1
|
Chang Y, Shen S, Zhang L, Zeng J, Sun J, Guo YW, Su MZ. 20-Acetylsinularolide B (ASB) From Lobophytum crassum Exhibits Anticancer Activity In Vitro Through IGF1R/PI3K/AKT/mTOR Pathway. Chem Biodivers 2025:e202500114. [PMID: 40246781 DOI: 10.1002/cbdv.202500114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/19/2025]
Abstract
As lung cancer remains the leading cause of cancer-related deaths worldwide, the development of novel therapeutic drugs is essential. 20-Acetylsinularolide B (ASB) is a diterpene isolated from marine soft coral Lobophytum crassum. Our previous studies demonstrated that ASB exhibits growth-inhibitory effects on non-small cell lung cancer (NSCLC) cells. This study employed network pharmacology to predict ASB's potential targets in NSCLC treatment. The predicted target was validated using the cellular thermal shift assay (CETSA). In vitro anticancer activity was assessed through MTT and crystal violet assays for proliferation, along with Western blotting, cell cycle and apoptosis analysis, mitochondrial membrane potential, reactive oxygen species (ROS) levels, and nuclear morphology evaluation. Migration and invasion were evaluated using wound healing and Transwell assays. The results showed that ASB significantly arrests the cell cycle of H1299 cells at the G2/M phase by modulating the IGF1R/PI3K/AKT/mTOR signaling pathway, thereby inhibiting cell mitosis. Simultaneously, ASB promoted intracellular ROS production, reduced mitochondrial membrane potential, and ultimately induced cell apoptosis. In addition, ASB significantly inhibited the colony formation, migration, and invasion abilities of H1299 cells, which are closely associated with the function of the IGF1R target. These findings highlight the significant potential of ASB as a lead anticancer compound for NSCLC therapy.
Collapse
Affiliation(s)
- Yuanmin Chang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Shoumao Shen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, China
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Liting Zhang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Jianang Zeng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Jingyong Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Ming-Zhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
2
|
Pakkianathan J, Chan S, Cruz J, Ewan K, Simental AA, Khan S. Targeting Surface Markers in Anaplastic Thyroid Cancer: Future Directions in Ligand-bound Therapy. J Endocr Soc 2025; 9:bvaf035. [PMID: 40071065 PMCID: PMC11893542 DOI: 10.1210/jendso/bvaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Indexed: 03/14/2025] Open
Abstract
Anaplastic thyroid cancer (ATC) is the rarest and most aggressive form of thyroid cancer, known for its highly variable nature and poor prognosis, primarily due to the lack of effective treatments. While conventional therapies have had limited success, there remains an urgent need for novel therapeutic approaches to combat this disease. ATC tumors are resistant to the standard radioiodine therapy because they lack the sodium/iodide symporter (NIS), which is necessary for iodine uptake. However, recent advances in theranostics targeting cell surface markers have opened new avenues for treating ATC. We used the PubMed database and Google search engine to identify relevant articles using combinations of specific keywords related to the topic of interest, focusing on each surface marker. This review explores multiple surface markers identified in ATC and their promising roles for delivering therapeutic agents into tumors, inducing cell death. Several promising markers, including prostate-specific membrane antigen, vitamin D receptor, IGF-1 receptor, programmed death-ligand 1, epidermal growth factor receptor, and L-type amino acid transporter 1 (LAT-1), have been found in ATC and could serve as effective targets for delivering therapeutic agents to tumors, inducing cell death. Restoring NIS expression is also explored as a potential therapy for ATC. Additionally, boron neutron capture therapy, which utilizes LAT-1 expression, is highlighted as a future therapeutic option due to its ability to selectively target tumor cells while minimizing damage to surrounding healthy tissue. These strategies offer the potential to overcome many of the challenges associated with ATC, improving patient outcomes and overall survival.
Collapse
Affiliation(s)
- Janice Pakkianathan
- Division of Biochemistry, Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Samuel Chan
- Division of Biochemistry, Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Joseph Cruz
- Division of Biochemistry, Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Kennedi Ewan
- Division of Biochemistry, Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Alfred A Simental
- Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Salma Khan
- Division of Biochemistry, Center for Health Disparities & Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Otolaryngology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
3
|
Arora A, Nain P, Kumari R, Kaur J. Major Causes Associated with Clinical Trials Failure and Selective Strategies to Reduce these Consequences: A Review. ARCHIVES OF PHARMACY PRACTICE 2021. [DOI: 10.51847/yjqdk2wtgx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
4
|
Goryashchenko AS, Mozhaev AA, Serova OV, Erokhina TN, Orsa AN, Deyev IE, Petrenko AG. Probing Structure and Function of Alkali Sensor IRR with Monoclonal Antibodies. Biomolecules 2020; 10:E1060. [PMID: 32708676 PMCID: PMC7408431 DOI: 10.3390/biom10071060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
To study the structure and function of the pH-regulated receptor tyrosine kinase insulin receptor-related receptor (IRR), а member of the insulin receptor family, we obtained six mouse monoclonal antibodies against the recombinant IRR ectodomain. These antibodies were characterized in experiments with exogenously expressed full-length IRR by Western blotting, immunoprecipitation, and immunocytochemistry analyses. Utilizing a previously obtained set of IRR/IR chimeras with swapped small structural domains and point amino acid substitutions, we mapped the binding sites of the obtained antibodies in IRR. Five of them showed specific binding to different IRR domains in the extracellular region, while one failed to react with the full-length receptor. Unexpectedly, we found that 4D5 antibody can activate IRR at neutral pH, and 4C2 antibody can inhibit activation of IRR by alkali. Our study is the first description of the instruments of protein nature that can regulate activity of the orphan receptor IRR and confirms that alkali-induced activation is an intrinsic property of this receptor tyrosine kinase.
Collapse
Affiliation(s)
- Alexander S. Goryashchenko
- Laboratory of Receptor Cell Biology, Department of Peptide and Protein Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (O.V.S.); (A.N.O.); (A.G.P.)
| | - Andrey A. Mozhaev
- Laboratory of Receptor Cell Biology, Department of Peptide and Protein Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (O.V.S.); (A.N.O.); (A.G.P.)
- Laboratory of Bioorganic Structures, Department of X-ray and Synchrotron Studies, A.V. Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 119333 Moscow, Russia
| | - Oxana V. Serova
- Laboratory of Receptor Cell Biology, Department of Peptide and Protein Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (O.V.S.); (A.N.O.); (A.G.P.)
| | - Tatiana N. Erokhina
- Laboratory of Molecular Diagnostics, Department of Plant Molecular Biology and Biotechnology, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Alexander N. Orsa
- Laboratory of Receptor Cell Biology, Department of Peptide and Protein Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (O.V.S.); (A.N.O.); (A.G.P.)
| | - Igor E. Deyev
- Group of Molecular Physiology, Department of Peptide and Protein Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Alexander G. Petrenko
- Laboratory of Receptor Cell Biology, Department of Peptide and Protein Technologies, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of Russian Academy of Sciences, 117997 Moscow, Russia; (A.A.M.); (O.V.S.); (A.N.O.); (A.G.P.)
