1
|
Shen L, Ding G, Jackson R, Ali M, Liu S, Mitchell A, Shi Y, Lu X, Dai J, Deakin G, Frels K, Cen H, Ge YF, Zhou J. GSP-AI: An AI-Powered Platform for Identifying Key Growth Stages and the Vegetative-to-Reproductive Transition in Wheat Using Trilateral Drone Imagery and Meteorological Data. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0255. [PMID: 39386010 PMCID: PMC11462051 DOI: 10.34133/plantphenomics.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024]
Abstract
Wheat (Triticum aestivum) is one of the most important staple crops worldwide. To ensure its global supply, the timing and duration of its growth cycle needs to be closely monitored in the field so that necessary crop management activities can be arranged in a timely manner. Also, breeders and plant researchers need to evaluate growth stages (GSs) for tens of thousands of genotypes at the plot level, at different sites and across multiple seasons. These indicate the importance of providing a reliable and scalable toolkit to address the challenge so that the plot-level assessment of GS can be successfully conducted for different objectives in plant research. Here, we present a multimodal deep learning model called GSP-AI, capable of identifying key GSs and predicting the vegetative-to-reproductive transition (i.e., flowering days) in wheat based on drone-collected canopy images and multiseasonal climatic datasets. In the study, we first established an open Wheat Growth Stage Prediction (WGSP) dataset, consisting of 70,410 annotated images collected from 54 varieties cultivated in China, 109 in the United Kingdom, and 100 in the United States together with key climatic factors. Then, we built an effective learning architecture based on Res2Net and long short-term memory (LSTM) to learn canopy-level vision features and patterns of climatic changes between 2018 and 2021 growing seasons. Utilizing the model, we achieved an overall accuracy of 91.2% in identifying key GS and an average root mean square error (RMSE) of 5.6 d for forecasting the flowering days compared with manual scoring. We further tested and improved the GSP-AI model with high-resolution smartphone images collected in the 2021/2022 season in China, through which the accuracy of the model was enhanced to 93.4% for GS and RMSE reduced to 4.7 d for the flowering prediction. As a result, we believe that our work demonstrates a valuable advance to inform breeders and growers regarding the timing and duration of key plant growth and development phases at the plot level, facilitating them to conduct more effective crop selection and make agronomic decisions under complicated field conditions for wheat improvement.
Collapse
Affiliation(s)
- Liyan Shen
- College of Engineering, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Centre,
Nanjing Agricultural University, Nanjing 210095, China
| | - Guohui Ding
- College of Engineering, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Centre,
Nanjing Agricultural University, Nanjing 210095, China
| | - Robert Jackson
- Data Sciences,
National Institute of Agricultural Botany (NIAB), Crop Science Centre (CSC), Cambridge CB3 0LE, UK
| | - Mujahid Ali
- College of Engineering, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Centre,
Nanjing Agricultural University, Nanjing 210095, China
| | - Shuchen Liu
- College of Engineering, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Centre,
Nanjing Agricultural University, Nanjing 210095, China
| | - Arthur Mitchell
- Data Sciences,
National Institute of Agricultural Botany (NIAB), Crop Science Centre (CSC), Cambridge CB3 0LE, UK
| | - Yeyin Shi
- Department of Biological Systems Engineering, Department of Agronomy and Horticulture,
University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Xuqi Lu
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Jie Dai
- College of Engineering, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Centre,
Nanjing Agricultural University, Nanjing 210095, China
| | - Greg Deakin
- Data Sciences,
National Institute of Agricultural Botany (NIAB), Crop Science Centre (CSC), Cambridge CB3 0LE, UK
| | - Katherine Frels
- Department of Biological Systems Engineering, Department of Agronomy and Horticulture,
University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Haiyan Cen
- College of Biosystems Engineering and Food Science,
Zhejiang University, Hangzhou 310058, China
| | - Yu-feng Ge
- Department of Biological Systems Engineering, Department of Agronomy and Horticulture,
University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ji Zhou
- College of Engineering, College of Agriculture, Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Centre,
Nanjing Agricultural University, Nanjing 210095, China
- Data Sciences,
National Institute of Agricultural Botany (NIAB), Crop Science Centre (CSC), Cambridge CB3 0LE, UK
| |
Collapse
|
2
|
Blancon J, Buet C, Dubreuil P, Tixier MH, Baret F, Praud S. Maize green leaf area index dynamics: genetic basis of a new secondary trait for grain yield in optimal and drought conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:68. [PMID: 38441678 PMCID: PMC10914915 DOI: 10.1007/s00122-024-04572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
KEY MESSAGE Green Leaf Area Index dynamics is a promising secondary trait for grain yield and drought tolerance. Multivariate GWAS is particularly well suited to identify the genetic determinants of the green leaf area index dynamics. Improvement of maize grain yield is impeded by important genotype-environment interactions, especially under drought conditions. The use of secondary traits, that are correlated with yield, more heritable and less prone to genotype-environment interactions, can increase breeding efficiency. Here, we studied the genetic basis of a new secondary trait: the green leaf area index (GLAI) dynamics over the maize life cycle. For this, we used an unmanned aerial vehicle to characterize the GLAI dynamics of a diverse panel in well-watered and water-deficient trials in two years. From the dynamics, we derived 24 traits (slopes, durations, areas under the curve), and showed that six of them were heritable traits representative of the panel diversity. To identify the genetic determinants of GLAI, we compared two genome-wide association approaches: a univariate (single-trait) method and a multivariate (multi-trait) method combining GLAI traits, grain yield, and precocity. The explicit modeling of correlation structure between secondary traits and grain yield in the multivariate mixed model led to 2.5 times more associations detected. A total of 475 quantitative trait loci (QTLs) were detected. The genetic architecture of GLAI traits appears less complex than that of yield with stronger-effect QTLs that are more stable between environments. We also showed that a subset of GLAI QTLs explains nearly one fifth of yield variability across a larger environmental network of 11 water-deficient trials. GLAI dynamics is a promising grain yield secondary trait in optimal and drought conditions, and the detected QTLs could help to increase breeding efficiency through a marker-assisted approach.
Collapse
Affiliation(s)
- Justin Blancon
- UMR GDEC, INRAE, Université Clermont Auvergne, 63000, Clermont-Ferrand, France.
- Biogemma, Centre de Recherche de Chappes, 63720, Chappes, France.
| | - Clément Buet
- Biogemma, Centre de Recherche de Chappes, 63720, Chappes, France
| | - Pierre Dubreuil
- Biogemma, Centre de Recherche de Chappes, 63720, Chappes, France
| | | | | | - Sébastien Praud
- Biogemma, Centre de Recherche de Chappes, 63720, Chappes, France
| |
Collapse
|
3
|
Ding G, Shen L, Dai J, Jackson R, Liu S, Ali M, Sun L, Wen M, Xiao J, Deakin G, Jiang D, Wang XE, Zhou J. The Dissection of Nitrogen Response Traits Using Drone Phenotyping and Dynamic Phenotypic Analysis to Explore N Responsiveness and Associated Genetic Loci in Wheat. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0128. [PMID: 38148766 PMCID: PMC10750832 DOI: 10.34133/plantphenomics.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
Inefficient nitrogen (N) utilization in agricultural production has led to many negative impacts such as excessive use of N fertilizers, redundant plant growth, greenhouse gases, long-lasting toxicity in ecosystem, and even effect on human health, indicating the importance to optimize N applications in cropping systems. Here, we present a multiseasonal study that focused on measuring phenotypic changes in wheat plants when they were responding to different N treatments under field conditions. Powered by drone-based aerial phenotyping and the AirMeasurer platform, we first quantified 6 N response-related traits as targets using plot-based morphological, spectral, and textural signals collected from 54 winter wheat varieties. Then, we developed dynamic phenotypic analysis using curve fitting to establish profile curves of the traits during the season, which enabled us to compute static phenotypes at key growth stages and dynamic phenotypes (i.e., phenotypic changes) during N response. After that, we combine 12 yield production and N-utilization indices manually measured to produce N efficiency comprehensive scores (NECS), based on which we classified the varieties into 4 N responsiveness (i.e., N-dependent yield increase) groups. The NECS ranking facilitated us to establish a tailored machine learning model for N responsiveness-related varietal classification just using N-response phenotypes with high accuracies. Finally, we employed the Wheat55K SNP Array to map single-nucleotide polymorphisms using N response-related static and dynamic phenotypes, helping us explore genetic components underlying N responsiveness in wheat. In summary, we believe that our work demonstrates valuable advances in N response-related plant research, which could have major implications for improving N sustainability in wheat breeding and production.
