1
|
Toyooka K, Goto Y, Hashimoto K, Wakazaki M, Sato M, Hirai MY. Endoplasmic Reticulum Bodies in the Lateral Root Cap Are Involved in the Direct Transport of Beta-Glucosidase to Vacuoles. PLANT & CELL PHYSIOLOGY 2023; 64:461-473. [PMID: 36617247 DOI: 10.1093/pcp/pcac177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 05/17/2023]
Abstract
Programmed cell death (PCD) in lateral root caps (LRCs) is crucial for maintaining root cap functionality. Endoplasmic reticulum (ER) bodies play important roles in plant immunity and PCD. However, the distribution of ER bodies and their communication with vacuoles in the LRC remain elusive. In this study, we investigated the ultrastructure of LRC cells of wild-type and transgenic Arabidopsis lines using an auto-acquisition transmission electron microscope (TEM) system and high-pressure freezing. Gigapixel-scale high-resolution TEM imaging of the transverse and longitudinal sections of roots followed by three-dimensional imaging identified sausage-shaped structures budding from the ER. These were subsequently identified as ER bodies using GFPh transgenic lines expressing green fluorescent protein (GFP) fused with an ER retention signal (HDEL). Immunogold labeling using an anti-GFP antibody detected GFP signals in the ER bodies and vacuoles. The fusion of ER bodies with vacuoles in LRC cells was identified using correlative light and electron microscopy. Imaging of the root tips of a GFPh transgenic line with a PYK10 promoter revealed the localization of PYK10, a member of the β-glucosidase family with an ER retention signal, in the ER bodies in the inner layer along with a fusion of ER bodies with vacuoles in the middle layer and collapse of vacuoles in the outer layer of the LRC. These findings suggest that ER bodies in LRC directly transport β-glucosidases to the vacuoles, and that a subsequent vacuolar collapse triggered by an unknown mechanism releases protective substances to the growing root tip to protect it from the invaders.
Collapse
Affiliation(s)
- Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Yumi Goto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Kei Hashimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
2
|
Driouich A, Gaudry A, Pawlak B, Moore JP. Root cap-derived cells and mucilage: a protective network at the root tip. PROTOPLASMA 2021; 258:1179-1185. [PMID: 34196784 DOI: 10.1007/s00709-021-01660-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/27/2021] [Indexed: 05/06/2023]
Abstract
Root cap-derived cells and mucilage provide the first line of defense of the plant against soil microbial pathogens. These cells form a mucilaginous root extracellular trap (RET), which also harbors a range of molecules including exDNA and defensive peptides and proteins much like the neutrophil extracellular trap (NET) of mammalians. Plant RETs resemble mucus structures found in mammalian systems and are rich in arabinogalactan proteins that have similarities to highly glycosylated human mucins. Human mucus and mucins regulate the intestinal flora microbiome through recruiting certain species of microbes and it is plausible that the arabinogalactan protein-rich mucilage found in plant roots fulfills a similar function by attracting specific microbes to the rhizosphere. The role of RETs in root defense functioning is highlighted.
Collapse
Affiliation(s)
- Azeddine Driouich
- UNIROUEN, Normandie Université, Laboratoire Glycobiologie Et Matrice Extracellulaire Végétale EA 4358, Université de Rouen Normandie, 76000, Rouen, France.
- UNIROUEN, Fédération de Recherche, Normandie Université, Normandie Végétal-FED 4277, Université de Rouen Normandie, 76000, Rouen, France.