| |
Collapse
|
5
|
Shali H, Shabani M, Pourgholi F, Hajivalili M, Aghebati-Maleki L, Jadidi-Niaragh F, Baradaran B, Movassaghpour Akbari AA, Younesi V, Yousefi M. Co-delivery of insulin-like growth factor 1 receptor specific siRNA and doxorubicin using chitosan-based nanoparticles enhanced anticancer efficacy in A549 lung cancer cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:293-302. [DOI: 10.1080/21691401.2017.1307212] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hajar Shali
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student’s Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Pourgholi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Hajivalili
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi-Niaragh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Younesi
- Pishtaz Teb Diagnostics, Tehran, Iran
- Faculty of Paramedical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Saisana M, Griffin SM, May FE. Importance of the type I insulin-like growth factor receptor in HER2, FGFR2 and MET-unamplified gastric cancer with and without Ras pathway activation. Oncotarget 2016; 7:54445-54462. [PMID: 27437872 PMCID: PMC5342354 DOI: 10.18632/oncotarget.10642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/14/2016] [Indexed: 12/28/2022] Open
Abstract
Amplification of seven oncogenes: HER2, EGFR, FGFR1, FGFR2, MET, KRAS and IGF1R has been identified in gastric cancer. The first five are targeted therapeutically in patients with HER2-positivity, FGFR2- or MET-amplification but the majority of patients are triple-negative and require alternative strategies. Our aim was to evaluate the importance of the IGF1R tyrosine kinase in triple-negative gastric cancer with and without oncogenic KRAS, BRAF or PI3K3CA mutations. Cell lines and metastatic tumor cells isolated from patients expressed IGF1R, and insulin-like growth factor-1 (IGF-1) activated the PI3-kinase/Akt and Ras/Raf/MAP-kinase pathways. IGF-1 protected triple-negative cells from caspase-dependent apoptosis and anoikis. Protection was mediated via the PI3-kinase/Akt pathway. Remarkably, IGF-1-dependent cell survival was greater in patient samples. IGF-1 stimulated triple-negative gastric cancer cell growth was prevented by IGF1R knockdown and Ras/Raf/MAP-kinase pathway inhibition. The importance of the receptor in cell line and metastatic tumor cell growth in serum-containing medium was demonstrated by knockdown and pharmacological inhibition with figitumumab. The proportions of cells in S-phase and mitotic-phase, and Ras/Raf/MAP-kinase pathway activity, were reduced concomitantly. KRAS-addicted and BRAF-impaired gastric cancer cells were particularly susceptible. In conclusion, IGF1R and the IGF signal transduction pathway merit consideration as potential therapeutic targets in patients with triple-negative gastric cancer.
Collapse
Affiliation(s)
- Marina Saisana
- Northern Institute for Cancer Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - S. Michael Griffin
- Northern Institute for Cancer Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
- Northern Oesophago-Gastric Cancer Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Felicity E.B. May
- Northern Institute for Cancer Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
- Newcastle University Institute for Ageing, Department of Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Shali H, Ahmadi M, Kafil HS, Dorosti A, Yousefi M. IGF1R and c-met as therapeutic targets for colorectal cancer. Biomed Pharmacother 2016; 82:528-36. [DOI: 10.1016/j.biopha.2016.05.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 12/15/2022] Open
|
8
|
Nurwidya F, Andarini S, Takahashi F, Syahruddin E, Takahashi K. Implications of Insulin-like Growth Factor 1 Receptor Activation in Lung Cancer. Malays J Med Sci 2016; 23:9-21. [PMID: 27418865 PMCID: PMC4934714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 06/06/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF1R) has been intensively investigated in many preclinical studies using cell lines and animal models, and the results have provided important knowledge to help improve the understanding of cancer biology. IGF1R is highly expressed in patients with lung cancer, and high levels of circulating insulin-like growth factor 1 (IGF1), the main ligand for IGF1R, increases the risk of developing lung malignancy in the future. Several phase I clinical trials have supported the potential use of an IGF1R-targeted strategy for cancer, including lung cancer. However, the negative results from phase III studies need further attention, especially in selecting patients with specific molecular signatures, who will gain benefits from IGF1R inhibitors with minimal side effects. This review will discuss the basic concept of IGF1R in lung cancer biology, such as epithelial-mesenchymal transition (EMT) induction and cancer stem cell (CSC) maintenance, and also the clinical implications of IGF1R for lung cancer patients, such as prognostic value and cancer therapy resistance.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Elisna Syahruddin
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
9
|
Huang CH, Williamson SK, Neupane P, Taylor SA, Allen A, Smart NJ, Uypeckcuat AM, Spencer S, Wick J, Smith H, Van Veldhuizen PJ, Kelly K. Impact Study: MK-0646 (Dalotuzumab), Insulin Growth Factor 1 Receptor Antibody Combined with Pemetrexed and Cisplatin in Stage IV Metastatic Non-squamous Lung Cancer. Front Oncol 2016; 5:301. [PMID: 26793618 PMCID: PMC4710681 DOI: 10.3389/fonc.2015.00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Insulin-like growth factor 1 receptor (IGF-1R) regulates cell growth, proliferation, and apoptosis. Adenocarcinoma and never-smokers have a higher expression of IGF-1R, which is associated with worse overall survival. Dalotuzumab-MK0646 (D) is a humanized monoclonal antibody that targets IGF-1R. Pemetrexed (P) has higher activity in non-squamous lung cancer (NSQL). We initiated a randomized phase II trial to test the combination of P and Cisplatin (C) ± D in NSQL. METHODS Eligibility criteria were untreated NSQL stage IV, ECOG 0 or 1, measurable disease, adequate renal, hepatic and hematologic function, and no other intercurrent illness. P at 500 mg/m(2) and C at 75 mg/m(2) IV were given every 3 weeks. D was given at 10 mg/kg IV weekly on days 1, 8, and 15 of every 3-week cycle in the experimental group. The patients had a radiographic assessment after every two cycles and were treated for a maximum of six cycles if there was a response or stable disease. The primary objective of the study was to compare the clinical response rates of PC vs. PC + D. RESULTS From 1/2009 to 2/2011, the study accrued 26 subjects: 16 male and 10 female, with a median age of 59; 14 were treated with PC and 12 were treated with PC + D. We observed two partial responses (PR), seven stable disease (SD), three progressive disease (PD), and two not evaluable (NE) in the PC arm. In comparison, for the PC + D arm, there were three PR, four SD, four PD, and one NE. The hematologic toxicity was similar in both groups. There was higher incidence of hyperglycemia in the experimental group; four cases with grade 3 and one case with grade 4. CONCLUSION PC + D had a similar response rate compared to PC, with a higher rate of hyperglycemia. Identification of responders using predictive markers would be key to continuing the study of D in NSQL. TRIAL REGISTRATION NCT00799240, clinicaltrials.gov.