Collapse
Affiliation(s)
- Guohui Ding
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Shen
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Dai
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Robert Jackson
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| | - Shuchen Liu
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Mujahid Ali
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Mingxing Wen
- Zhenjiang Institute of Agricultural Science, Jurong, Jiangsu 212400, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Greg Deakin
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| | - Dong Jiang
- Regional Technique Innovation Center for Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture,
Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiu-e Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Ji Zhou
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| |
Collapse
|
4
|
Adak A, Kang M, Anderson SL, Murray SC, Jarquin D, Wong RKW, Katzfuß M. Phenomic data-driven biological prediction of maize through field-based high-throughput phenotyping integration with genomic data. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5307-5326. [PMID: 37279568 DOI: 10.1093/jxb/erad216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
High-throughput phenotyping (HTP) has expanded the dimensionality of data in plant research; however, HTP has resulted in few novel biological discoveries to date. Field-based HTP (FHTP), using small unoccupied aerial vehicles (UAVs) equipped with imaging sensors, can be deployed routinely to monitor segregating plant population interactions with the environment under biologically meaningful conditions. Here, flowering dates and plant height, important phenological fitness traits, were collected on 520 segregating maize recombinant inbred lines (RILs) in both irrigated and drought stress trials in 2018. Using UAV phenomic, single nucleotide polymorphism (SNP) genomic, as well as combined data, flowering times were predicted using several scenarios. Untested genotypes were predicted with 0.58, 0.59, and 0.41 prediction ability for anthesis, silking, and terminal plant height, respectively, using genomic data, but prediction ability increased to 0.77, 0.76, and 0.58 when phenomic and genomic data were used together. Using the phenomic data in a genome-wide association study, a heat-related candidate gene (GRMZM2G083810; hsp18f) was discovered using temporal reflectance phenotypes belonging to flowering times (both irrigated and drought) trials where heat stress also peaked. Thus, a relationship between plants and abiotic stresses belonging to a specific time of growth was revealed only through use of temporal phenomic data. Overall, this study showed that (i) it is possible to predict complex traits using high dimensional phenomic data between different environments, and (ii) temporal phenomic data can reveal a time-dependent association between genotypes and abiotic stresses, which can help understand mechanisms to develop resilient plants.
Collapse
Affiliation(s)
- Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Myeongjong Kang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | | | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Raymond K W Wong
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Matthias Katzfuß
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Sakurai K, Toda Y, Hamazaki K, Ohmori Y, Yamasaki Y, Takahashi H, Takanashi H, Tsuda M, Tsujimoto H, Kaga A, Nakazono M, Fujiwara T, Iwata H. Random regression for modeling soybean plant response to irrigation changes using time-series multispectral data. FRONTIERS IN PLANT SCIENCE 2023; 14:1201806. [PMID: 37476172 PMCID: PMC10354427 DOI: 10.3389/fpls.2023.1201806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Plant response to drought is an important yield-related trait under abiotic stress, but the method for measuring and modeling plant responses in a time series has not been fully established. The objective of this study was to develop a method to measure and model plant response to irrigation changes using time-series multispectral (MS) data. We evaluated 178 soybean (Glycine max (L.) Merr.) accessions under three irrigation treatments at the Arid Land Research Center, Tottori University, Japan in 2019, 2020 and 2021. The irrigation treatments included W5: watering for 5 d followed by no watering 5 d, W10: watering for 10 d followed by no watering 10 d, D10: no watering for 10 d followed by watering 10 d, and D: no watering. To capture the plant responses to irrigation changes, time-series MS data were collected by unmanned aerial vehicle during the irrigation/non-irrigation switch of each irrigation treatment. We built a random regression model (RRM) for each of combination of treatment by year using the time-series MS data. To test the accuracy of the information captured by RRM, we evaluated the coefficient of variation (CV) of fresh shoot weight of all accessions under a total of nine different drought conditions as an indicator of plant's stability under drought stresses. We built a genomic prediction model (MT RRM model ) using the genetic random regression coefficients of RRM as secondary traits and evaluated the accuracy of each model for predicting CV. In 2020 and 2021,the mean prediction accuracies of MT RRM models built in the changing irrigation treatments (r = 0.44 and 0.49, respectively) were higher than that in the continuous drought treatment (r = 0.34 and 0.44, respectively) in the same year. When the CV was predicted using the MT RRM model across 2020 and 2021 in the changing irrigation treatment, the mean prediction accuracy (r = 0.46) was 42% higher than that of the simple genomic prediction model (r =0.32). The results suggest that this RRM method using the time-series MS data can effectively capture the genetic variation of plant response to drought.
Collapse
Affiliation(s)
- Kengo Sakurai
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yusuke Toda
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Kosuke Hamazaki
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Ohmori
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Yuji Yamasaki
- Arid Land Research Center, Tottori University, Tottori, Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideki Takanashi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Mai Tsuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | | | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Adak A, Murray SC, Anderson SL. Temporal phenomic predictions from unoccupied aerial systems can outperform genomic predictions. G3 (BETHESDA, MD.) 2022; 13:6851143. [PMID: 36445027 PMCID: PMC9836347 DOI: 10.1093/g3journal/jkac294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022]
Abstract
A major challenge of genetic improvement and selection is to accurately predict individuals with the highest fitness in a population without direct measurement. Over the last decade, genomic predictions (GP) based on genome-wide markers have become reliable and routine. Now phenotyping technologies, including unoccupied aerial systems (UAS also known as drones), can characterize individuals with a data depth comparable to genomics when used throughout growth. This study, for the first time, demonstrated that the prediction power of temporal UAS phenomic data can achieve or exceed that of genomic data. UAS data containing red-green-blue (RGB) bands over 15 growth time points and multispectral (RGB, red-edge and near infrared) bands over 12 time points were compared across 280 unique maize hybrids. Through cross-validation of untested genotypes in tested environments (CV2), temporal phenomic prediction (TPP), outperformed GP (0.80 vs 0.71); TPP and GP performed similarly in 3 other cross-validation scenarios. Genome-wide association mapping using area under temporal curves of vegetation indices (VIs) revealed 24.5% of a total of 241 discovered loci (59 loci) had associations with multiple VIs, explaining up to 51% of grain yield variation, less than GP and TPP predicted. This suggests TPP, like GP, integrates small effect loci well improving plant fitness predictions. More importantly, TPP appeared to work successfully on unrelated individuals unlike GP.
Collapse
Affiliation(s)
- Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Seth C Murray
- Corresponding author: Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA.
