correlation coefficient −0.10 (95%CI: −0.16; −0.03), I2 = 0%); with high frequency (HF) were revealed. Significant positive correlations for high density lipoprotein (HDL) (correlation coefficient 0.08 (95%CI: 0.05; 0.11), I2 = 0%) and significant negative correlations of ≥2 MetS risk (correlation coefficient −0.04 (95%CI: −0.12; 0.03), I2 = 0.0%) with low frequency (LF) were revealed. Significant negative correlations for TGs (correlation coefficient −0.09 (95%CI: −0.23; 0.05), I2 = 2.01%) with a mean square root of the sum of differences between mean time between two successive intervals (rMSSD) and significant positive correlation of HDL (correlation coefficient 0.09 (95%CI: −0.01; 0.19), I2 = 0.33%) with standard deviation of the time between two successive intervals (SDNN) were also revealed. An Egger’s test indicated that there was no obvious publication bias for any of the above relationships except for TGs and rMSSD. The significance level stipulated for the meta-analysis was p < 0.05. Conclusions: lipid profiles (HDL and TGs), WC and BP were associated with CAM in young people up to the age of 19 years. The use of HRV indices to predict future MetS risk, and relationships with individual risk factors including HDL, BP, WC and TGs, were established. Future studies related to young people (up to the age of 19 years) are recommended to explore the associations reported here further.
Collapse
|
7
|
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35:101471. [PMID: 32127289 PMCID: PMC7284926 DOI: 10.1016/j.redox.2020.101471] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023] Open
Abstract
Antioxidant supplements are commonly consumed by endurance athletes to minimize exercise-induced oxidative stress, with the intention of enhancing recovery and improving performance. There are numerous commercially available nutritional supplements that are targeted to athletes and health enthusiasts that allegedly possess antioxidant properties. However, most of these compounds are poorly investigated with respect to their in vivo redox activity and efficacy in humans. Therefore, this review will firstly provide a background to endurance exercise-related redox signalling and the subsequent adaptations in skeletal muscle and vascular function. The review will then discuss commonly available compounds with purported antioxidant effects for use by athletes. N-acetyl cysteine may be of benefit over the days prior to an endurance event; while chronic intake of combined 1000 mg vitamin C + vitamin E is not recommended during periods of heavy training associated with adaptations in skeletal muscle. Melatonin, vitamin E and α-lipoic acid appear effective at decreasing markers of exercise-induced oxidative stress. However, evidence on their effects on endurance performance are either lacking or not supportive. Catechins, anthocyanins, coenzyme Q10 and vitamin C may improve vascular function, however, evidence is either limited to specific sub-populations and/or does not translate to improved performance. Finally, additional research should clarify the potential benefits of curcumin in improving muscle recovery post intensive exercise; and the potential hampering effects of astaxanthin, selenium and vitamin A on skeletal muscle adaptations to endurance training. Overall, we highlight the lack of supportive evidence for most antioxidant compounds to recommend to athletes.
Collapse
Affiliation(s)
- Shaun A Mason
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam J Trewin
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Glenn D Wadley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
8
|
Katsiki N, Mikhailidis DP, Bajraktari G, Miserez AR, Cicero AFG, Bruckert E, Serban MC, Mirrakhimov E, Alnouri F, Reiner Ž, Paragh G, Sahebkar A, Banach M. Statin therapy in athletes and patients performing regular intense exercise - Position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2020; 155:104719. [PMID: 32087236 DOI: 10.1016/j.phrs.2020.104719] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 02/08/2023]
Abstract
Acute and chronic physical exercises may enhance the development of statin-related myopathy. In this context, the recent (2019) guidelines of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS) for the management of dyslipidemias recommend that, although individuals with dyslipidemia should be advised to engage in regular moderate physical exercise (for at least 30 min daily), physicians should be alerted with regard to myopathy and creatine kinase (CK) elevation in statin-treated sport athletes. However it is worth emphasizing that abovementioned guidelines, previous and recent ESC/EAS consensus papers on adverse effects of statin therapy as well as other previous attempts on this issue, including the ones from the International Lipid Expert Panel (ILEP), give only general recommendations on how to manage patients requiring statin therapy on regular exercises. Therefore, these guidelines in the form of the Position Paper are the first such an attempt to summary existing, often scarce knowledge, and to present this important issue in the form of step-by-step practical recommendations. It is critically important as we might observe more and more individuals on regular exercises/athletes requiring statin therapy due to their cardiovascular risk.