Collapse
Affiliation(s)
- Chao H Huang
- Kansas City Veterans Administration Medical Center, Kansas City, MO, USA; University of Kansas Cancer Center, Westwood, KS, USA
| | | | | | | | - Ace Allen
- Kansas City Veterans Administration Medical Center , Kansas City, MO , USA
| | - Nora J Smart
- University of Kansas Cancer Center , Westwood, KS , USA
| | | | - Sarah Spencer
- Kansas City Veterans Administration Medical Center , Kansas City, MO , USA
| | - Jo Wick
- Department of Biostatistics, University of Kansas , Kansas City, KS , USA
| | - Holly Smith
- University of Kansas Cancer Center , Westwood, KS , USA
| | - Peter J Van Veldhuizen
- Kansas City Veterans Administration Medical Center, Kansas City, MO, USA; University of Kansas Cancer Center, Westwood, KS, USA
| | - Karen Kelly
- University of California Davis Comprehensive Cancer Center , Sacramento, CA , USA
| |
Collapse
|
10
|
Ekman S, Harmenberg J, Frödin JE, Bergström S, Wassberg C, Eksborg S, Larsson O, Axelson M, Jerling M, Abrahmsen L, Hedlund Å, Alvfors C, Ståhl B, Bergqvist M. A novel oral insulin-like growth factor-1 receptor pathway modulator and its implications for patients with non-small cell lung carcinoma: A phase I clinical trial. Acta Oncol 2015; 55:140-8. [PMID: 26161618 DOI: 10.3109/0284186x.2015.1049290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND A phase Ia/b dose-escalation study was performed to characterize the safety, efficacy and pharmacokinetic properties of the oral small molecule insulin-like growth factor-1-receptor pathway modulator AXL1717 in patients with advanced solid tumors. MATERIAL AND METHODS This was a prospective, single-armed, open label, dose-finding phase Ia/b study with the aim of single day dosing (phase Ia) to define the starting dose for multi-day dosing (phase Ib), and phase Ib to define and confirm recommended phase II dose (RP2D) and if possible maximum tolerated dose (MTD) for repeated dosing. RESULTS AND CONCLUSION Phase Ia enrolled 16 patients and dose escalations up to 2900 mg BID were successfully performed without any dose limiting toxicity (DLT). A total of 39 patients were treated in phase Ib. AXL1717 was well tolerated with neutropenia as the only dose-related, reversible, DLT. RP2D dose was found to be 390 mg BID for four weeks. Some patients, mainly with NSCLC, demonstrated signs of clinical benefit, including four partial tumor responses (one according to RECIST and three according to PET). The 15 patients with NSCLC with treatment duration longer than two weeks with single agent AXL1717 in third or fourth line of therapy showed a median progression-free survival of 31 weeks and overall survival of 60 weeks. Down-regulation of IGF-1R on granulocytes and increases of free serum levels of IGF-1 were seen in patients treated with AXL1717. AXL1717 had an acceptable safety profile and demonstrated promising efficacy in this heavily pretreated patient cohort, especially in patients with NSCLC. RP2D was concluded to be 390 mg BID for four weeks. Trial number is NCT01062620.
Collapse
Affiliation(s)
- Simon Ekman
- a Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | - Jan-Erik Frödin
- c Department of Oncology , Karolinska University Hospital , Stockholm , Sweden
| | | | - Cecilia Wassberg
- e Section of Radiology, Department of Radiology , Oncology and Radiation Sciences, Uppsala University , Uppsala , Sweden
| | - Staffan Eksborg
- f Childhood Cancer Research Unit, Department of Women's and Children's Health , Karolinska Institutet , Stockholm , Sweden
| | - Olle Larsson
- g Cellular and Molecular Tumor Pathology, Department of Oncology and Pathology , Cancer Centre Karolinska, Karolinska University Hospital , Stockholm , Sweden
| | - Magnus Axelson
- h Department of Clinical Chemistry , Karolinska University Hospital , Stockholm , Sweden
| | - Markus Jerling
- b Axelar AB, Karolinska Institute Science Park , Solna , Sweden
| | - Lars Abrahmsen
- b Axelar AB, Karolinska Institute Science Park , Solna , Sweden
| | - Åsa Hedlund
- a Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | - Birgitta Ståhl
- b Axelar AB, Karolinska Institute Science Park , Solna , Sweden
| | - Michael Bergqvist
- a Department of Immunology , Genetics and Pathology, Uppsala University , Uppsala , Sweden
| |
Collapse
|
11
|
Lodhia KA, Tienchaiananda P, Haluska P. Understanding the Key to Targeting the IGF Axis in Cancer: A Biomarker Assessment. Front Oncol 2015. [PMID: 26217584 PMCID: PMC4495315 DOI: 10.3389/fonc.2015.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type 1 insulin like growth factor receptor (IGF-1R) targeted therapies showed compelling pre-clinical evidence; however, to date, this has failed to translate into patient benefit in Phase 2/3 trials in unselected patients. This was further complicated by the toxicity, including hyperglycemia, which largely results from the overlap between IGF and insulin signaling systems and associated feedback mechanisms. This has halted the clinical development of inhibitors targeting IGF signaling, which has limited the availability of biopsy samples for correlative studies to understand biomarkers of response. Indeed, a major factor contributing to lack of clinical benefit of IGF targeting agents has been difficulty in identifying patients with tumors driven by IGF signaling due to the lack of predictive biomarkers. In this review, we will describe the IGF system, rationale for targeting IGF signaling, the potential liabilities of targeting strategies, and potential biomarkers that may improve success.
Collapse
Affiliation(s)
| | | | - Paul Haluska
- Department of Oncology, Mayo Clinic , Rochester, MN , USA
| |
Collapse
|
12
|
Wang W, Zhang Y, Lv M, Feng J, Peng H, Geng J, Lin Z, Zhou T, Li X, Shen B, Ma Y, Qiao C. Anti-IGF-1R monoclonal antibody inhibits the carcinogenicity activity of acquired trastuzumab-resistant SKOV3. J Ovarian Res 2014; 7:103. [PMID: 25424625 PMCID: PMC4260252 DOI: 10.1186/s13048-014-0103-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/23/2014] [Indexed: 12/18/2022] Open
Abstract
Background Antibody resistance, not only de novo but also acquired cases, usually exists and is related with lower survival rate and high risk of recurrence. Reversing the resistance often results in better clinical therapeutic effect. Previously, we established a trastuzumab-resistant ovarian cancer cell line, named as SKOV3-T, with lower HER2 and induced higher IGF-1R expression level to keep cell survival. Methods IGF-1R was identified important for SKOV3-T growth. Then, a novel anti-IGF-1R monoclonal antibody, named as LMAb1, was used to inhibit SKOV3-T in cell growth/proliferation, migration, clone formation and in vivo carcinogenicity. Results In both in vitro and in vivo assays, LMAb1 showed effective anti-tumor function, especially when being used in combination with trastuzumab, which was beneficial to longer survival time of mice as well as smaller tumor. It was also confirmed preliminarily that the mechanism of antibody might be to inhibit the activation of IGF-1R and downstream MAPK, AKT pathway transduction. Conclusion We achieved satisfactory anti-tumor activity using trastuzumab plus LMAb1 in trastuzumab-resistant ovarian cancer model. In similar cases, not only acquired but also de novo, good curative effect might be achieved using combined antibody therapy strategies.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Cellular and Molecular Immunology, Institute of Immunology, Henan University, Kaifeng, 475001, China. .,Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130(3), Taiping Road #27, Beijing, 100850, China.
| | - Yan Zhang
- Department of Gynecology and Obstetrics, PLA General Hospital, Fuxing Road No. 28, Beijing, 100853, China.
| | - Ming Lv
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130(3), Taiping Road #27, Beijing, 100850, China.
| | - Jiannan Feng
- Laboratory of Cellular and Molecular Immunology, Institute of Immunology, Henan University, Kaifeng, 475001, China. .,Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130(3), Taiping Road #27, Beijing, 100850, China.
| | - Hui Peng
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Beijing, 100850, China.
| | - Jing Geng
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130(3), Taiping Road #27, Beijing, 100850, China.
| | - Zhou Lin
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130(3), Taiping Road #27, Beijing, 100850, China.
| | - Tingting Zhou
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130(3), Taiping Road #27, Beijing, 100850, China.
| | - Xinying Li
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130(3), Taiping Road #27, Beijing, 100850, China.
| | - Beifen Shen
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130(3), Taiping Road #27, Beijing, 100850, China.