| | - Alexia Gaudry
- UNIROUEN, Normandie Université, Laboratoire Glycobiologie Et Matrice Extracellulaire Végétale EA 4358, Université de Rouen Normandie, 76000, Rouen, France
- UNIROUEN, Fédération de Recherche, Normandie Université, Normandie Végétal-FED 4277, Université de Rouen Normandie, 76000, Rouen, France
| | - Barbara Pawlak
- UNIROUEN, Normandie Université, Laboratoire Glycobiologie Et Matrice Extracellulaire Végétale EA 4358, Université de Rouen Normandie, 76000, Rouen, France
- UNIROUEN, Fédération de Recherche, Normandie Université, Normandie Végétal-FED 4277, Université de Rouen Normandie, 76000, Rouen, France
| | - John P Moore
- Department of Viticulture and Oenology, Faculty of AgriSciences, South African Grape and Wine Research Institute, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
3
|
Paponov IA, Fliegmann J, Narayana R, Maffei ME. Differential root and shoot magnetoresponses in Arabidopsis thaliana. Sci Rep 2021; 11:9195. [PMID: 33911161 PMCID: PMC8080623 DOI: 10.1038/s41598-021-88695-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
The geomagnetic field (GMF) is one of the environmental stimuli that plants experience continuously on Earth; however, the actions of the GMF on plants are poorly understood. Here, we carried out a time-course microarray experiment to identify genes that are differentially regulated by the GMF in shoot and roots. We also used qPCR to validate the activity of some genes selected from the microarray analysis in a dose-dependent magnetic field experiment. We found that the GMF regulated genes in both shoot and roots, suggesting that both organs can sense the GMF. However, 49% of the genes were regulated in a reverse direction in these organs, meaning that the resident signaling networks define the up- or downregulation of specific genes. The set of GMF-regulated genes strongly overlapped with various stress-responsive genes, implicating the involvement of one or more common signals, such as reactive oxygen species, in these responses. The biphasic dose response of GMF-responsive genes indicates a hormetic response of plants to the GMF. At present, no evidence exists to indicate any evolutionary advantage of plant adaptation to the GMF; however, plants can sense and respond to the GMF using the signaling networks involved in stress responses.
Collapse
Affiliation(s)
- Ivan A Paponov
- Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Judith Fliegmann
- ZMBP Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Ravishankar Narayana
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Massimo E Maffei
- Plant Physiology Unit, Department Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
4
|
Olsen S, Krause K. A rapid preparation procedure for laser microdissection-mediated harvest of plant tissues for gene expression analysis. PLANT METHODS 2019; 15:88. [PMID: 31388345 PMCID: PMC6676614 DOI: 10.1186/s13007-019-0471-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/26/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Gene expression changes that govern essential biological processes can occur at the cell-specific level. To gain insight into such events, laser microdissection is applied to cut out specific cells or tissues from which RNA for gene expression analysis is isolated. However, the preparation of plant tissue sections for laser microdissection and subsequent RNA isolation usually involves fixation and embedding, processes that are often time-consuming and can lower the yield and quality of isolated RNA. RESULTS Infection sites of the parasitic plant Cuscuta reflexa growing on its compatible host plant Pelargonium zonale were sectioned using a vibratome and dried on glass slides at 4 °C before laser microdissection. High quality RNA (RQI > 7) was isolated from 1 mm2, 3 mm2 and 6 mm2 total surface areas of laser microdissection-harvested C. reflexa tissue, with the yield of RNA correlating to the amount of collected material (on average 7 ng total RNA/mm2). The expression levels of two parasite genes previously found to be highly expressed during host plant infection were shown to differ individually between specific regions of the infection site. By drying plant sections under low pressure to reduce the dehydration time, the induced expression of two wound-related genes during preparation was avoided. CONCLUSIONS Plants can be prepared quickly and easily for laser microdissection by direct sectioning of fresh tissue followed by dehydration on glass slides. We show that RNA isolated from material treated in this manner maintains high quality and enables the investigation of differential gene expression at a high morphological resolution.