Collapse
Affiliation(s)
- Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology and Metabolism, Diabetes Center, Medical School, AHEPA University Hospital, Thessaloniki, Greece.
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London (UCL), London, UK
| | - Gani Bajraktari
- Clinic of Cardiology, University Clinical Centre of Kosovo, Prishtina, Kosovo, Serbia; Medical Faculty, University of Prishtina, Prishtina, Kosovo, Serbia; Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Andre R Miserez
- Diagene Research Institute, Reinach, Switzerland; University of Basel, Basel, Switzerland
| | - Arrigo F G Cicero
- Department of Medicine and Surgery Sciences, University of Bologna, Bologna, Italy
| | - Eric Bruckert
- Pitié-Salpêtrière Hospital and Sorbonne University, Cardio Metabolic Institute, Paris, France
| | - Maria-Corina Serban
- Department of Functional Sciences, Discipline of Pathophysiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Erkin Mirrakhimov
- Kyrgyz State Medical Academy, Named after Akhunbaev I.K., Bishkek, Kyrgyzstan
| | - Fahad Alnouri
- Cardiovascular Prevention Unit, Adult Cardiology Department, Prince Sultan Cardiac Centre Riyadh, Saudi Arabia
| | - Željko Reiner
- Department of Internal Diseases University Hospital Center Zagreb School of Medicine, Zagreb University, Zagreb, Croatia
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| |
Collapse
|
9
|
Feature of Heart Rate Variability and Metabolic Mechanism in Female College Students with Depression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5246350. [PMID: 32190670 PMCID: PMC7064846 DOI: 10.1155/2020/5246350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/19/2023]
Abstract
Purpose To explore the effects of depression on cardiac autonomic nerve function and related metabolic pathways, the heart rate variability (HRV) and urinary differential metabolites were detected on the college students with depression. Methods 12 female freshmen with depression were filtered by the Beck Depression Inventory (BDI-II) and Self-rating Depression Scale (SDS). By wearing an HRV monitoring system, time domain indexes and frequency domain indexes were measured over 24 hours. Liquid chromatography–mass spectrometry (LC-MS) was used to detect their urinary differential metabolites. Differential metabolites were identified by principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA). The metabolic pathways related to these differential metabolites were analyzed by the MetPA database. Results Stress time was significantly increased, and recovery time was markedly decreased in the depression group compared with the control group (p < 0.001). Standard deviation of the normal-to-normal R interval (SDNN), root mean square of the beat-to-beat differences (RMSSD), high frequency (HF), and low frequency (LF) were decreased significantly (p < 0.001). Standard deviation of the normal-to-normal R interval (SDNN), root mean square of the beat-to-beat differences (RMSSD), high frequency (HF), and low frequency (LF) were decreased significantly ( Conclusion Some autonomic nervous system disruption, high stress, and poor fatigue recovery were confirmed in college students with depression. The metabolic mechanism involved the disruption of coenzyme Q biosynthesis, glycine-serine-threonine metabolism, tyrosine metabolism, pyrimidine metabolism, and steroid metabolism under daily stress.
Collapse
|
10
|
Stough C, Nankivell M, Camfield DA, Perry NL, Pipingas A, Macpherson H, Wesnes K, Ou R, Hare D, de Haan J, Head G, Lansjoen P, Langsjoen A, Tan B, Pase MP, King R, Rowsell R, Zwalf O, Rathner Y, Cooke M, Rosenfeldt F. CoQ 10 and Cognition a Review and Study Protocol for a 90-Day Randomized Controlled Trial Investigating the Cognitive Effects of Ubiquinol in the Healthy Elderly. Front Aging Neurosci 2019; 11:103. [PMID: 31191293 PMCID: PMC6549544 DOI: 10.3389/fnagi.2019.00103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/17/2019] [Indexed: 12/02/2022] Open
Abstract
Introduction: With an aging population there is an important need for the development of effective treatments for the amelioration of cognitive decline. Multiple mechanisms underlie age-related cognitive decline including cerebrovascular disease, oxidative stress, reduced antioxidant capacity and mitochondrial dysfunction. CoQ10 is a novel treatment which has the potential to improve brain function in healthy elderly populations due to established beneficial effects on mitochondrial function, vascular function and oxidative stress. Methods and Analysis: We describe the protocol for a 90-day randomized controlled trial which examines the efficacy of Ubiquinol (200 mg/day) vs. placebo for the amelioration of cognitive decline in a healthy (non-demented) elderly sample, aged 60 years and over. The primary outcome is the effect of Ubiquinol at 90 days compared to baseline on CogTrack composite measures of cognition. Additional cognitive measures, as well as measures of cardiovascular function, oxidative stress, liver function and mood will also be monitored across 30-, 60- and 90- day time points. Data analyses will involve repeated measures analysis of variance (ANOVA). Discussion: This study will be the first of its kind to provide important clinical and mechanistic data regarding the efficacy of Ubiquinol as a treatment for age-related cognitive decline in the healthy elderly with important implications for productivity and quality of life within this age group. Clinical Trial Registration: The trial has been registered with the Australian and New Zealand Clinical Trials Registry (ANZCTRN12618001841268).