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, Institute of Immunology, Henan University, Kaifeng, 475001, China.
| | - Chunxia Qiao
- Laboratory of Immunology, Institute of Basic Medical Sciences, PO Box 130(3), Taiping Road #27, Beijing, 100850, China.
| |
Collapse
|
13
|
Dilli UD, Yildırim M, Suren D, Alikanoglu A, Kaya V, Goktas S, Yildiz M, Sezer C, Gunduz S. Lack of any Prognostic Role of Insulin-Like Growth Factor-1 Receptor in Non-Small Cell Lung Cancer. Asian Pac J Cancer Prev 2014; 15:5753-7. [DOI: 10.7314/apjcp.2014.15.14.5753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Ma H, Zhang T, Shen H, Cao H, Du J. The adverse events profile of anti-IGF-1R monoclonal antibodies in cancer therapy. Br J Clin Pharmacol 2014; 77:917-28. [PMID: 24033707 PMCID: PMC4093917 DOI: 10.1111/bcp.12228] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 08/11/2013] [Indexed: 12/31/2022] Open
Abstract
AIM(S) Insulin-like growth factor-1 receptor (IGF-1R) targeted therapies have become one of the intriguing areas in anticancer drug development during the last decade. As one of these therapies, anti-IGF-1R monoclonal antibodies (mAbs) are also advancing further in development. Our purpose was to conduct a systematic review of the adverse events (AEs) caused by anti-IGF-1R monoclonal antibodies in cancer therapy. METHODS We searched the term'IGF-1R monoclonal antibody' in the Pubmed database and found 389 related articles. After elaborate selection, 15 clinical studies that satisfied our criteria were then adopted for further analysis. We extracted all the useful information about the AEs of mAbs from the enrolled studies. Every kind of reported AE as well as corresponding incidences were summed up and calculated. We compared AE incidence differences in two age groups, and analyzed toxicities of mAbs used as a single agent or combined with chemotherapies. Finally, the differences of AE profiles between individual mAbs were also valued. RESULTS AEs were more severe in the lower age group and 13 of 19 AE incidences in the single-agent group were significantly lower than in the combination group (P < 0.05). R1507 seemed to show a worse AE profile than cixutumumab and figitumumab. CONCLUSIONS When anti-IGF-1R mAbs are used for cancer therapy, it is essential to choose the proper drug and combined chemotherapies to reduce AE occurrences. Also, administration of these mAbs to younger patients should be more carefully supervised. Furthermore, some more frequently observed AEs for specific mAb should be paid adequate attention.
Collapse
Affiliation(s)
- Honghai Ma
- Department of Thoracic Surgery, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Tiehong Zhang
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Hongchang Shen
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Hongxin Cao
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| | - Jiajun Du
- Institute of Oncology, Provincial Hospital Affiliated to Shandong University, Shandong UniversityJinan, China
| |
Collapse
|
15
|
Lennon FE, Mirzapoiazova T, Mambetsariev B, Poroyko VA, Salgia R, Moss J, Singleton PA. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT) in human lung cancer. PLoS One 2014; 9:e91577. [PMID: 24662916 PMCID: PMC3963855 DOI: 10.1371/journal.pone.0091577] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/13/2014] [Indexed: 01/08/2023] Open
Abstract
Recent epidemiologic studies implying differences in cancer recurrence based on anesthetic regimens raise the possibility that the mu opioid receptor (MOR) can influence cancer progression. Based on our previous observations that overexpression of MOR in human non-small cell lung cancer (NSCLC) cells increased tumor growth and metastasis, this study examined whether MOR regulates growth factor receptor signaling and epithelial mesenchymal transition (EMT) in human NSCLC cells. We utilized specific siRNA, shRNA, chemical inhibitors and overexpression vectors in human H358 NSCLC cells that were either untreated or treated with various concentrations of DAMGO, morphine, fentanyl, EGF or IGF. Cell function assays, immunoblot and immunoprecipitation assays were then performed. Our results indicate MOR regulates opioid and growth factor-induced EGF receptor signaling (Src, Gab-1, PI3K, Akt and STAT3 activation) which is crucial for consequent human NSCLC cell proliferation and migration. In addition, human NSCLC cells treated with opioids, growth factors or MOR overexpression exhibited an increase in snail, slug and vimentin and decrease ZO-1 and claudin-1 protein levels, results consistent with an EMT phenotype. Further, these effects were reversed with silencing (shRNA) or chemical inhibition of MOR, Src, Gab-1, PI3K, Akt and STAT3 (p<0.05). Our data suggest a possible direct effect of MOR on opioid and growth factor-signaling and consequent proliferation, migration and EMT transition during lung cancer progression. Such an effect provides a plausible explanation for the epidemiologic findings.
Collapse
Affiliation(s)
- Frances E. Lennon
- Section of Pulmonary and Critical Care, Department of Medicine, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Tamara Mirzapoiazova
- Section of Pulmonary and Critical Care, Department of Medicine, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Bolot Mambetsariev
- Section of Pulmonary and Critical Care, Department of Medicine, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Valeriy A. Poroyko
- Department of Surgery, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Ravi Salgia
- Section of Hematology/Oncology, Department of Medicine, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Jonathan Moss
- Department of Anesthesia and Critical Care, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | - Patrick A. Singleton
- Section of Pulmonary and Critical Care, Department of Medicine, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- Department of Anesthesia and Critical Care, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Singh P, Alex JM, Bast F. Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Med Oncol 2013; 31:805. [PMID: 24338270 DOI: 10.1007/s12032-013-0805-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 12/04/2013] [Indexed: 02/07/2023]
Abstract
Insulin and insulin-like growth factor (IGF) signaling system, commonly known for fine-tuning numerous biological processes, has lately made its mark as a much sought-after therapeutic targets for diabetes and cancer. These receptors make an attractive anticancer target owing to their overexpression in variety of cancer especially in prostate and breast cancer. Inhibitors of IGF signaling were subjected to clinical cancer trials with the main objective to confirm the effectiveness of these receptors as a therapeutic target. However, the results that these trials produced proved to be disappointing as the role played by the cross talk between IGF and insulin receptor (IR) signaling pathways at the receptor level or at downstream signaling level became more lucid. Therapeutic strategy for IGF-1R and IR inhibition mainly encompasses three main approaches namely receptor blockade with monoclonal antibodies, tyrosine kinase inhibition (ATP antagonist and non-ATP antagonist), and ligand neutralization via monoclonal antibodies targeted to ligand or recombinant IGF-binding proteins. Other drug-discovery approaches are employed to target IGF-1R, and IR includes antisense oligonucleotides and recombinant IGF-binding proteins. However, therapies with monoclonal antibodies and tyrosine kinase inhibition targeting the IGF-1R are not evidenced to be satisfactory as expected. Factors that are duly held responsible for the unsuccessfulness of these therapies include (a) the existence of the IR isoform A overexpressed on a variety of cancers, enhancing the mitogenic signals to the nucleus leading to the endorsement of cell growth, (b) IGF-1R and IR that form hybrid receptors sensitive to the stimulation of all three IGF axis ligands, and (c) IGF-1R and IR that also have the potential to form hybrid receptors with other tyrosine kinase to potentiate the cellular transformation, tumorigenesis, and tumor vascularization. This mini review is a concerted effort to explore and fathom the well-recognized roles of the IRA signaling system in human cancer phenotype and the main strategies that have been so far evaluated to target the IR and IGF-1R.