Collapse
Affiliation(s)
- Stian Olsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| | - Kirsten Krause
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Framstredet 39, 9019 Tromsø, Norway
| |
Collapse
|
5
|
Driouich A, Smith C, Ropitaux M, Chambard M, Boulogne I, Bernard S, Follet-Gueye ML, Vicré M, Moore J. Root extracellular traps versus neutrophil extracellular traps in host defence, a case of functional convergence? Biol Rev Camb Philos Soc 2019; 94:1685-1700. [PMID: 31134732 DOI: 10.1111/brv.12522] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Abstract
The root cap releases cells that produce massive amounts of mucilage containing polysaccharides, proteoglycans, extracellular DNA (exDNA) and a variety of antimicrobial compounds. The released cells - known as border cells or border-like cells - and mucilage secretions form networks that are defined as root extracellular traps (RETs). RETs are important players in root immunity. In animals, phagocytes are some of the most abundant white blood cells in circulation and are very important for immunity. These cells combat pathogens through multiple defence mechanisms, including the release of exDNA-containing extracellular traps (ETs). Traps of neutrophil origin are abbreviated herein as NETs. Similar to phagocytes, plant root cap-originating cells actively contribute to frontline defence against pathogens. RETs and NETs are thus components of the plant and animal immune systems, respectively, that exhibit similar compositional and functional properties. Herein, we describe and discuss the formation, molecular composition and functional similarities of these similar but different extracellular traps.
Collapse
Affiliation(s)
- Azeddine Driouich
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Matieland, 7602, South Africa
| | - Marc Ropitaux
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Marie Chambard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Isabelle Boulogne
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Sophie Bernard
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Marie-Laure Follet-Gueye
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - Maïté Vicré
- Laboratoire de Glycobiologie et Matrice Extracellulaire Végétale, EA4358, Normandie Université, Université de Rouen, 1 Rue Thomas Becket, 76000, Rouen, France.,Structure Fédérative de Recherche « Normandie-Végétal » - FED4277, 76000, Rouen, France
| | - John Moore
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Faculty of AgriSciences, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
6
|
Geem KR, Kim DH, Lee DW, Kwon Y, Lee J, Kim JH, Hwang I. Jasmonic acid-inducible TSA1 facilitates ER body formation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:267-280. [PMID: 30267434 DOI: 10.1111/tpj.14112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 05/28/2023]
Abstract
Members of the Brassicales contain an organelle, the endoplasmic reticulum (ER) body, which is derived from the ER. Recent studies have shed light on the biogenesis of the ER body and its physiological role in plants. However, formation of the ER body and its physiological role are not fully understood. Here, we investigated the physiological role of TSK-associating protein 1 (TSA1), a close homolog of NAI2 that is involved in ER body formation, and provide evidence that it is involved in ER body biogenesis under wound-related stress conditions. TSA1 is N-glycosylated and localizes to the ER body as a luminal protein. TSA1 was highly induced by the plant hormone, methyl jasmonate (MeJA). Ectopic expression of TSA1:GFP induced ER body formation in root tissues of transgenic Arabidopsis thaliana and in leaf tissues of Nicotiana benthamiana. TSA1 and NAI2 formed a heterocomplex and showed an additive effect on ER body formation in N. benthamiana. MeJA treatment induced ER body formation in leaf tissues of nai2 and tsa1 plants, but not nai2/tsa1 double-mutant plants. However, constitutive ER body formation was altered in young seedlings of nai2 plants but not tsa1 plants. Based on these results, we propose that TSA1 plays a critical role in MeJA-induced ER body formation in plants.