| | | |
Collapse
|
7
|
Vishal MK, Saluja R, Aggrawal D, Banerjee B, Raju D, Kumar S, Chinnusamy V, Sahoo RN, Adinarayana J. Leaf Count Aided Novel Framework for Rice ( Oryza sativa L.) Genotypes Discrimination in Phenomics: Leveraging Computer Vision and Deep Learning Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:2663. [PMID: 36235529 PMCID: PMC9614605 DOI: 10.3390/plants11192663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Drought is a detrimental factor to gaining higher yields in rice (Oryza sativa L.), especially amid the rising occurrence of drought across the globe. To combat this situation, it is essential to develop novel drought-resilient varieties. Therefore, screening of drought-adaptive genotypes is required with high precision and high throughput. In contemporary emerging science, high throughput plant phenotyping (HTPP) is a crucial technology that attempts to break the bottleneck of traditional phenotyping. In traditional phenotyping, screening significant genotypes is a tedious task and prone to human error while measuring various plant traits. In contrast, owing to the potential advantage of HTPP over traditional phenotyping, image-based traits, also known as i-traits, were used in our study to discriminate 110 genotypes grown for genome-wide association study experiments under controlled (well-watered), and drought-stress (limited water) conditions, under a phenomics experiment in a controlled environment with RGB images. Our proposed framework non-destructively estimated drought-adaptive plant traits from the images, such as the number of leaves, convex hull, plant-aspect ratio (plant spread), and similarly associated geometrical and morphological traits for analyzing and discriminating genotypes. The results showed that a single trait, the number of leaves, can also be used for discriminating genotypes. This critical drought-adaptive trait was associated with plant size, architecture, and biomass. In this work, the number of leaves and other characteristics were estimated non-destructively from top view images of the rice plant for each genotype. The estimation of the number of leaves for each rice plant was conducted with the deep learning model, YOLO (You Only Look Once). The leaves were counted by detecting corresponding visible leaf tips in the rice plant. The detection accuracy was 86-92% for dense to moderate spread large plants, and 98% for sparse spread small plants. With this framework, the susceptible genotypes (MTU1010, PUSA-1121 and similar genotypes) and drought-resistant genotypes (Heera, Anjali, Dular and similar genotypes) were grouped in the core set with a respective group of drought-susceptible and drought-tolerant genotypes based on the number of leaves, and the leaves' emergence during the peak drought-stress period. Moreover, it was found that the number of leaves was significantly associated with other pertinent morphological, physiological and geometrical traits. Other geometrical traits were measured from the RGB images with the help of computer vision.
Collapse
Affiliation(s)
| | - Rohit Saluja
- CSE, Indian Institute of Technology Bombay, Mumbai 400076, India
- Indian Institute of Information Technology, Hyderabad 500032, India
| | | | - Biplab Banerjee
- CSRE, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Dhandapani Raju
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Sudhir Kumar
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Viswanathan Chinnusamy
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | - Rabi Narayan Sahoo
- Indian Council of Agricultural Research—Indian Agricultural Research Institute, Pusa, New Delhi 110012, India
| | | |
Collapse
|
8
|
A Review of Integrative Omic Approaches for Understanding Rice Salt Response Mechanisms. PLANTS 2022; 11:plants11111430. [PMID: 35684203 PMCID: PMC9182744 DOI: 10.3390/plants11111430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Soil salinity is one of the most serious environmental challenges, posing a growing threat to agriculture across the world. Soil salinity has a significant impact on rice growth, development, and production. Hence, improving rice varieties’ resistance to salt stress is a viable solution for meeting global food demand. Adaptation to salt stress is a multifaceted process that involves interacting physiological traits, biochemical or metabolic pathways, and molecular mechanisms. The integration of multi-omics approaches contributes to a better understanding of molecular mechanisms as well as the improvement of salt-resistant and tolerant rice varieties. Firstly, we present a thorough review of current knowledge about salt stress effects on rice and mechanisms behind rice salt tolerance and salt stress signalling. This review focuses on the use of multi-omics approaches to improve next-generation rice breeding for salinity resistance and tolerance, including genomics, transcriptomics, proteomics, metabolomics and phenomics. Integrating multi-omics data effectively is critical to gaining a more comprehensive and in-depth understanding of the molecular pathways, enzyme activity and interacting networks of genes controlling salinity tolerance in rice. The key data mining strategies within the artificial intelligence to analyse big and complex data sets that will allow more accurate prediction of outcomes and modernise traditional breeding programmes and also expedite precision rice breeding such as genetic engineering and genome editing.
Collapse
|
9
|
Guo S, Zhou G, Wang J, Lu X, Zhao H, Zhang M, Guo X, Zhang Y. High-Throughput Phenotyping Accelerates the Dissection of the Phenotypic Variation and Genetic Architecture of Shank Vascular Bundles in Maize (Zea mays L.). PLANTS 2022; 11:plants11101339. [PMID: 35631765 PMCID: PMC9145235 DOI: 10.3390/plants11101339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
The vascular bundle of the shank is an important ‘flow’ organ for transforming maize biological yield to grain yield, and its microscopic phenotypic characteristics and genetic analysis are of great significance for promoting the breeding of new varieties with high yield and good quality. In this study, shank CT images were obtained using the standard process for stem micro-CT data acquisition at resolutions up to 13.5 μm. Moreover, five categories and 36 phenotypic traits of the shank including related to the cross-section, epidermis zone, periphery zone, inner zone and vascular bundle were analyzed through an automatic CT image process pipeline based on the functional zones. Next, we analyzed the phenotypic variations in vascular bundles at the base of the shank among a group of 202 inbred lines based on comprehensive phenotypic information for two environments. It was found that the number of vascular bundles in the inner zone (IZ_VB_N) and the area of the inner zone (IZ_A) varied the most among the different subgroups. Combined with genome-wide association studies (GWAS), 806 significant single nucleotide polymorphisms (SNPs) were identified, and 1245 unique candidate genes for 30 key traits were detected, including the total area of vascular bundles (VB_A), the total number of vascular bundles (VB_N), the density of the vascular bundles (VB_D), etc. These candidate genes encode proteins involved in lignin, cellulose synthesis, transcription factors, material transportation and plant development. The results presented here will improve the understanding of the phenotypic traits of maize shank and provide an important phenotypic basis for high-throughput identification of vascular bundle functional genes of maize shank and promoting the breeding of new varieties with high yield and good quality.
Collapse
Affiliation(s)
- Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
| | - Guoliang Zhou
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Huan Zhao
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Minggang Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| |
Collapse
|
10
|
Bartholomé J, Prakash PT, Cobb JN. Genomic Prediction: Progress and Perspectives for Rice Improvement. Methods Mol Biol 2022; 2467:569-617. [PMID: 35451791 DOI: 10.1007/978-1-0716-2205-6_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Genomic prediction can be a powerful tool to achieve greater rates of genetic gain for quantitative traits if thoroughly integrated into a breeding strategy. In rice as in other crops, the interest in genomic prediction is very strong with a number of studies addressing multiple aspects of its use, ranging from the more conceptual to the more practical. In this chapter, we review the literature on rice (Oryza sativa) and summarize important considerations for the integration of genomic prediction in breeding programs. The irrigated breeding program at the International Rice Research Institute is used as a concrete example on which we provide data and R scripts to reproduce the analysis but also to highlight practical challenges regarding the use of predictions. The adage "To someone with a hammer, everything looks like a nail" describes a common psychological pitfall that sometimes plagues the integration and application of new technologies to a discipline. We have designed this chapter to help rice breeders avoid that pitfall and appreciate the benefits and limitations of applying genomic prediction, as it is not always the best approach nor the first step to increasing the rate of genetic gain in every context.
Collapse
Affiliation(s)
- Jérôme Bartholomé
- CIRAD, UMR AGAP Institut, Montpellier, France.
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France.
- Rice Breeding Platform, International Rice Research Institute, Manila, Philippines.
| | | | | |
Collapse
|
11
|
Xiao Q, Bai X, Zhang C, He Y. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. J Adv Res 2022; 35:215-230. [PMID: 35003802 PMCID: PMC8721248 DOI: 10.1016/j.jare.2021.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 01/22/2023] Open
Abstract
Linking phenotypes and genotypes to identify genetic architectures that regulate important traits is crucial for plant breeding and the development of plant genomics. In recent years, genome-wide association studies (GWASs) have been applied extensively to interpret relationships between genes and traits. Successful GWAS application requires comprehensive genomic and phenotypic data from large populations. Although multiple high-throughput DNA sequencing approaches are available for the generation of genomics data, the capacity to generate high-quality phenotypic data is lagging far behind. Traditional methods for plant phenotyping mostly rely on manual measurements, which are laborious, inaccurate, and time-consuming, greatly impairing the acquisition of phenotypic data from large populations. In contrast, high-throughput phenotyping has unique advantages, facilitating rapid, non-destructive, and high-throughput detection, and, in turn, addressing the shortcomings of traditional methods. Aim of Review: This review summarizes the current status with regard to the integration of high-throughput phenotyping and GWAS in plants, in addition to discussing the inherent challenges and future prospects. Key Scientific Concepts of Review: High-throughput phenotyping, which facilitates non-contact and dynamic measurements, has the potential to offer high-quality trait data for GWAS and, in turn, to enhance the unraveling of genetic structures of complex plant traits. In conclusion, high-throughput phenotyping integration with GWAS could facilitate the revealing of coding information in plant genomes.