Collapse
Affiliation(s)
- Pushpendra Singh
- Centre for Biosciences, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151001, Punjab, India
| | | | | |
Collapse
|
17
|
Leiphrakpam PD, Agarwal E, Mathiesen M, Haferbier KL, Brattain MG, Chowdhury S. In vivo analysis of insulin-like growth factor type 1 receptor humanized monoclonal antibody MK-0646 and small molecule kinase inhibitor OSI-906 in colorectal cancer. Oncol Rep 2013; 31:87-94. [PMID: 24173770 PMCID: PMC3868504 DOI: 10.3892/or.2013.2819] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/20/2013] [Indexed: 01/15/2023] Open
Abstract
The development and characterization of effective anticancer drugs against colorectal cancer (CRC) is of urgent need since it is the second most common cause of cancer death. The study was designed to evaluate the effects of two IGF-1R antagonists, MK-0646, a recombinant fully humanized monoclonal antibody and OSI-906, a small molecule tyrosine kinase inhibitor on CRC cells. Xenograft study was performed on IGF-1R-dependent CRC cell lines for analyzing the antitumor activity of MK-0646 and OSI-906. Tumor proliferation and apoptosis were assessed using Ki67 and TUNEL assays, respectively. We also performed in vitro characterization of MK-0646 and OSI-906 treatment on CRC cells to identify mechanisms associated with drug-induced cell death. Exposure of the GEO and CBS tumor xenografts to MK-0646 or OSI-906 led to a decrease in tumor growth. TUNEL analysis showed an increase of approximately 45-55% in apoptotic cells in both MK-0646 and OSI-906 treated tumor samples. We report the novel finding that treatment with IGF-1R antagonists led to downregulation of X-linked inhibitor of apoptosis (XIAP) protein involved in cell survival and inhibition of cell death. In conclusion, IGF-1R antagonists (MK-0646 and OSI-906) demonstrated single agent inhibition of subcutaneous CRC xenograft growth. This was coupled to pro-apoptotic effects resulting in downregulation of XIAP and inhibition of cell survival. We report a novel mechanism by which MK-0646 and OSI-906 elicits cell death in vivo and in vitro. Moreover, these results indicate that MK-0646 and OSI-906 may be potential anticancer candidates for the treatment of patients with IGF-1R-dependent CRC.
Collapse
Affiliation(s)
- Premila D Leiphrakpam
- Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | | | | | | | | | |
Collapse
|
18
|
Brott DA, Diamond M, Campbell P, Zuvich A, Cheatham L, Bentley P, Gorko MA, Fikes J, Saye J. An acute rat in vivo screening model to predict compounds that alter blood glucose and/or insulin regulation. J Pharmacol Toxicol Methods 2013; 68:190-196. [PMID: 23835094 DOI: 10.1016/j.vascn.2013.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 05/29/2013] [Accepted: 06/28/2013] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Drug-induced glucose dysregulation and insulin resistance have been associated with weight gain and potential induction and/or exacerbation of diabetes mellitus in the clinic suggesting they may be safety biomarkers when developing antipsychotics. Glucose and insulin have also been suggested as potential efficacy biomarkers for some oncology compounds. The objective of this study was to qualify a medium throughput rat in vivo acute Intravenous Glucose Tolerance Test (IVGTT) for predicting compounds that will induce altered blood glucose and/or insulin levels. METHODS Acute and sub-chronic studies were performed to qualify an acute IVGTT model. Double cannulated male rats (Han-Wistar and Sprague-Dawley) were administered vehicle, olanzapine, aripiprazole or other compounds at t=-44min for acute studies and at time=-44min on the last day of dosing for sub-chronic studies, treated with dextrose (time=0min; i.v.) and blood collected using an automated Culex® system for glucose and insulin analysis (time=-45, -1, 2, 10, 15, 30, 45, 60, 75, 90, 120, 150 and 180min). RESULTS Olanzapine significantly increased glucose and insulin area under the curve (AUC) values while aripiprazole AUC values were similar to control, in both acute and sub-chronic studies. All atypical antipsychotics evaluated were consistent with literature references of clinical weight gain. As efficacy biomarkers, insulin AUC but not glucose AUC values were increased with a compound known to have insulin growth factor-1 (IGF-1) activity, compared to control treatment. DISCUSSION These studies qualified the medium throughput acute IVGTT model to more quickly screen compounds for 1) safety - the potential to elicit glucose dysregulation and/or insulin resistance and 2) efficacy - as a surrogate for compounds affecting the glucose and/or insulin regulatory pathways. These data demonstrate that the same in vivo rat model and assays can be used to predict both clinical safety and efficacy of compounds.
Collapse
Affiliation(s)
- David A Brott
- Global Safety Assessment, AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850 USA.
| | - Melody Diamond
- Global Safety Assessment, AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850 USA
| | - Pam Campbell
- Global Safety Assessment, AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850 USA
| | - Andy Zuvich
- Global Safety Assessment, AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850 USA
| | - Letitia Cheatham
- Global Safety Assessment, AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850 USA
| | - Patricia Bentley
- Global Safety Assessment, AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850 USA
| | - Mary Ann Gorko
- Global Safety Assessment, AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850 USA
| | - James Fikes
- Global Safety Assessment, AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850 USA
| | - JoAnne Saye
- Global Safety Assessment, AstraZeneca Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850 USA
| |
Collapse
|
19
|
Abstract
INTRODUCTION Lung cancer is the leading cause of cancer death worldwide. As clinical benefits to conventional cancer therapies are still formidable, there is an urgent need for novel agents and approaches to improve the overall clinical outcomes for patients with lung cancer. AREAS COVERED This article reviews the current understanding of targeted therapy for lung cancer with monoclonal antibodies (mAbs), mainly bevacizumab and cetuximab. The results from several key clinical trials validating the effectiveness and safety of bevacizumab and cetuximab, the relation of cancer biomarkers, the polymorphic correlation of targeted genes with the therapeutic outcome of mAb-based treatment, as well as the impact of Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) trial on personalised treatment of lung cancer are discussed. EXPERT OPINION The addition of bevacizumab or cetuximab to chemotherapy has shown promising benefits to the patients with non-small-cell lung cancer. However, the overall benefits of mAb-based targeted therapy to lung cancer patients vary among individuals. It is therefore necessary to define reliable predictive biomarkers in an effort to better identify patients who are most likely to benefit from treatment with these novel agents in lung cancer.
Collapse
Affiliation(s)
- Yujiong Wang
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Yinchuan, Ningxia, China
| | | | | | | |
Collapse
|
20
|
Fang Z, Grütter C, Rauh D. Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem Biol 2013; 8:58-70. [PMID: 23249378 DOI: 10.1021/cb300663j] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modulation of kinase function has become an important goal in modern drug discovery and chemical biology research. In cancer-targeted therapies, kinase inhibitors have been experiencing an upsurge, which can be measured by the increasing number of kinase inhibitors approved by the FDA in recent years. However, lack of efficacy, limited selectivity, and the emergence of acquired drug resistance still represent major bottlenecks in the clinic and challenge inhibitor development. Most known kinase inhibitors target the active kinase and are ATP competitive. A second class of small organic molecules, which address remote sites of the kinase and stabilize enzymatically inactive conformations, is rapidly moving to the forefront of kinase inhibitor research. Such allosteric modulators bind to sites that are less conserved across the kinome and only accessible upon conformational changes. These molecules are therefore thought to provide various advantages such as higher selectivity and extended drug target residence times. This review highlights various strategies that have been developed to utilizing exclusive structural features of kinases and thereby modulating their activity allosterically.