Collapse
Affiliation(s)
- Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Madeleine Nankivell
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David A Camfield
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Naomi L Perry
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Helen Macpherson
- Faculty of Health, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Keith Wesnes
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Wesnes Cognition Limited, Streatley on Thames, United Kingdom.,Department of Psychology, Northumbria University, Newcastle, United Kingdom
| | - Ruchong Ou
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - David Hare
- Austin Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Judy de Haan
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey Head
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Peter Lansjoen
- East Texas Medical Center and Trinity Mother Francis Hospital, Tyler, TX, United States
| | - Alena Langsjoen
- East Texas Medical Center and Trinity Mother Francis Hospital, Tyler, TX, United States
| | - Brendan Tan
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Matthew P Pase
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, Melbourne, VIC, Australia.,Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca King
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Renee Rowsell
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Oliver Zwalf
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Yossi Rathner
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Matthew Cooke
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Franklin Rosenfeldt
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia.,Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
11
|
El-Ganainy SO, El-Mallah A, Abdallah D, Khattab MM, El-Khatib AS, Mohy El-Din MM. A novel investigation of statins myotoxic mechanism: effect of atorvastatin on respiratory muscles in hypoxic environment. Toxicol Lett 2019; 305:58-64. [PMID: 30735765 DOI: 10.1016/j.toxlet.2019.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/12/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
Myopathy is a well-known adverse effect of statins, affecting a large sector of statins users. The reported experimental data emphasized on mechanistic study of statin myopathy on large muscles. Clinically, both large muscles and respiratory muscles are reported to be involved in the myotoxic profile of statins. However, the experimental data investigating the myopathic mechanism on respiratory muscles are still lacking. The present work aimed to study the effect of atorvastatin treatment on respiratory muscles using rat isolated hemidiaphragm in normoxic & hypoxic conditions. The contractile activity of isolated hemidiaphragm in rats treated with atorvastatin for 21 days was investigated using nerve stimulated technique. Muscle twitches, train of four and tetanic stimulation was measured in normoxic, hypoxic and reoxygenation conditions. Atorvastatin significantly increased the tetanic fade, a measure of muscle fatigability, in hypoxic conditions. Upon reoxygenation, rat hemidiaphragm regains its normal contractile profile. Co-treatment with coenzyme Q10 showed significant improvement in defective diaphragmatic contractility in hypoxic conditions. This work showed that atorvastatin treatment rapidly deteriorates diaphragmatic activity in low oxygen environment. The mitochondrial respiratory dysfunction is probably the mechanism behind such finding. This was supported by the improvement of muscle contractile activity following CoQ10 co-treatment.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Ahmed El-Mallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Dina Abdallah
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Mohy El-Din
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
12
|
Qu H, Guo M, Chai H, Wang W, Gao Z, Shi D. Effects of Coenzyme Q10 on Statin-Induced Myopathy: An Updated Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2018; 7:e009835. [PMID: 30371340 PMCID: PMC6404871 DOI: 10.1161/jaha.118.009835] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
Abstract
Background Previous studies have demonstrated a possible association between the induction of coenzyme Q10 (CoQ10) after statin treatment and statin-induced myopathy. However, whether CoQ10 supplementation ameliorates statin-induced myopathy remains unclear. Methods and Results PubMed, EMBASE , and Cochrane Library were searched to identify randomized controlled trials investigating the effect of CoQ10 on statin-induced myopathy. We calculated the pooled weighted mean difference ( WMD ) using a fixed-effect model and a random-effect model to assess the effects of CoQ10 supplementation on statin-associated muscle symptoms and plasma creatine kinase. The methodological quality of the studies was determined, according to the Cochrane Handbook. Publication bias was evaluated by a funnel plot, Egger regression test, and the Begg-Mazumdar correlation test. Twelve randomized controlled trials with a total of 575 patients were enrolled; of them, 294 patients were in the CoQ10 supplementation group and 281 were in the placebo group. Compared with placebo, CoQ10 supplementation ameliorated statin-associated muscle symptoms, such as muscle pain ( WMD , -1.60; 95% confidence interval [ CI ], -1.75 to -1.44; P<0.001), muscle weakness ( WMD , -2.28; 95% CI , -2.79 to -1.77; P=0.006), muscle cramp ( WMD , -1.78; 95% CI , -2.31 to -1.24; P<0.001), and muscle tiredness ( WMD , -1.75; 95% CI , -2.31 to -1.19; P<0.001), whereas no reduction in the plasma creatine kinase level was observed after CoQ10 supplementation ( WMD , 0.09; 95% CI , -0.06 to 0.24; P=0.23). Conclusions CoQ10 supplementation ameliorated statin-associated muscle symptoms, implying that CoQ10 supplementation may be a complementary approach to manage statin-induced myopathy.