Collapse
Affiliation(s)
- Qinlin Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Xiulin Bai
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou 313000, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
12
|
Morota G, Jarquin D, Campbell MT, Iwata H. Statistical Methods for the Quantitative Genetic Analysis of High-Throughput Phenotyping Data. Methods Mol Biol 2022; 2539:269-296. [PMID: 35895210 DOI: 10.1007/978-1-0716-2537-8_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The advent of plant phenomics, coupled with the wealth of genotypic data generated by next-generation sequencing technologies, provides exciting new resources for investigations into and improvement of complex traits. However, these new technologies also bring new challenges in quantitative genetics, namely, a need for the development of robust frameworks that can accommodate these high-dimensional data. In this chapter, we describe methods for the statistical analysis of high-throughput phenotyping (HTP) data with the goal of enhancing the prediction accuracy of genomic selection (GS). Following the Introduction in Sec. 1, Sec. 2 discusses field-based HTP, including the use of unoccupied aerial vehicles and light detection and ranging, as well as how we can achieve increased genetic gain by utilizing image data derived from HTP. Section 3 considers extending commonly used GS models to integrate HTP data as covariates associated with the principal trait response, such as yield. Particular focus is placed on single-trait, multi-trait, and genotype by environment interaction models. One unique aspect of HTP data is that phenomics platforms often produce large-scale data with high spatial and temporal resolution for capturing dynamic growth, development, and stress responses. Section 4 discusses the utility of a random regression model for performing longitudinal modeling. The chapter concludes with a discussion of some standing issues.
Collapse
Affiliation(s)
- Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Malachy T Campbell
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Hiroyoshi Iwata
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Hassan MA, Yang M, Rasheed A, Tian X, Reynolds M, Xia X, Xiao Y, He Z. Quantifying senescence in bread wheat using multispectral imaging from an unmanned aerial vehicle and QTL mapping. PLANT PHYSIOLOGY 2021; 187:2623-2636. [PMID: 34601616 PMCID: PMC8644761 DOI: 10.1093/plphys/kiab431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/23/2021] [Indexed: 05/21/2023]
Abstract
Environmental stresses from climate change can alter source-sink relations during plant maturation, leading to premature senescence and decreased yields. Elucidating the genetic control of natural variations for senescence in wheat (Triticum aestivum) can be accelerated using recent developments in unmanned aerial vehicle (UAV)-based imaging techniques. Here, we describe the use of UAVs to quantify senescence in wheat using vegetative indices (VIs) derived from multispectral images. We detected senescence with high heritability, as well as its impact on grain yield (GY), in a doubled-haploid population and parent cultivars at various growth time points (TPs) after anthesis in the field. Selecting for slow senescence using a combination of different UAV-based VIs was more effective than using a single ground-based vegetation index. We identified 28 quantitative trait loci (QTL) for vegetative growth, senescence, and GY using a 660K single-nucleotide polymorphism array. Seventeen of these new QTL for VIs from UAV-based multispectral imaging were mapped on chromosomes 2B, 3A, 3D, 5A, 5D, 5B, and 6D; these QTL have not been reported previously using conventional phenotyping methods. This integrated approach allowed us to identify an important, previously unreported, senescence-related locus on chromosome 5D that showed high phenotypic variation (up to 18.1%) for all UAV-based VIs at all TPs during grain filling. This QTL was validated for slow senescence by developing kompetitive allele-specific PCR markers in a natural population. Our results suggest that UAV-based high-throughput phenotyping is advantageous for temporal assessment of the genetics underlying for senescence in wheat.
Collapse
Affiliation(s)
- Muhammad Adeel Hassan
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Mengjiao Yang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing 100081, China
- Deparment of Plant Science, Quaid-i-Azam University Islamabad 44000, Pakistan
| | - Xiuling Tian
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Matthew Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Mexico DF 06600, Mexico
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yonggui Xiao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Author for communication:
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Centre (CIMMYT) China Office, c/o CAAS, Beijing 100081, China
| |
Collapse
|
14
|
Freitas Moreira F, Rojas de Oliveira H, Lopez MA, Abughali BJ, Gomes G, Cherkauer KA, Brito LF, Rainey KM. High-Throughput Phenotyping and Random Regression Models Reveal Temporal Genetic Control of Soybean Biomass Production. FRONTIERS IN PLANT SCIENCE 2021; 12:715983. [PMID: 34539708 PMCID: PMC8446606 DOI: 10.3389/fpls.2021.715983] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Understanding temporal accumulation of soybean above-ground biomass (AGB) has the potential to contribute to yield gains and the development of stress-resilient cultivars. Our main objectives were to develop a high-throughput phenotyping method to predict soybean AGB over time and to reveal its temporal quantitative genomic properties. A subset of the SoyNAM population (n = 383) was grown in multi-environment trials and destructive AGB measurements were collected along with multispectral and RGB imaging from 27 to 83 days after planting (DAP). We used machine-learning methods for phenotypic prediction of AGB, genomic prediction of breeding values, and genome-wide association studies (GWAS) based on random regression models (RRM). RRM enable the study of changes in genetic variability over time and further allow selection of individuals when aiming to alter the general response shapes over time. AGB phenotypic predictions were high (R 2 = 0.92-0.94). Narrow-sense heritabilities estimated over time ranged from low to moderate (from 0.02 at 44 DAP to 0.28 at 33 DAP). AGB from adjacent DAP had highest genetic correlations compared to those DAP further apart. We observed high accuracies and low biases of prediction indicating that genomic breeding values for AGB can be predicted over specific time intervals. Genomic regions associated with AGB varied with time, and no genetic markers were significant in all time points evaluated. Thus, RRM seem a powerful tool for modeling the temporal genetic architecture of soybean AGB and can provide useful information for crop improvement. This study provides a basis for future studies to combine phenotyping and genomic analyses to understand the genetic architecture of complex longitudinal traits in plants.
Collapse
Affiliation(s)
| | | | - Miguel Angel Lopez
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Bilal Jamal Abughali
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Guilherme Gomes
- Department of Statistics, Purdue University, West Lafayette, IN, United States
| | - Keith Aric Cherkauer
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, United States
| | - Luiz Fernando Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Katy Martin Rainey
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
15
|
High-throughput phenotyping to dissect genotypic differences in safflower for drought tolerance. PLoS One 2021; 16:e0254908. [PMID: 34297757 PMCID: PMC8301646 DOI: 10.1371/journal.pone.0254908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 01/11/2023] Open
Abstract
Drought is one of the most severe and unpredictable abiotic stresses, occurring at any growth stage and affecting crop yields worldwide. Therefore, it is essential to develop drought tolerant varieties to ensure sustainable crop production in an ever-changing climate. High-throughput digital phenotyping technologies in tandem with robust screening methods enable precise and faster selection of genotypes for breeding. To investigate the use of digital imaging to reliably phenotype for drought tolerance, a genetically diverse safflower population was screened under different drought stresses at Agriculture Victoria’s high-throughput, automated phenotyping platform, Plant Phenomics Victoria, Horsham. In the first experiment, four treatments, control (90% field capacity; FC), 40% FC at initial branching, 40% FC at flowering and 50% FC at initial branching and flowering, were applied to assess the performance of four safflower genotypes. Based on these results, drought stress using 50% FC at initial branching and flowering stages was chosen to further screen 200 diverse safflower genotypes. Measured plant traits and dry biomass showed high correlations with derived digital traits including estimated shoot biomass, convex hull area, caliper length and minimum area rectangle, indicating the viability of using digital traits as proxy measures for plant growth. Estimated shoot biomass showed close association having moderately high correlation with drought indices yield index, stress tolerance index, geometric mean productivity, and mean productivity. Diverse genotypes were classified into four clusters of drought tolerance based on their performance (seed yield and digitally estimated shoot biomass) under stress. Overall, results show that rapid and precise image-based, high-throughput phenotyping in controlled environments can be used to effectively differentiate response to drought stress in a large numbers of safflower genotypes.