Collapse
Affiliation(s)
- Zhizhou Fang
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| | - Christian Grütter
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| | - Daniel Rauh
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| |
Collapse
|
21
|
Goto Y, Sekine I, Tanioka M, Shibata T, Tanai C, Asahina H, Nokihara H, Yamamoto N, Kunitoh H, Ohe Y, Kikkawa H, Ohki E, Tamura T. Figitumumab combined with carboplatin and paclitaxel in treatment-naïve Japanese patients with advanced non-small cell lung cancer. Invest New Drugs 2012; 30:1548-56. [PMID: 21748299 PMCID: PMC3388259 DOI: 10.1007/s10637-011-9715-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/29/2011] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The insulin-like growth factor (IGF) signaling pathway has been implicated in the pathogenesis of numerous tumor types, including non-small cell lung cancer (NSCLC). Figitumumab is a fully human IgG2 monoclonal antibody against IGF-1 receptor (IGF-1R). METHODS This phase I, open-label, dose-escalation study (ClinicalTrials.gov: NCT00603538) assessed the safety and tolerability of figitumumab (6, 10 and 20 mg/kg) in combination with carboplatin (area under the curve: 6 mg·min/mL) and paclitaxel (200 mg/m(2)) in Japanese patients (N = 19) with chemotherapy-naïve, advanced NSCLC. Treatments were administered intravenously on day 1 of a 21-day cycle for four to six cycles. Pharmacokinetics, biomarkers, and antitumor activity were also evaluated. RESULTS Figitumumab in combination with carboplatin and paclitaxel was well tolerated at doses up to 20 mg/kg; no dose-limiting toxicities were observed at this dose level. When given in combination, figitumumab plasma exposure increased in an approximately dose-proportional manner. The approximate 2-fold accumulation following repeated administration supported the 21-day regimen as appropriate for figitumumab administration. Serum total IGF-1 and IGF binding protein-3 concentrations increased following figitumumab dosing, but a clear dose-dependent relationship was not demonstrated. Seven of 18 evaluable patients experienced a partial response. CONCLUSIONS Figitumumab 20 mg/kg in combination with carboplatin and paclitaxel was well tolerated in chemotherapy-naïve Japanese patients with NSCLC. Further analysis of biomarker data is necessary for the development of figitumumab therapy.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/blood
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Asian People
- Biomarkers, Tumor/blood
- Carboplatin/adverse effects
- Carboplatin/blood
- Carboplatin/pharmacokinetics
- Carboplatin/therapeutic use
- Carcinoma, Non-Small-Cell Lung/blood
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Dose-Response Relationship, Drug
- Female
- Humans
- Immunoglobulins, Intravenous
- Japan
- Lung Neoplasms/blood
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Paclitaxel/adverse effects
- Paclitaxel/blood
- Paclitaxel/pharmacokinetics
- Paclitaxel/therapeutic use
- Time Factors
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Yasushi Goto
- Department of Internal Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Ikuo Sekine
- Department of Internal Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Maki Tanioka
- Department of Internal Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takashi Shibata
- Department of Internal Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Chiharu Tanai
- Department of Internal Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Hajime Asahina
- Department of Internal Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Hiroshi Nokihara
- Department of Internal Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Noboru Yamamoto
- Department of Internal Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Hideo Kunitoh
- Department of Internal Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Yuichiro Ohe
- Department of Internal Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | | | - Emiko Ohki
- Pfizer Oncology, Global Research and Development, Tokyo, Japan
| | - Tomohide Tamura
- Department of Internal Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Thyroid eye disease (TED) is a poorly understood autoimmune manifestation most commonly associated with Graves' disease. Current nonspecific treatment paradigms offer symptomatic improvement but fail to target the underlying pathogenic mechanisms, and thus do not significantly alter the long-term disease outcome. The purpose of this review is to provide an update of the current understanding of the immunopathogenesis of TED and explore these mechanisms for targeted immunotherapy. RECENT FINDINGS Orbital fibroblasts are integral to the pathogenesis of TED and may modulate immune responses by production of cytokines and hyaluronan in response to activation of shared autoantigens including thyrotropin receptor and insulin-like growth factor-1 receptor. Bone marrow-derived fibrocytes share many of these phenotypic and functional features, suggesting a link between systemic and site-specific disease. Use of targeted immunotherapies in TED is limited, though data from the use Rituximab (RTX), a B-cell depleting agent, are encouraging. Sustained clinical response has been seen with RTX in several reports, despite return of peripheral B-cell levels to pretreatment levels. Additionally, this response appears to be independent of cytokine and antibody production, suggesting modulation of antigen presentation as a mechanism of its effect. SUMMARY Progressive advances in the understanding of the immunopathogenesis of TED continue to spur clinical trials utilizing targeted immune therapies. Continued understanding of the molecular mechanisms of disease will expand potential treatments for TED patients and obviate the need for reconstructive surgical therapies.
Collapse
|
23
|
King ER, Wong KK. Insulin-like growth factor: current concepts and new developments in cancer therapy. Recent Pat Anticancer Drug Discov 2012; 7:14-30. [PMID: 21875414 PMCID: PMC3724215 DOI: 10.2174/157489212798357930] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/20/2011] [Accepted: 01/05/2011] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factor (IGF) family and the IGF-1 receptor (IGF-1R) play an important role in cancer. This intricate and complex signaling pathway provides many opportunities for therapeutic intervention, and several novel therapeutics aimed at the IGF-1R, particularly monoclonal antibodies and small molecule tyrosine kinase inhibitors, are under clinical investigation. This article provides a patent overview of the IGF signaling pathway and its complexity, addresses the justification for the use of IGF-1R-targeted therapy, and reviews the results of in vivo and in vitro novel therapeutics. Over the past year, the completion of several phase I, II, and III trials have provided interesting new information about the clinical activity of these novel compounds, particularly CP-751,871, IMC-A12, R1507, AMG-479, AVE-1642, MK-0646, XL-228, OSI-906, and BMS-754807. We review the important preliminary results from clinical trials with these compounds and conclude with a discussion about future therapeutic efforts.
Collapse
Affiliation(s)
- Erin R King
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.
| | | |
Collapse
|
24
|
Sun Y, Zheng S, Torossian A, Speirs CK, Schleicher S, Giacalone NJ, Carbone DP, Zhao Z, Lu B. Role of insulin-like growth factor-1 signaling pathway in cisplatin-resistant lung cancer cells. Int J Radiat Oncol Biol Phys 2011; 82:e563-72. [PMID: 22197230 DOI: 10.1016/j.ijrobp.2011.06.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/03/2011] [Accepted: 06/24/2011] [Indexed: 10/14/2022]
Abstract
PURPOSE The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. METHODS AND MATERIALS H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. RESULTS Cisplatin-R cells illustrated greater expression of the markers CD133 and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. CONCLUSIONS The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.