Collapse
Affiliation(s)
- Hua Qu
- China Academy of Chinese Medical SciencesBeijingChina
- Xiyuan HospitalChina Academy of Traditional ChineseBeijingChina
| | - Ming Guo
- China Heart Institute of Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Hua Chai
- Beijing University of Traditional Chinese MedicineBeijingChina
- Xiyuan HospitalChina Academy of Traditional ChineseBeijingChina
| | - Wen‐ting Wang
- Beijing University of Traditional Chinese MedicineBeijingChina
- Xiyuan HospitalChina Academy of Traditional ChineseBeijingChina
| | - Zhu‐ye Gao
- China Heart Institute of Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
- Xiyuan HospitalChina Academy of Traditional ChineseBeijingChina
| | - Da‐zhuo Shi
- China Heart Institute of Chinese MedicineChina Academy of Chinese Medical SciencesBeijingChina
- Xiyuan HospitalChina Academy of Traditional ChineseBeijingChina
| |
Collapse
|
13
|
Taylor BA, Thompson PD. Statin-Associated Muscle Disease: Advances in Diagnosis and Management. Neurotherapeutics 2018; 15:1006-1017. [PMID: 30251222 PMCID: PMC6277297 DOI: 10.1007/s13311-018-0670-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since the first approval of lovastatin in 1987, hydroxy-methyl-glutaryl CoA (HMG CoA) reductase inhibitors, or statins, have been effective and widely popular cholesterol-lowering agents with substantial benefits for the prevention and treatment of cardiovascular disease. Not all patients can tolerate these drugs, however, and statin intolerance is most frequently associated with a range of side effects directed toward skeletal muscle, termed statin-associated muscle symptoms or SAMS. SAMS are particularly difficult to treat because there are no validated biomarkers or tests that can be used to confirm patient self-reports of SAMS, and a number of patients who report SAMS have non-specific muscle pain not attributable to statin therapy. This review summarizes the most recent evidence related to diagnosis and management of SAMS. First, the range of skeletal muscle side effects associated with statin therapy is described. Second, data regarding the incidence and prevalence of SAMS, the most frequently experienced muscle side effect, are presented. Third, the most promising new techniques to confirm diagnosis of SAMS are explored. Finally, the most effective strategies for the clinical management of SAMS are summarized. Better diagnostic and treatment strategies for SAMS will increase the number of patients using these life-saving statins, thereby increasing statin adherence and reducing the costs of avoidable cardiovascular events.
Collapse
Affiliation(s)
- Beth A Taylor
- Division of Cardiology, Hartford Healthcare, Hartford, CT, USA.
- Department of Kinesiology, University of Connecticut, Storrs, CT, USA.
- University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Paul D Thompson
- Division of Cardiology, Hartford Healthcare, Hartford, CT, USA
- University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
14
|
Abstract
Skeletal muscle requires a large increase in its ATP production to meet the energy needs of exercise. Normally, most of this increase in ATP is supplied by the aerobic process of oxidative phosphorylation. The main defects in muscle metabolism that interfere with production of ATP are (1) disorders of glycogenolysis and glycolysis, which prevent both carbohydrate entering the tricarboxylic acid cycle and the production of lactic acid; (2) mitochondrial myopathies where the defect is usually within the electron transport chain, reducing the rate of oxidative phosphorylation; and (3) disorders of lipid metabolism. Gas exchange measurements derived from exhaled gas analysis during cardiopulmonary exercise testing can identify defects in muscle metabolism because [Formula: see text]o2 and [Formula: see text]co2 are abnormal at the level of the muscle. Cardiopulmonary exercise testing may thus suggest a likely diagnosis and guide additional investigation. Defects in glycogenolysis and glycolysis are identified by a low peak [Formula: see text]o2 and absence of excess [Formula: see text]co2 from buffering of lactic acid by bicarbonate. Defects in the electron transport chain also result in low peak [Formula: see text]o2, but because there is an overreliance on anaerobic processes, lactic acid accumulation and excess carbon dioxide from buffering occur early during exercise. Defects in lipid metabolism result in only minor abnormalities during cardiopulmonary exercise testing. In defects of glycogenolysis and glycolysis and in mitochondrial myopathies, other features may include an exaggerated cardiovascular response to exercise, a low oxygen-pulse, and excessive ammonia release.