Collapse
|
16
|
Meyer RC, Weigelt-Fischer K, Knoch D, Heuermann M, Zhao Y, Altmann T. Temporal dynamics of QTL effects on vegetative growth in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:476-490. [PMID: 33080013 DOI: 10.1093/jxb/eraa490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
We assessed early vegetative growth in a population of 382 accessions of Arabidopsis thaliana using automated non-invasive high-throughput phenotyping. All accessions were imaged daily from 7 d to 18 d after sowing in three independent experiments and genotyped using the Affymetrix 250k SNP array. Projected leaf area (PLA) was derived from image analysis and used to calculate relative growth rates (RGRs). In addition, initial seed size was determined. The generated datasets were used jointly for a genome-wide association study that identified 238 marker-trait associations (MTAs) individually explaining up to 8% of the total phenotypic variation. Co-localization of MTAs occurred at 33 genomic positions. At 21 of these positions, sequential co-localization of MTAs for 2-9 consecutive days was observed. The detected MTAs for PLA and RGR could be grouped according to their temporal expression patterns, emphasizing that temporal variation of MTA action can be observed even during the vegetative growth phase, a period of continuous formation and enlargement of seemingly similar rosette leaves. This indicates that causal genes may be differentially expressed in successive periods. Analyses of the temporal dynamics of biological processes are needed to gain important insight into the molecular mechanisms of growth-controlling processes in plants.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Marc Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, Research Group Quantitative Genetics, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| |
Collapse
|
17
|
Singh NK, Dutta A, Puccetti G, Croll D. Tackling microbial threats in agriculture with integrative imaging and computational approaches. Comput Struct Biotechnol J 2020; 19:372-383. [PMID: 33489007 PMCID: PMC7787954 DOI: 10.1016/j.csbj.2020.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 11/29/2022] Open
Abstract
Pathogens and pests are one of the major threats to agricultural productivity worldwide. For decades, targeted resistance breeding was used to create crop cultivars that resist pathogens and environmental stress while retaining yields. The often decade-long process of crossing, selection, and field trials to create a new cultivar is challenged by the rapid rise of pathogens overcoming resistance. Similarly, antimicrobial compounds can rapidly lose efficacy due to resistance evolution. Here, we review three major areas where computational, imaging and experimental approaches are revolutionizing the management of pathogen damage on crops. Recognizing and scoring plant diseases have dramatically improved through high-throughput imaging techniques applicable both under well-controlled greenhouse conditions and directly in the field. However, computer vision of complex disease phenotypes will require significant improvements. In parallel, experimental setups similar to high-throughput drug discovery screens make it possible to screen thousands of pathogen strains for variation in resistance and other relevant phenotypic traits. Confocal microscopy and fluorescence can capture rich phenotypic information across pathogen genotypes. Through genome-wide association mapping approaches, phenotypic data helps to unravel the genetic architecture of stress- and virulence-related traits accelerating resistance breeding. Finally, joint, large-scale screenings of trait variation in crops and pathogens can yield fundamental insights into how pathogens face trade-offs in the adaptation to resistant crop varieties. We discuss how future implementations of such innovative approaches in breeding and pathogen screening can lead to more durable disease control.
Collapse
Affiliation(s)
- Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Anik Dutta
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Guido Puccetti
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Syngenta Crop Protection AG, CH-4332 Stein, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
18
|
Huang CT, Klos KE, Huang YF. Genome-Wide Association Study Reveals the Genetic Architecture of Seed Vigor in Oats. G3 (BETHESDA, MD.) 2020; 10:4489-4503. [PMID: 33028627 PMCID: PMC7718755 DOI: 10.1534/g3.120.401602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
Abstract
Seed vigor is crucial for crop early establishment in the field and is particularly important for forage crop production. Oat (Avena sativa L.) is a nutritious food crop and also a valuable forage crop. However, little is known about the genetics of seed vigor in oats. To investigate seed vigor-related traits and their genetic architecture in oats, we developed an easy-to-implement image-based phenotyping pipeline and applied it to 650 elite oat lines from the Collaborative Oat Research Enterprise (CORE). Root number, root surface area, and shoot length were measured in two replicates. Variables such as growth rate were derived. Using a genome-wide association (GWA) approach, we identified 34 and 16 unique loci associated with root traits and shoot traits, respectively, which corresponded to 41 and 16 unique SNPs at a false discovery rate < 0.1. Nine root-associated loci were organized into four sets of homeologous regions, while nine shoot-associated loci were organized into three sets of homeologous regions. The context sequences of five trait-associated markers matched to the sequences of rice, Brachypodium and maize (E-value < 10-10), including three markers matched to known gene models with potential involvement in seed vigor. These were a glucuronosyltransferase, a mitochondrial carrier protein domain containing protein, and an iron-sulfur cluster protein. This study presents the first GWA study on oat seed vigor and data of this study can provide guidelines and foundation for further investigations.
Collapse
Affiliation(s)
- Ching-Ting Huang
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| | - Kathy Esvelt Klos
- Small Grains and Potato Germplasm Research, USDA, ARS, Aberdeen, ID 83210
| | - Yung-Fen Huang
- Department of Agronomy, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
19
|
Moreira FF, Oliveira HR, Volenec JJ, Rainey KM, Brito LF. Integrating High-Throughput Phenotyping and Statistical Genomic Methods to Genetically Improve Longitudinal Traits in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:681. [PMID: 32528513 PMCID: PMC7264266 DOI: 10.3389/fpls.2020.00681] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/30/2020] [Indexed: 05/28/2023]
Abstract
The rapid development of remote sensing in agronomic research allows the dynamic nature of longitudinal traits to be adequately described, which may enhance the genetic improvement of crop efficiency. For traits such as light interception, biomass accumulation, and responses to stressors, the data generated by the various high-throughput phenotyping (HTP) methods requires adequate statistical techniques to evaluate phenotypic records throughout time. As a consequence, information about plant functioning and activation of genes, as well as the interaction of gene networks at different stages of plant development and in response to environmental stimulus can be exploited. In this review, we outline the current analytical approaches in quantitative genetics that are applied to longitudinal traits in crops throughout development, describe the advantages and pitfalls of each approach, and indicate future research directions and opportunities.
Collapse
Affiliation(s)
- Fabiana F. Moreira
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Hinayah R. Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jeffrey J. Volenec
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Katy M. Rainey
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
20
|
Anderson SL, Murray SC, Chen Y, Malambo L, Chang A, Popescu S, Cope D, Jung J. Unoccupied aerial system enabled functional modeling of maize height reveals dynamic expression of loci. PLANT DIRECT 2020; 4:e00223. [PMID: 32399510 PMCID: PMC7212003 DOI: 10.1002/pld3.223] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 05/06/2023]
Abstract
Unoccupied aerial systems (UAS) were used to phenotype growth trajectories of inbred maize populations under field conditions. Three recombinant inbred line populations were surveyed on a weekly basis collecting RGB images across two irrigation regimens (irrigated and non-irrigated/rain fed). Plant height, estimated by the 95th percentile (P95) height from UAS generated 3D point clouds, exceeded 70% correlation (r) to manual ground truth measurements and 51% of experimental variance was explained by genetics. The Weibull sigmoidal function accurately modeled plant growth (R 2: >99%; RMSE: <4 cm) from P95 genetic means. The mean asymptote was strongly correlated (r 2 = 0.66-0.77) with terminal plant height. Maximum absolute growth rates (mm/day) were weakly correlated with height and flowering time. The average inflection point ranged from 57 to 60 days after sowing (DAS) and was correlated with flowering time (r 2 = 0.45-0.68). Functional growth parameters (asymptote, inflection point, growth rate) alone identified 34 genetic loci, each explaining 3-15% of total genetic variation. Plant height was estimated at one-day intervals to 85 DAS, identifying 58 unique temporal quantitative trait loci (QTL) locations. Genomic hotspots on chromosomes 1 and 3 indicated chromosomal regions associated with functional growth trajectories influencing flowering time, growth rate, and terminal growth. Temporal QTL demonstrated unique dynamic expression patterns not previously observable, and no QTL were significantly expressed throughout the entire growing season. UAS technologies improved phenotypic selection accuracy and permitted monitoring traits on a temporal scale previously infeasible using manual measurements, furthering understanding of crop development and biological trajectories.