Collapse
Affiliation(s)
- Yunguang Sun
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN 37232-5671, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu CM, Li TM, Hsu SF, Su YC, Kao ST, Fong YC, Tang CH. IGF-I enhances α5β1 integrin expression and cell motility in human chondrosarcoma cells. J Cell Physiol 2011; 226:3270-7. [PMID: 21344385 DOI: 10.1002/jcp.22688] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. Insulin-like growth factor-I (IGF)-I plays an important role in regulating cell growth, proliferation, survival, and metabolism. However, the effects of IGF-I in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that IGF-I increased the migration and the expression of α5β1 integrin in human chondrosarcoma cells. Pretreatment of cells with IGF-I receptor antibody reduced IGF-I-induced cell migration and integrin expression. Activations of phosphatidylinositol 3-kinase (PI3K), Akt, and nuclear factor-κB (NF-κB) pathways after IGF-I treatment were demonstrated, and IGF-I-induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of PI3K, Akt, and NF-κB cascades. Taken together, our results indicated that IGF-I enhances the migration of chondrosarcoma cells by increasing α5β1 integrin expression through the IGF-I receptor/PI3K/Akt/NF-κB signal transduction pathway.
Collapse
Affiliation(s)
- Chi-Ming Wu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
26
|
Ozkan EE. Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: a review. Mol Cell Endocrinol 2011; 344:1-24. [PMID: 21782884 DOI: 10.1016/j.mce.2011.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 07/01/2011] [Indexed: 12/13/2022]
Abstract
Cancer database analysis indicates that prostate cancer is one of the most seen cancers in men meanwhile composing the leading cause of morbidity and mortality among developed countries. Current available therapies are surgery, radiotherapy and androgene ablation for prostate carcinoma. The response rate is as high nearly 90% however, most of these recur or become refractory and androgene independent (AI). Therefore recent studies intensified on molecular factors playing role on development of prostate carcinoma and novel treatment strategies targetting these factors and their receptors. Insulin-like growth factor-I (IGF-I) and its primary receptor insulin-like growth factor receptor-I (IGF-IR) are among these factors. Biologic functions and role in malign progression are primarily achieved via IGF-IR which is a type 2 tyrosine kinase receptor. IGF-IR plays an important role in mitogenesis, angiogenesis, transformation, apoptosis and cell motility. It also generates intensive proliferative signals leading to carcinogenesis in prostate tissue. So IGF-IR and its associated signalling system have provoked considerable interest over recent years as a novel therapeutic target in cancer. In this paper it is aimed to sum up the lately published literature searching the relation of IGF-IR and prostate cancer in terms of incidence, pathologic features, and prognosis. This is followed by a discussion of the different possible targets within the IGF-1R system, and drugs developed to interact at each target. A systems-based approach is then used to review the in vitro and in vivo data in the published literature of the following compounds targeting IGF-1R components using specific examples: growth hormone releasing hormone antagonists (e.g. JV-1-38), growth hormone receptor antagonists (e.g. pegvisomant), IGF-1R antibodies (e.g. CP-751,871, AVE1642/EM164, IMC-A12, SCH-717454, BIIB022, AMG 479, MK-0646/h7C10), and IGF-1R tyrosine kinase inhibitors (e.g. BMS-536942, BMS-554417, NVP-AEW541, NVP-ADW742, AG1024, potent quinolinyl-derived imidazo (1,5-a)pyrazine PQIP, picropodophyllin PPP, nordihydroguaiaretic acid Insm-18/NDGA). And the other end point is to yield an overview on the recent progress about usage of this receptor as a novel anticancer agent of targeted therapies in treatment of prostate carcinoma.
Collapse
Affiliation(s)
- Emine Elif Ozkan
- OSM Middle East Health Center, Department of Radiation Oncology, Sanliurfa 63000, Turkey.
| |
Collapse
|
27
|
Scagliotti GV, Novello S. The role of the insulin-like growth factor signaling pathway in non-small cell lung cancer and other solid tumors. Cancer Treat Rev 2011; 38:292-302. [PMID: 21907495 DOI: 10.1016/j.ctrv.2011.07.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/15/2011] [Accepted: 07/25/2011] [Indexed: 01/25/2023]
Abstract
The type 1 insulin-like growth factor receptor (IGF-1R) and its downstream signaling components have become increasingly recognized as having a driving role in the development of malignancy, and consequently IGF-1R has become a potential target for cancer therapy. Several inhibitors of IGF-1R are in clinical development for the treatment of solid tumors, including non-small cell lung cancer (NSCLC). These IGF-1R-targeted agents include monoclonal antibodies such as cixutumumab (IMC-A12), AMG-479, AVE1642, BIIB022, dalotuzumab (MK-0646), and robatumumab (Sch717454), the ligand neutralizing antibody Medi-573, and the small molecule inhibitors BMS-754807, linsitinib (OSI-906), XL228, and AXL1717. Two phase III trials of the anti-IGF-1R monoclonal antibody, figitumumab (CP-751,871), were discontinued in 2010 as it was considered unlikely either trial would meet their primary endpoints. In light of disappointing clinical data with figitumumab and other targeted agents, it is likely that the use of molecular markers will become important in predicting response to treatment. This review outlines the role of IGF-1R signaling in solid tumors with a particular focus on NSCLC, and provides an overview of clinical data.
Collapse
Affiliation(s)
- Giorgio V Scagliotti
- Department of Clinical and Biological Sciences, Thoracic Oncology Unit, University of Turin, S. Luigi Hospital, Orbassano, Italy.
| | | |
Collapse
|
28
|
Ludwig JA, Lamhamedi-Cherradi SE, Lee HY, Naing A, Benjamin R. Dual targeting of the insulin-like growth factor and collateral pathways in cancer: combating drug resistance. Cancers (Basel) 2011; 3:3029-54. [PMID: 24212944 PMCID: PMC3759185 DOI: 10.3390/cancers3033029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/06/2011] [Accepted: 07/19/2011] [Indexed: 12/18/2022] Open
Abstract
The insulin-like growth factor pathway, regulated by a complex interplay of growth factors, cognate receptors, and binding proteins, is critically important for many of the hallmarks of cancer such as oncogenesis, cell division, growth, and antineoplastic resistance. Naturally, a number of clinical trials have sought to directly abrogate insulin-like growth factor receptor 1 (IGF-1R) function and/or indirectly mitigate its downstream mediators such as mTOR, PI3K, MAPK, and others under the assumption that such therapeutic interventions would provide clinical benefit, demonstrable by impaired tumor growth as well as prolonged progression-free and overall survival for patients. Though a small subset of patients enrolled within phase I or II clinical trials revealed dramatic clinical response to IGF-1R targeted therapies (most using monoclonal antibodies to IGF-1R), in toto, the anticancer effect has been underwhelming and unsustained, as even those with marked clinical responses seem to rapidly acquire resistance to IGF-1R targeted agents when used alone through yet to be identified mechanisms. As the IGF-1R receptor is just one of many that converge upon common intracellular signaling cascades, it is likely that effective IGF-1R targeting must occur in parallel with blockade of redundant signaling paths. Herein, we present the rationale for dual targeting of IGF-1R and other signaling molecules as an effective strategy to combat acquired drug resistance by carcinomas and sarcomas.