Collapse
|
15
|
Does Coenzyme Q10 Supplementation Mitigate Statin-Associated Muscle Symptoms? Pharmacological and Methodological Considerations. Am J Cardiovasc Drugs 2018; 18:75-82. [PMID: 29027135 DOI: 10.1007/s40256-017-0251-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Statin drugs markedly reduce low-density lipoprotein cholesterol and consequently the incidence of cardiac events. In approximately 5-10% of adults, these drugs are associated with a range of muscle side effects such as muscle pain, cramping and weakness. Reduction in mitochondrial coenzyme Q10 (CoQ10), or ubiquinone, has been proposed as a mechanism for these statin-associated muscle symptoms (SAMS), and thus various formulations of CoQ10 are marketed and consumed for the prevention and treatment of SAMS. However, data supporting the efficacy of CoQ10 are equivocal, with some studies showing that CoQ10 supplementation reduces the incidence and severity of SAMS and others finding no beneficial effects of supplementation. Methodological and pharmacological issues may confound interpretation of data on this topic. For example, many patients who report SAMS, such as those who have been enrolled in previous CoQ10 studies, may be experiencing non-specific (non-statin-associated) muscle pain. In addition, the effectiveness of oral CoQ10 supplementation to increase mitochondrial CoQ10 in human skeletal muscle is not well established. This manuscript will critically evaluate the published data on the efficacy of CoQ10 supplements in the prevention and treatment of SAMS.
Collapse
|
16
|
Abstract
Clinicians should discuss common health issues of the older population and how medical problems affect their sports performance. Patients with chronic conditions, such as hypertension and diabetes mellitus, benefit from participation in sports. However, special care should be taken to keep the patient healthy and minimize effects of these conditions and their treatments in athletic performance. Another important consideration in the older athlete is fluid ingestion and the increased risk of dehydration. There is evidence that physical exercise reduces pain in osteoarthritis and enhances physical function of affected joints. Older athletes often use multiple medications and dietary supplements; Clinicians should educate patients about possible effects of medications in sports performance.
Collapse
Affiliation(s)
- David A Soto-Quijano
- Physical Medicine and Rehabilitation Residency Program, VA Caribbean Healthcare System, 10 Casia Street (117), San Juan, PR 00921, USA.
| |
Collapse
|
17
|
Elsaid O, Taylor B, Zaleski A, Panza G, Thompson PD. Rationale for investigating metformin as a protectant against statin-associated muscle symptoms. J Clin Lipidol 2017; 11:1145-1151. [DOI: 10.1016/j.jacl.2017.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 11/30/2022]
|
18
|
DiNicolantonio JJ, Bhutani J, McCarty MF, O'Keefe JH. Coenzyme Q10 for the treatment of heart failure: a review of the literature. Open Heart 2015; 2:e000326. [PMID: 26512330 PMCID: PMC4620231 DOI: 10.1136/openhrt-2015-000326] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/30/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is an endogenously synthesised and diet-supplied lipid-soluble cofactor that functions in the mitochondrial inner membrane to transfer electrons from complexes I and II to complex III. In addition, its redox activity enables CoQ10 to act as a membrane antioxidant. In patients with congestive heart failure, myocardial CoQ10 content tends to decline as the degree of heart failure worsens. A number of controlled pilot trials with supplemental CoQ10 in heart failure found improvements in functional parameters such as ejection fraction, stroke volume and cardiac output, without side effects. Subsequent meta-analyses have confirmed these findings, although the magnitude of benefit tends to be less notable in patients with severe heart failure, or within the context of ACE inhibitor therapy. The multicentre randomised placebo-controlled Q-SYMBIO trial has assessed the impact of supplemental CoQ10 on hard endpoints in heart failure. A total of 420 patients received either CoQ10 (100 mg three times daily) or placebo and were followed for 2 years. Although short-term functional endpoints were not statistically different in the two groups, CoQ10 significantly reduced the primary long-term endpoint-a major adverse cardiovascular event-which was observed in 15% of the treated participants compared to 26% of those receiving placebo (HR=0.50, CI 0.32 to 0.80, p=0.003). Particularly in light of the excellent tolerance and affordability of this natural physiological compound, supplemental CoQ10 has emerged as an attractive option in the management of heart failure, and merits evaluation in additional large studies.