Collapse
Affiliation(s)
- Steven L. Anderson
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTXUSA
- Present address:
Department of Environmental HorticultureInstitute of Food and Agricultural SciencesMid‐Florida Research and Education CenterUniversity of FloridaApopkaFLUSA
| | - Seth C. Murray
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTXUSA
| | - Yuanyuan Chen
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTXUSA
- Present address:
National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Lonesome Malambo
- Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationTXUSA
| | - Anjin Chang
- School of Engineering and Computer SciencesTexas A&M University – Corpus ChristiCorpus ChristiTXUSA
| | - Sorin Popescu
- Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationTXUSA
| | - Dale Cope
- Department of Mechanical EngineeringTexas A&M UniversityCollege StationTXUSA
| | - Jinha Jung
- School of Engineering and Computer SciencesTexas A&M University – Corpus ChristiCorpus ChristiTXUSA
- Present address:
Department of Civil EngineeringPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
21
|
Lyra DH, Virlet N, Sadeghi-Tehran P, Hassall KL, Wingen LU, Orford S, Griffiths S, Hawkesford MJ, Slavov GT. Functional QTL mapping and genomic prediction of canopy height in wheat measured using a robotic field phenotyping platform. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1885-1898. [PMID: 32097472 PMCID: PMC7094083 DOI: 10.1093/jxb/erz545] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/19/2020] [Indexed: 05/08/2023]
Abstract
Genetic studies increasingly rely on high-throughput phenotyping, but the resulting longitudinal data pose analytical challenges. We used canopy height data from an automated field phenotyping platform to compare several approaches to scanning for quantitative trait loci (QTLs) and performing genomic prediction in a wheat recombinant inbred line mapping population based on up to 26 sampled time points (TPs). We detected four persistent QTLs (i.e. expressed for most of the growing season), with both empirical and simulation analyses demonstrating superior statistical power of detecting such QTLs through functional mapping approaches compared with conventional individual TP analyses. In contrast, even very simple individual TP approaches (e.g. interval mapping) had superior detection power for transient QTLs (i.e. expressed during very short periods). Using spline-smoothed phenotypic data resulted in improved genomic predictive abilities (5-8% higher than individual TP prediction), while the effect of including significant QTLs in prediction models was relatively minor (<1-4% improvement). Finally, although QTL detection power and predictive ability generally increased with the number of TPs analysed, gains beyond five or 10 TPs chosen based on phenological information had little practical significance. These results will inform the development of an integrated, semi-automated analytical pipeline, which will be more broadly applicable to similar data sets in wheat and other crops.
Collapse
Affiliation(s)
- Danilo H Lyra
- Department of Computational & Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Nicolas Virlet
- Department of Plant Sciences, Rothamsted Research, Harpenden, UK
| | | | - Kirsty L Hassall
- Department of Computational & Analytical Sciences, Rothamsted Research, Harpenden, UK
| | - Luzie U Wingen
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | - Simon Orford
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, UK
| | | | - Gancho T Slavov
- Department of Computational & Analytical Sciences, Rothamsted Research, Harpenden, UK
- Scion, Rotorua, New Zealand
| |
Collapse
|
22
|
Momen M, Campbell MT, Walia H, Morota G. Utilizing trait networks and structural equation models as tools to interpret multi-trait genome-wide association studies. PLANT METHODS 2019; 15:107. [PMID: 31548847 PMCID: PMC6749677 DOI: 10.1186/s13007-019-0493-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Plant breeders seek to develop cultivars with maximal agronomic value, which is often assessed using numerous, often genetically correlated traits. As intervention on one trait will affect the value of another, breeding decisions should consider the relationships among traits in the context of putative causal structures (i.e., trait networks). While multi-trait genome-wide association studies (MTM-GWAS) can infer putative genetic signals at the multivariate scale, standard MTM-GWAS does not accommodate the network structure of phenotypes, and therefore does not address how the traits are interrelated. We extended the scope of MTM-GWAS by incorporating trait network structures into GWAS using structural equation models (SEM-GWAS). Here, we illustrate the utility of SEM-GWAS using a digital metric for shoot biomass, root biomass, water use, and water use efficiency in rice. RESULTS A salient feature of SEM-GWAS is that it can partition the total single nucleotide polymorphism (SNP) effects acting on a trait into direct and indirect effects. Using this novel approach, we show that for most QTL associated with water use, total SNP effects were driven by genetic effects acting directly on water use rather that genetic effects originating from upstream traits. Conversely, total SNP effects for water use efficiency were largely due to indirect effects originating from the upstream trait, projected shoot area. CONCLUSIONS We describe a robust framework that can be applied to multivariate phenotypes to understand the interrelationships between complex traits. This framework provides novel insights into how QTL act within a phenotypic network that would otherwise not be possible with conventional multi-trait GWAS approaches. Collectively, these results suggest that the use of SEM may enhance our understanding of complex relationships among agronomic traits.
Collapse
Affiliation(s)
- Mehdi Momen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Drive, Blacksburg, VA 24061 USA
| | - Malachy T. Campbell
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Drive, Blacksburg, VA 24061 USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583 USA
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, 175 West Campus Drive, Blacksburg, VA 24061 USA
| |
Collapse
|
23
|
Zhao C, Zhang Y, Du J, Guo X, Wen W, Gu S, Wang J, Fan J. Crop Phenomics: Current Status and Perspectives. FRONTIERS IN PLANT SCIENCE 2019; 10:714. [PMID: 31214228 PMCID: PMC6557228 DOI: 10.3389/fpls.2019.00714] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/14/2019] [Indexed: 05/19/2023]
Abstract
Reliable, automatic, multifunctional, and high-throughput phenotypic technologies are increasingly considered important tools for rapid advancement of genetic gain in breeding programs. With the rapid development in high-throughput phenotyping technologies, research in this area is entering a new era called 'phenomics.' The crop phenotyping community not only needs to build a multi-domain, multi-level, and multi-scale crop phenotyping big database, but also to research technical systems for phenotypic traits identification and develop bioinformatics technologies for information extraction from the overwhelming amounts of omics data. Here, we provide an overview of crop phenomics research, focusing on two parts, from phenotypic data collection through various sensors to phenomics analysis. Finally, we discussed the challenges and prospective of crop phenomics in order to provide suggestions to develop new methods of mining genes associated with important agronomic traits, and propose new intelligent solutions for precision breeding.
Collapse
|
24
|
Campbell M, Momen M, Walia H, Morota G. Leveraging Breeding Values Obtained from Random Regression Models for Genetic Inference of Longitudinal Traits. THE PLANT GENOME 2019; 12:180075. [PMID: 31290928 DOI: 10.3835/plantgenome2018.10.0075] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding the genetic basis of dynamic plant phenotypes has largely been limited because of a lack of space and labor resources needed to record dynamic traits, often destructively, for a large number of genotypes. However, the recent advent of image-based phenotyping platforms has provided the plant science community with an effective means to nondestructively evaluate morphological, developmental, and physiological processes at regular, frequent intervals for a large number of plants throughout development. The statistical frameworks typically used for genetic analyses (e.g., genome-wide association mapping, linkage mapping, and genomic prediction) in plant breeding and genetics are not particularly amenable for repeated measurements. Random regression (RR) models are routinely used in animal breeding for the genetic analysis of longitudinal traits and provide a robust framework for modeling trait trajectories and performing genetic analysis simultaneously. We recently used a RR approach for genomic prediction of shoot growth trajectories in rice ( L.) from 33,674 single nucleotide polymorphisms. In this study, we have extended this approach for genetic inference by leveraging genomic breeding values derived from RR models for rice shoot growth during early vegetative development. This approach provides improvements over conventional single time point analyses for discovering loci associated with shoot growth trajectories. The RR approach uncovers persistent as well as time-specific transient quantitative trait loci. This methodology can be widely applied to understand the genetic architecture of other complex polygenic traits with repeated measurements.