Collapse
Affiliation(s)
- Joseph A. Ludwig
- Departments of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; E-Mails: (S.L.C.); (R.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1 (713) 792-3626; Fax: +1 (713) 794-1934
| | - Salah-Eddine Lamhamedi-Cherradi
- Departments of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; E-Mails: (S.L.C.); (R.B.)
| | - Ho-Young Lee
- Departments of Thoracic Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; E-Mail: (H.Y.L.)
| | - Aung Naing
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; E-Mail: (A.N.)
| | - Robert Benjamin
- Departments of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; E-Mails: (S.L.C.); (R.B.)
| |
Collapse
|
29
|
Gao J, Chesebrough JW, Cartlidge SA, Ricketts SA, Incognito L, Veldman-Jones M, Blakey DC, Tabrizi M, Jallal B, Trail PA, Coats S, Bosslet K, Chang YS. Dual IGF-I/II-neutralizing antibody MEDI-573 potently inhibits IGF signaling and tumor growth. Cancer Res 2011; 71:1029-40. [PMID: 21245093 DOI: 10.1158/0008-5472.can-10-2274] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factors (IGF), IGF-I and IGF-II, are small polypeptides involved in regulating cell proliferation, survival, differentiation, and transformation. IGF activities are mediated through binding and activation of IGF-1R or insulin receptor isoform A (IR-A). The role of the IGF-1R pathway in promoting tumor growth and survival is well documented. Overexpression of IGF-II and IR-A is reported in multiple types of cancer and is proposed as a potential mechanism for cancer cells to develop resistance to IGF-1R-targeting therapy. MEDI-573 is a fully human antibody that neutralizes both IGF-I and IGF-II and inhibits IGF signaling through both the IGF-1R and IR-A pathways. Here, we show that MEDI-573 blocks the binding of IGF-I and IGF-II to IGF-1R or IR-A, leading to the inhibition of IGF-induced signaling pathways and cell proliferation. MEDI-573 significantly inhibited the in vivo growth of IGF-I- or IGF-II-driven tumors. Pharmacodynamic analysis demonstrated inhibition of IGF-1R phosphorylation in tumors in mice dosed with MEDI-573, indicating that the antitumor activity is mediated via inhibition of IGF-1R signaling pathways. Finally, MEDI-573 significantly decreased (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in IGF-driven tumor models, highlighting the potential utility of (18)F-FDG-PET as a noninvasive pharmacodynamic readout for evaluating the use of MEDI-573 in the clinic. Taken together, these results demonstrate that the inhibition of IGF-I and IGF-II ligands by MEDI-573 results in potent antitumor activity and offers an effective approach to selectively target both the IGF-1R and IR-A signaling pathways.
Collapse
Affiliation(s)
- Jin Gao
- MedImmune, Gaithersburg, Maryland 20878, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
IMPORTANCE OF THE FIELD Figitumumab is being developed as a highly potent and specific fully human IgG2 monoclonal antibody against the IGF Type 1 receptor (IGF-IR) for the treatment of cancer. AREAS COVERED IN THIS REVIEW This manuscript reviews the rationale, preclinical data and early clinical results of the figitumumab development program. Early trials were initiated in 2003 and initial reports appeared in 2006. WHAT THE READER WILL GAIN Figitumumab has an effective half life of approximately 20 days and has been generally well tolerated in clinical trials. Initial pharmacodynamic studies suggested that IGF-IR overexpression and increased bioactivity of IGFs constitute independent mechanisms of tumor sensitivity to figitumumab. Single-agent activity has been noted in Ewing's sarcoma and a recently completed proof-of-concept study suggested that figitumumab may be active in NSCLC. TAKE HOME MESSAGE The strong biologic rationale for IGF-IR targeting in multiple types of human cancer and the feasibility of combination with full doses of therapies that constitute the standard of care in a variety of oncology indications have justified an expanded clinical program in multiple areas of unmet medical need in oncology.
Collapse
Affiliation(s)
- Antonio Gualberto
- Pfizer Oncology, 50 Pequot Ave MS6025-A3266, New London, CT 06320, USA.
| |
Collapse
|
31
|
Engen W, O'Brien TE, Kelly B, Do J, Rillera L, Stapleton LK, Youngren JF, Anderson MO. Synthesis of aryl-heteroaryl ureas (AHUs) based on 4-aminoquinoline and their evaluation against the insulin-like growth factor receptor (IGF-1R). Bioorg Med Chem 2010; 18:5995-6005. [PMID: 20643554 DOI: 10.1016/j.bmc.2010.06.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/02/2023]
Abstract
The insulin-like growth factor receptor (IGF-1R) is a receptor tyrosine kinase (RTK) involved in all stages of the development and propagation of breast and other cancers. The inhibition of IGF-1R by small molecules remains a promising strategy to treat cancer. Herein, we explore SAR around previously characterized lead compound (1), which is an aryl-heteroaryl urea (AHU) consisting of 4-aminoquinaldine and a substituted aromatic ring system. A library of novel AHU compounds was prepared based on derivatives of the 4-aminoquinoline heterocycle (including various 2-substituted derivatives, and naphthyridines). The compounds were screened for in vitro inhibitory activity against IGF-1R, and several compounds with improved activity (3-5 microM) were identified. Furthermore, a computational docking study was performed, which identifies a fairly consistent lowest energy mode of binding for the more-active set of inhibitors in this series, while the less-active inhibitors do not adopt a consistent mode of binding.
Collapse
Affiliation(s)
- William Engen
- Department of Chemistry & Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zha J, Lackner MR. Targeting the insulin-like growth factor receptor-1R pathway for cancer therapy. Clin Cancer Res 2010; 16:2512-7. [PMID: 20388853 DOI: 10.1158/1078-0432.ccr-09-2232] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signaling through the insulin-like growth factor receptor (IGF-1R) is required for neoplastic transformation by a number of oncogenes, and preclinical validation studies have suggested IGF-1R is an attractive target for anticancer therapy. A number of small molecules and antibodies targeting IGF-1R have entered clinical development, and early results have suggested that these agents have generally acceptable safety profiles as single agents. Some evidence of antitumor activity has also been reported. This review highlights key aspects of the IGF-1R signaling pathway that implicate it as an attractive therapeutic target in the management of cancer, as well as some key lessons that have emerged from early clinical development of anti-IGF-1R targeting agents. In addition, we consider the importance of selecting indications characterized by pathological alterations in the signaling pathway, rational selection of combinations based on signaling pathway interactions, and strategies for patient selection based on analysis of predictive biomarkers.
Collapse
Affiliation(s)
- Jiping Zha
- Department of Research Pathology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | |
Collapse
|
33
|
Targeting insulin-like growth factor type 1 receptor in cancer therapy. Target Oncol 2009; 4:255-66. [PMID: 19876700 DOI: 10.1007/s11523-009-0123-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 10/14/2009] [Indexed: 01/03/2023]
Abstract
It is believed that the insulin-like growth factor receptor type 1 (IGF-1R) signaling pathway plays a pivotal role in cancer growth, progression, and resistance to anticancer therapies. Strategies are being developed to block IGF-1R as an anticancer treatment. We reviewed several potential strategies for disrupting the IGF axis. We also reviewed the effects of two drugs that target the IGF-1R: monoclonal antibodies and tyrosine kinase inhibitors. Preliminary results of studies involving these agents provided a foundation for ongoing clinical trials, whose results in the near future will help us understand how to incorporate anti IGF-1R strategies into the current anticancer armamentarium.
Collapse
|
34
|
Ramnath N, Govindan R. Progress in the treatment of metastatic non-small-cell lung cancer: slow but steady! Clin Lung Cancer 2009; 10:260-1. [PMID: 19632945 DOI: 10.3816/clc.2009.n.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Nithya Ramnath
- Division of Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|