Collapse
Affiliation(s)
| | | | | | - James H O'Keefe
- Saint Luke's Mid America Heart Institute , Kansas City, Missouri , USA
| |
Collapse
|
19
|
Okada S, Orito K. Tugging force: A new objective index for evaluating acute changes in neuromuscular function in mice. J Pharmacol Toxicol Methods 2015; 76:23-6. [PMID: 26190647 DOI: 10.1016/j.vascn.2015.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Many agents, including muscle relaxants, influence neuromuscular function. Although in vitro and in situ measurement systems of skeletal muscular contractility have been developed and in use for years, no convenient device and parameter are available to examine the time course of the acute effects of such agents on neuromuscular function in conscious mice. METHODS We created a two-compartment device consisting of a transparent, wide, acrylic chamber with a foot shock grid, and an attached, opaque narrow tunnel to measure neuromuscular performance. A mouse placed into the wide chamber, quickly enters the narrow tunnel. We attached a string to the tail of the mouse to measure the developed tugging force when the mouse entered the narrow tunnel. RESULTS After administering the muscle relaxants suxamethonium, vecuronium, and pancuronium, the peak tugging force decreased maximally at 3 or 5 min after administration, and recovered within 20 min. These responses to the muscle relaxants were dose-dependent. DISCUSSION Tugging force is an objective and reproducible parameter for examining the time course of an acute change in neuromuscular function.
Collapse
Affiliation(s)
- Shoichi Okada
- Laboratory of Physiology II, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Kensuke Orito
- Laboratory of Physiology II, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
20
|
Ayer A, Macdonald P, Stocker R. CoQ10Function and Role in Heart Failure and Ischemic Heart Disease. Annu Rev Nutr 2015; 35:175-213. [DOI: 10.1146/annurev-nutr-071714-034258] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Peter Macdonald
- Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia;
| | - Roland Stocker
- Vascular Biology and
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW This article highlights the recent findings regarding statin-associated muscle side effects, including mechanisms and treatment as well as the need for more comprehensive clinical trials in statin myalgia. RECENT FINDINGS Statin myalgia is difficult to diagnose and treat, as major clinical trials have not routinely assessed muscle side-effects, there are few clinically relevant biomarkers and assessment tools for the symptoms, many apparent statin-related muscle symptoms may be nonspecific and related to other drugs or health conditions, and prevalence estimates vary widely. Data thus suggest that only 30-50% of patients with self-reported statin myalgia actually experience muscle pain on statins during blinded, placebo-controlled trials. In addition, evidence to date involving mechanisms underlying statin myalgia and its range of symptoms and presentations supports the hypothesis that there are multiple, interactive and potentially additive mechanisms underlying statin-associated muscle side-effects. SUMMARY There are likely multiple and interactive mechanisms underlying statin myalgia, and recent studies have produced equivocal data regarding prevalence of statin-associated muscle side-effects, contributing factors and effectiveness of common interventions. Therefore, more clinical trials on statin myalgia are critical to the field, as are systematic resources for quantifying, predicting and reporting statin-associated muscle side-effects.
Collapse
Affiliation(s)
- Beth A Taylor
- aDivision of Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford bDepartment of Health Sciences, University of Hartford, West Hartford cUniversity of Connecticut School of Medicine, Farmington, Connecticut, USA
| | | |
Collapse
|
22
|
Feingold KR. Statin myopathy: a problem looking for a solution. Atherosclerosis 2015; 239:85-6. [PMID: 25576849 DOI: 10.1016/j.atherosclerosis.2014.12.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section (111F), Department of Veterans Affairs Medical Center, University of California San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
23
|
Deichmann RE, Lavie CJ, Asher T, DiNicolantonio JJ, O'Keefe JH, Thompson PD. The Interaction Between Statins and Exercise: Mechanisms and Strategies to Counter the Musculoskeletal Side Effects of This Combination Therapy. Ochsner J 2015; 15:429-437. [PMID: 26730228 PMCID: PMC4679305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Broad indications for the use of statin medications are resulting in more patients using these therapies. Simultaneously, healthcare professionals are strongly advocating recommendations to increase exercise training (ET) as a means of decreasing cardiovascular disease (CVD) risk and improving other parameters of fitness. METHODS We review the literature to explore mechanisms that may increase the risk of statin/ET interactions, examine the benefits and risks of combining ET and statin use, and offer strategies to minimize the hazards of this combination therapy. RESULTS The combined use of statins and ET can result in health gains and decreased CVD risk; however, multiple factors may increase the risk of adverse events. Some of the events that have been reported with the combination of statins and ET include decreased athletic performance, muscle injury, myalgia, joint problems, decreased muscle strength, and fatigue. The type of statin, the dose, drug interactions, genetic variants, coenzyme Q10 deficiency, vitamin D deficiency, and underlying muscle diseases are among the factors that may predispose patients to intolerance of this combined therapy. CONCLUSION Effective strategies exist to help patients who may be intolerant of combined statin therapy and ET so they may benefit from this proven therapy. Careful attention to identifying high-risk groups and strategies to prevent or treat side effects that may occur should be employed.