Collapse
Affiliation(s)
- Kyoung Rok Geem
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dae Heon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Dong Wook Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun Kwon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Junho Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Jeong Hee Kim
- Department of Biochemistry and Molecular Biology, College of Dentistry, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 130-701, Korea
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| |
Collapse
|
7
|
Krishnamurthy A, Ferl RJ, Paul A. Comparing RNA-Seq and microarray gene expression data in two zones of the Arabidopsis root apex relevant to spaceflight. APPLICATIONS IN PLANT SCIENCES 2018; 6:e01197. [PMID: 30473943 PMCID: PMC6240453 DOI: 10.1002/aps3.1197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/07/2018] [Indexed: 05/21/2023]
Abstract
PREMISE OF THE STUDY The root apex is an important region involved in environmental sensing, but comprises a very small part of the root. Obtaining root apex transcriptomes is therefore challenging when the samples are limited. The feasibility of using tiny root sections for transcriptome analysis was examined, comparing RNA sequencing (RNA-Seq) to microarrays in characterizing genes that are relevant to spaceflight. METHODS Arabidopsis thaliana Columbia ecotype (Col-0) roots were sectioned into Zone 1 (0.5 mm; root cap and meristematic zone) and Zone 2 (1.5 mm; transition, elongation, and growth-terminating zone). Differential gene expression in each was compared. RESULTS Both microarrays and RNA-Seq proved applicable to the small samples. A total of 4180 genes were differentially expressed (with fold changes of 2 or greater) between Zone 1 and Zone 2. In addition, 771 unique genes and 19 novel transcriptionally active regions were identified by RNA-Seq that were not detected in microarrays. However, microarrays detected spaceflight-relevant genes that were missed in RNA-Seq. DISCUSSION Single root tip subsections can be used for transcriptome analysis using either RNA-Seq or microarrays. Both RNA-Seq and microarrays provided novel information. These data suggest that techniques for dealing with small, rare samples from spaceflight can be further enhanced, and that RNA-Seq may miss some spaceflight-relevant changes in gene expression.
Collapse
Affiliation(s)
- Aparna Krishnamurthy
- Department of Horticultural SciencesProgram in Plant Molecular and Cellular BiologyUniversity of FloridaGainesvilleFlorida32611USA
| | - Robert J. Ferl
- Department of Horticultural SciencesProgram in Plant Molecular and Cellular BiologyUniversity of FloridaGainesvilleFlorida32611USA
- Interdisciplinary Center for BiotechnologyUniversity of FloridaGainesvilleFlorida32611USA
| | - Anna‐Lisa Paul
- Department of Horticultural SciencesProgram in Plant Molecular and Cellular BiologyUniversity of FloridaGainesvilleFlorida32611USA
| |
Collapse
|
8
|
Chuberre C, Plancot B, Driouich A, Moore JP, Bardor M, Gügi B, Vicré M. Plant Immunity Is Compartmentalized and Specialized in Roots. FRONTIERS IN PLANT SCIENCE 2018; 9:1692. [PMID: 30546372 PMCID: PMC6279857 DOI: 10.3389/fpls.2018.01692] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
Roots are important organs for plant survival. In recent years, clear differences between roots and shoots in their respective plant defense strategies have been highlighted. Some putative gene markers of defense responses usually used in leaves are less relevant in roots and are sometimes not even expressed. Immune responses in roots appear to be tissue-specific suggesting a compartmentalization of defense mechanisms in root systems. Furthermore, roots are able to activate specific defense mechanisms in response to various elicitors including Molecular/Pathogen Associated Molecular Patterns, (MAMPs/PAMPs), signal compounds (e.g., hormones) and plant defense activator (e.g., β-aminobutyric acid, BABA). This review discusses recent findings in root defense mechanisms and illustrates the necessity to discover new root specific biomarkers. The development of new strategies to control root disease and improve crop quality will also be reviewed.
Collapse
Affiliation(s)
- Coralie Chuberre
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - Barbara Plancot
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - Azeddine Driouich
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
| | - John P. Moore
- Department of Viticulture and Oenology, Faculty of AgriSciences, Institute for Wine Biotechnology, Stellenbosch University, Matieland, South Africa
| | - Muriel Bardor
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- Institut Universitaire de France, Paris, France
| | - Bruno Gügi
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- *Correspondence: Bruno Gügi, Maïté Vicré,
| | - Maïté Vicré
- Normandie Univ, UNIROUEN, Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, Rouen, France
- Fédération de Recherche “NORVEGE”- FED 4277, Rouen, France
- *Correspondence: Bruno Gügi, Maïté Vicré,
| |
Collapse
|