Collapse
|
25
|
Ward B, Brien C, Oakey H, Pearson A, Negrão S, Schilling RK, Taylor J, Jarvis D, Timmins A, Roy SJ, Tester M, Berger B, van den Hengel A. High-throughput 3D modelling to dissect the genetic control of leaf elongation in barley (Hordeum vulgare). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:555-570. [PMID: 30604470 PMCID: PMC6850118 DOI: 10.1111/tpj.14225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 05/11/2023]
Abstract
To optimize shoot growth and structure of cereals, we need to understand the genetic components controlling initiation and elongation. While measuring total shoot growth at high throughput using 2D imaging has progressed, recovering the 3D shoot structure of small grain cereals at a large scale is still challenging. Here, we present a method for measuring defined individual leaves of cereals, such as wheat and barley, using few images. Plant shoot modelling over time was used to measure the initiation and elongation of leaves in a bi-parental barley mapping population under low and high soil salinity. We detected quantitative trait loci (QTL) related to shoot growth per se, using both simple 2D total shoot measurements and our approach of measuring individual leaves. In addition, we detected QTL specific to leaf elongation and not to total shoot size. Of particular importance was the detection of a QTL on chromosome 3H specific to the early responses of leaf elongation to salt stress, a locus that could not be detected without the computer vision tools developed in this study.
Collapse
Affiliation(s)
- Ben Ward
- Australian Center for Visual TechnologiesUniversity of AdelaideAdelaideSA5005Australia
| | - Chris Brien
- Australian Plant Phenomics FacilityThe Plant AcceleratorSchool of Agriculture Food & WineUniversity of AdelaideUrrbraeSA5064Australia
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
- Phenomics and Bioinformatics Research CentreSchool of Information Technology and Mathematical SciencesUniversity of South AustraliaAdelaide5001Australia
| | - Helena Oakey
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
| | - Allison Pearson
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
- ARC Centre of Excellence in Plant Energy BiologyThe University of AdelaidePMB 1, Glen OsmondAdelaideSouth Australia5064Australia
- Australian Centre for Plant Functional GenomicsPMB 1, Glen OsmondAdelaideSouth Australia5064Australia
| | - Sónia Negrão
- Division of Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Rhiannon K. Schilling
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
- Australian Centre for Plant Functional GenomicsPMB 1, Glen OsmondAdelaideSouth Australia5064Australia
| | - Julian Taylor
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
| | - David Jarvis
- Division of Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Andy Timmins
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
- Australian Centre for Plant Functional GenomicsPMB 1, Glen OsmondAdelaideSouth Australia5064Australia
| | - Stuart J. Roy
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
- Australian Centre for Plant Functional GenomicsPMB 1, Glen OsmondAdelaideSouth Australia5064Australia
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering (BESE)King Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Bettina Berger
- Australian Plant Phenomics FacilityThe Plant AcceleratorSchool of Agriculture Food & WineUniversity of AdelaideUrrbraeSA5064Australia
- School of Agriculture Food & Wine and Waite Research InstituteUniversity of AdelaideUrrbraeSA5064Australia
| | - Anton van den Hengel
- Australian Center for Visual TechnologiesUniversity of AdelaideAdelaideSA5005Australia
| |
Collapse
|
26
|
Rice B, Lipka AE. Evaluation of RR-BLUP Genomic Selection Models that Incorporate Peak Genome-Wide Association Study Signals in Maize and Sorghum. THE PLANT GENOME 2019; 12. [PMID: 30951091 DOI: 10.3835/plantgenome2018.07.0052] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Certain agronomic crop traits are complex and thus governed by many small-effect loci. Statistical models typically used in a genome-wide association study (GWAS) and genomic selection (GS) quantify these signals by assessing genomic marker contributions in linkage disequilibrium (LD) with these loci to trait variation. These models have been used in separate quantitative genetics contexts until recently, when, in published studies, the predictive ability of GS models that include peak associated markers from a GWAS as fixed-effect covariates was assessed. Previous work suggests that such models could be useful for predicting traits controlled by several large-effect and many small-effect genes. We expand this work by evaluating simulated traits from diversity panels in maize ( L.) and sorghum [ (L.) Moench] using ridge-regression best linear unbiased prediction (RR-BLUP) models that include fixed-effect covariates tagging peak GWAS signals. The ability of such covariates to increase GS prediction accuracy in the RR-BLUP model under a wide variety of genetic architectures and genomic backgrounds was quantified. Of the 216 genetic architectures that we simulated, we identified 60 where the addition of fixed-effect covariates boosted prediction accuracy. However, for the majority of the simulated data, no increase or a decrease in prediction accuracy was observed. We also noted several instances where the inclusion of fixed-effect covariates increased both the variability of prediction accuracies and the bias of the genomic estimated breeding values. We therefore recommend that the performance of such a GS model be explored on a trait-by-trait basis prior to its implementation into a breeding program.
Collapse
|
27
|
Morton MJL, Awlia M, Al‐Tamimi N, Saade S, Pailles Y, Negrão S, Tester M. Salt stress under the scalpel - dissecting the genetics of salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:148-163. [PMID: 30548719 PMCID: PMC6850516 DOI: 10.1111/tpj.14189] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 05/08/2023]
Abstract
Salt stress limits the productivity of crops grown under saline conditions, leading to substantial losses of yield in saline soils and under brackish and saline irrigation. Salt tolerant crops could alleviate these losses while both increasing irrigation opportunities and reducing agricultural demands on dwindling freshwater resources. However, despite significant efforts, progress towards this goal has been limited, largely because of the genetic complexity of salt tolerance for agronomically important yield-related traits. Consequently, the focus is shifting to the study of traits that contribute to overall tolerance, thus breaking down salt tolerance into components that are more genetically tractable. Greater consideration of the plasticity of salt tolerance mechanisms throughout development and across environmental conditions furthers this dissection. The demand for more sophisticated and comprehensive methodologies is being met by parallel advances in high-throughput phenotyping and sequencing technologies that are enabling the multivariate characterisation of vast germplasm resources. Alongside steady improvements in statistical genetics models, forward genetics approaches for elucidating salt tolerance mechanisms are gaining momentum. Subsequent quantitative trait locus and gene validation has also become more accessible, most recently through advanced techniques in molecular biology and genomic analysis, facilitating the translation of findings to the field. Besides fuelling the improvement of established crop species, this progress also facilitates the domestication of naturally salt tolerant orphan crops. Taken together, these advances herald a promising era of discovery for research into the genetics of salt tolerance in plants.
Collapse
Affiliation(s)
- Mitchell J. L. Morton
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Mariam Awlia
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Nadia Al‐Tamimi
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Stephanie Saade
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Yveline Pailles
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Sónia Negrão
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Mark Tester
- Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Yichie Y, Brien C, Berger B, Roberts TH, Atwell BJ. Salinity tolerance in Australian wild Oryza species varies widely and matches that observed in O. sativa. RICE (NEW YORK, N.Y.) 2018; 11:66. [PMID: 30578452 PMCID: PMC6303227 DOI: 10.1186/s12284-018-0257-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/03/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Soil salinity is widespread in rice-producing areas globally, restricting both vegetative growth and grain yield. Attempts to improve the salt tolerance of Asian rice, Oryza sativa-the most salt sensitive of the major cereal crops-have met with limited success, due to the complexity of the trait and finite variation in salt responses among O. sativa lines. Naturally occurring variation among the more than 20 wild species of the Oryza genus has great potential to provide breeders with novel genes to improve resistance to salt. Here, through two distinct screening experiments, we investigated variation in salinity tolerance among accessions of two wild rice species endemic to Australia, O. meridionalis and O. australiensis, with O. sativa cultivars Pokkali and IR29 providing salt-tolerant and sensitive controls, respectively. RESULTS Rice plants were grown on soil supplemented with field-relevant concentrations of NaCl (0, 40, 80, and 100 mM) for 30 d, a period sufficient to reveal differences in growth and physiological traits. Two complementary screening approaches were used: destructive phenotyping and high-throughput image-based phenotyping. All genotypes displayed clear responses to salt treatment. In the first experiment, both salt-tolerant Pokkali and an O. australiensis accession (Oa-VR) showed the least reduction in biomass accumulation, SES score and chlorophyll content in response to salinity. Average shoot Na+/K+ values of these plants were the lowest among the genotypes tested. In the second experiment, plant responses to different levels of salt stress were quantified over time based on projected shoot area calculated from visible red-green-blue (RGB) and fluorescence images. Pokkali grew significantly faster than the other genotypes. Pokkali and Oa-VR plants displayed the same absolute growth rate under 80 and 100 mM, while Oa-D grew significantly slower with the same treatments. Oa-VR showed substantially less inhibition of growth in response to salinity when compared with Oa-D. Senescence was seen in Oa-D after 30 d treatment with 40 mM NaCl, while the putatively salt-tolerant Oa-VR had only minor leaf damage, even at higher salt treatments, with less than a 40% increase in relative senescence at 100 mM NaCl compared to 120% for Oa-VR. CONCLUSION The combination of our two screening experiments uncovered striking levels of salt tolerance diversity among the Australian wild rice accessions tested and enabled analysis of their growth responses to a range of salt levels. Our results validate image-based phenotyping as a valuable tool for quantitative measurement of plant responses to abiotic stresses. They also highlight the potential of exotic germplasm to provide new genetic variation for salinity tolerance in rice.