Collapse
Affiliation(s)
- Richard E. Deichmann
- Department of Internal Medicine, Ochsner Clinic Foundation, New Orleans, LA
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| | - Carl J. Lavie
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
- Department of Cardiovascular Diseases, John Ochsner Heart & Vascular Institute, Ochsner Clinic Foundation, New Orleans, LA
| | - Timothy Asher
- The University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| | - James J. DiNicolantonio
- Department of Cardiology, Mid America Heart Institute, Saint Luke's Health System, Kansas City, MO
| | - James H. O'Keefe
- Department of Cardiology, Mid America Heart Institute, Saint Luke's Health System, Kansas City, MO
| | | |
Collapse
|
24
|
Banach M, Serban C, Sahebkar A, Ursoniu S, Rysz J, Muntner P, Toth PP, Jones SR, Rizzo M, Glasser SP, Lip GYH, Dragan S, Mikhailidis DP. Effects of coenzyme Q10 on statin-induced myopathy: a meta-analysis of randomized controlled trials. Mayo Clin Proc 2015; 90:24-34. [PMID: 25440725 DOI: 10.1016/j.mayocp.2014.08.021] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To evaluate the efficacy of coenzyme Q10 (CoQ10) supplementation on statin-induced myopathy. PARTICIPANTS AND METHODS We searched the MEDLINE, Cochrane Library, Scopus, and EMBASE databases (November 1, 1987, to May 1, 2014) to identify randomized controlled trials investigating the impact of CoQ10 on muscle pain and plasma creatine kinase (CK) activity as 2 measures of statin-induced myalgia. Two independent reviewers extracted data on study characteristics, methods, and outcomes. RESULTS We included 6 studies with 302 patients receiving statin therapy: 5 studies with 226 participants evaluated the effect of CoQ10 supplementation on plasma CK activity, and 5 studies (4 used in the CK analysis and 1 other study) with 253 participants were included to assess the effect of CoQ10 supplementation on muscle pain. Compared with the control group, plasma CK activity was increased after CoQ10 supplementation, but this change was not significant (mean difference, 11.69 U/L [to convert to μkat/L, multiply by 0.0167]; 95% CI, -14.25 to 37.63 U/L; P=.38). Likewise, CoQ10 supplementation had no significant effect on muscle pain despite a trend toward a decrease (standardized mean difference, -0.53; 95% CI, -1.33 to 0.28; P=.20). No dose-effect association between changes in plasma CK activity (slope, -0.001; 95% CI, -0.004 to 0.001; P=.33) or in the indices of muscle pain (slope, 0.002; 95% CI, -0.005 to 0.010; P=.67) and administered doses of CoQ10 were observed. CONCLUSION The results of this meta-analysis of available randomized controlled trials do not suggest any significant benefit of CoQ10 supplementation in improving statin-induced myopathy. Larger, well-designed trials are necessary to confirm the findings from this meta-analysis.
Collapse
Affiliation(s)
- Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland.
| | - Corina Serban
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Centre for Interdisciplinary Research, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sorin Ursoniu
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Jacek Rysz
- Department of Nephrology, Hypertension, and Family Medicine, Medical University of Lodz, Lodz, Poland
| | - Paul Muntner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Peter P Toth
- Preventive Cardiology, CGH Medical Center, Sterling, IL
| | - Steven R Jones
- Preventive Cardiology, CGH Medical Center, Sterling, IL; The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD
| | - Manfredi Rizzo
- Biomedical Department of Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Stephen P Glasser
- Department of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Gregory Y H Lip
- University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Simona Dragan
- Centre for Interdisciplinary Research, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania; Department of Cardiology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, University College London Medical School, University College London, London, UK
| | | |
Collapse
|
25
|
Taylor BA, Lorson L, White CM, Thompson PD. A randomized trial of coenzyme Q10 in patients with confirmed statin myopathy. Atherosclerosis 2014; 238:329-35. [PMID: 25545331 DOI: 10.1016/j.atherosclerosis.2014.12.016] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Coenzyme Q10 (CoQ10) supplementation is the most popular therapy for statin myalgia among both physicians and patients despite limited and conflicting evidence of its efficacy. OBJECTIVE This study examined the effect of coenzyme Q10 (CoQ10) supplementation on simvastatin-associated muscle pain, muscle strength and aerobic performance in patients with confirmed statin myalgia. METHODS Statin myalgia was confirmed in 120 patients with prior symptoms of statin myalgia using an 8-week randomized, double-blind crossover trial of simvastatin 20 mg/d and placebo. Forty-one subjects developed muscle pain with simvastatin but not with placebo and were randomized to simvastatin 20 mg/d combined with CoQ10 (600 mg/d ubiquinol) or placebo for 8 weeks. Muscle pain (Brief Pain Inventory [BPI]), time to pain onset, arm and leg muscle strength, and maximal oxygen uptake (VO2max) were measured before and after each treatment. RESULTS Serum CoQ10 increased from 1.3 ± 0.4 to 5.2 ± 2.3 mcg/mL with simvastatin and CoQ10, but did not increase with simvastatin and placebo (1.3 ± 0.3 to 0.8 ± 0.2) (p < 0.05). BPI pain severity and interference scores increased with simvastatin therapy (both p < 0.01), irrespective of CoQ10 assignment (p = 0.53 and 0.56). There were no changes in muscle strength or VO2max with simvastatin with or without CoQ10 (all p > 0.10). Marginally more subjects reported pain with CoQ10 (14 of 20 vs 7 of 18; p = 0.05). There was no difference in time to pain onset in the CoQ10 (3.0 ± 2.0 weeks) vs. placebo (2.4 ± 2.1 wks) groups (p = 0.55). A similar lack of CoQ10 effect was observed in 24 subjects who were then crossed over to the alternative treatment. CONCLUSIONS Only 36% of patients complaining of statin myalgia develop symptoms during a randomized, double-blind crossover of statin vs placebo. CoQ10 supplementation does not reduce muscle pain in patients with statin myalgia. Trial RegistrationNCT01140308; www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Beth A Taylor
- Division of Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, CT, USA; Department of Health Sciences, University of Hartford, West Hartford, CT, USA; University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Lindsay Lorson
- Division of Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, CT, USA
| | - C Michael White
- Division of Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, CT, USA; University of Connecticut School of Medicine, Farmington, CT, USA
| | - Paul D Thompson
- Division of Cardiology, Henry Low Heart Center, Hartford Hospital, Hartford, CT, USA; University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
26
|
Murlasits Z, Radák Z. The Effects of Statin Medications on Aerobic Exercise Capacity and Training Adaptations. Sports Med 2014; 44:1519-30. [DOI: 10.1007/s40279-014-0224-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Relationship between functional capacity and body mass index with plasma coenzyme Q10 and oxidative damage in community-dwelling elderly-people. Exp Gerontol 2014; 52:46-54. [PMID: 24512763 DOI: 10.1016/j.exger.2014.01.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 01/26/2014] [Accepted: 01/28/2014] [Indexed: 11/20/2022]
Abstract
The impact of aging and physical capacity on coenzyme Q10 (Q10) levels in human blood is unknown. Plasma Q10 is an important factor in cardiovascular diseases. To understand how physical activity in the elderly affects endogenous Q10 levels in blood plasma, we studied a cohort of healthy community-dwelling people. Volunteers were subjected to different tests of the Functional Fitness Test Battery including handgrip strength, six-minute walk, 30 s chair to stand, and time up and go tests. Anthropometric characteristics, plasma Q10 and lipid peroxidation (MDA) levels were determined. Population was divided according to gender and fitness. We found that people showing higher levels of functional capacity presented lower levels of cholesterol and lipid peroxidation accompanied by higher levels of Q10 in plasma. The ratio Q10/cholesterol and Q10/LDL increased in these people. No relationship was found when correlated to muscle strength or agility. On the other hand, obesity was related to lower Q10 and higher MDA levels in plasma affecting women more significantly. Our data demonstrate for the first time that physical activity at advanced age can increase the levels of Q10 and lower the levels of lipid peroxidation in plasma, probably reducing the progression of cardiovascular diseases.
Collapse
|