Collapse
Affiliation(s)
- Yoav Yichie
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Chris Brien
- School of Agriculture Food and Wine, University of Adelaide, Adelaide, Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, Waite Research Institute, University of Adelaide, Adelaide, Australia
| | - Bettina Berger
- School of Agriculture Food and Wine, University of Adelaide, Adelaide, Australia
- Australian Plant Phenomics Facility, The Plant Accelerator, Waite Research Institute, University of Adelaide, Adelaide, Australia
| | - Thomas H. Roberts
- Sydney Institute of Agriculture, University of Sydney, Sydney, Australia
| | - Brian J. Atwell
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
29
|
Nguyen GN, Norton SL, Rosewarne GM, James LE, Slater AT. Automated phenotyping for early vigour of field pea seedlings in controlled environment by colour imaging technology. PLoS One 2018; 13:e0207788. [PMID: 30452470 PMCID: PMC6242686 DOI: 10.1371/journal.pone.0207788] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Early vigour of seedlings is a beneficial trait of field pea (Pisum sativum L.) that contributes to weed control, water use efficiency and is likely to contribute to yield under certain environments. Although breeding is considered the most effective approach to improve early vigour of field pea, the absence of a robust and high-throughput phenotyping tool to dissect this complex trait is currently a major obstacle of genetic improvement programs to address this issue. To develop this tool, separate trials on 44 genetically diverse field pea genotypes were conducted in the automated plant phenotyping platform of Plant Phenomics Victoria, Horsham and in the field, respectively. High correlation between estimated plant parameters derived from the automated phenotyping platform and important early vigour traits such as shoot biomass, leaf area and plant height indicated that the derived plant parameters can be used to predict vigour traits in field pea seedlings. Plant growth analysis demonstrated that the "broken-stick" model fitted well with the growth pattern of all field pea genotypes and can be used to determine the linear growth phase. Further analysis suggested that the estimated plant parameters collected at the linear growth phase can effectively differentiate early vigour across field pea genotypes. High correlation between normalised difference vegetation indices captured from the field trial and estimated shoot biomass and top-view area confirmed the consistent performance of early vigour field pea genotypes under controlled and field environments. Overall, our results demonstrated that this robust screening tool is highly applicable and will enable breeding programs to rapidly identify early vigour traits and utilise germplasm to contribute to the genetic improvement of field peas.
Collapse
Affiliation(s)
- Giao N. Nguyen
- Australian Grains Genebank, Agriculture Victoria, Grains Innovation Park, Horsham, Victoria, Australia
| | - Sally L. Norton
- Australian Grains Genebank, Agriculture Victoria, Grains Innovation Park, Horsham, Victoria, Australia
| | - Garry M. Rosewarne
- Agriculture Victoria, Grains Innovation Park, Horsham, Victoria, Australia
| | - Laura E. James
- Agriculture Victoria, Grains Innovation Park, Horsham, Victoria, Australia
| | | |
Collapse
|
30
|
Misra G, Badoni S, Domingo CJ, Cuevas RPO, Llorente C, Mbanjo EGN, Sreenivasulu N. Deciphering the Genetic Architecture of Cooked Rice Texture. FRONTIERS IN PLANT SCIENCE 2018; 9:1405. [PMID: 30333842 PMCID: PMC6176215 DOI: 10.3389/fpls.2018.01405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/05/2018] [Indexed: 05/07/2023]
Abstract
The textural attributes of cooked rice determine palatability and consumer acceptance. Henceforth, understanding the underlying genetic basis is pivotal for the genetic improvement of preferred textural attributes in breeding programs. We characterized diverse set of 236 Indica accessions from 37 countries for textural attributes, which includes adhesiveness (ADH), hardness (HRD), springiness (SPR), and cohesiveness (COH) as well as amylose content (AC). A set of 147,692 high quality SNPs resulting from genotyping data of 700K high Density Rice Array (HDRA) derived from the Indica diversity panels of 218 lines were retained for marker-trait associations of textural attributes using single-locus (SL) genome wide association studies (GWAS) which resulted in identifying hotspot on chromosome 6 for AC and ADH attributes. Four independent multi-locus approaches (ML-GWAS) including FASTmrEMMA, pLARmEB, mrMLM, and ISIS_EM-BLASSO were implemented to dissect additional loci of major/minor effects influencing the rice texture and to overcome limitations of SL-based GWAS approach. In total 224 significant quantitative trait nucleotide (QTNs) were identified using ML-GWAS, of which 97 were validated with at least two out of the four multi-locus methods. The GWAS results were in accordance with the very significant negative correlation (r = -0.83) observed between AC and ADH, and the significant correlation exhibited by AC (r < 0.4) with HRD, SPR, and COH. The novel haplotypes and putative candidate genes influencing textural properties beyond AC will be a useful resource for deployment into the marker assisted program to capture consumer preferences influencing rice texture and palatability.
Collapse
|
31
|
Campbell M, Walia H, Morota G. Utilizing random regression models for genomic prediction of a longitudinal trait derived from high-throughput phenotyping. PLANT DIRECT 2018; 2:e00080. [PMID: 31245746 PMCID: PMC6508851 DOI: 10.1002/pld3.80] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 05/12/2023]
Abstract
The accessibility of high-throughput phenotyping platforms in both the greenhouse and field, as well as the relatively low cost of unmanned aerial vehicles, has provided researchers with an effective means to characterize large populations throughout the growing season. These longitudinal phenotypes can provide important insight into plant development and responses to the environment. Despite the growing use of these new phenotyping approaches in plant breeding, the use of genomic prediction models for longitudinal phenotypes is limited in major crop species. The objective of this study was to demonstrate the utility of random regression (RR) models using Legendre polynomials for genomic prediction of shoot growth trajectories in rice (Oryza sativa). An estimate of shoot biomass, projected shoot area (PSA), was recorded over a period of 20 days for a panel of 357 diverse rice accessions using an image-based greenhouse phenotyping platform. A RR that included a fixed second-order Legendre polynomial, a random second-order Legendre polynomial for the additive genetic effect, a first-order Legendre polynomial for the environmental effect, and heterogeneous residual variances was used to model PSA trajectories. The utility of the RR model over a single time point (TP) approach, where PSA is fit at each time point independently, is shown through four prediction scenarios. In the first scenario, the RR and TP approaches were used to predict PSA for a set of lines lacking phenotypic data. The RR approach showed a 11.6% increase in prediction accuracy over the TP approach. Much of this improvement could be attributed to the greater additive genetic variance captured by the RR approach. The remaining scenarios focused forecasting future phenotypes using a subset of early time points for known lines with phenotypic data, as well new lines lacking phenotypic data. In all cases, PSA could be predicted with high accuracy (r: 0.79 to 0.89 and 0.55 to 0.58 for known and unknown lines, respectively). This study provides the first application of RR models for genomic prediction of a longitudinal trait in rice and demonstrates that RR models can be effectively used to improve the accuracy of genomic prediction for complex traits compared to a TP approach.
Collapse
Affiliation(s)
- Malachy Campbell
- Department of Agronomy and HorticultureUniversity of Nebraska LincolnLincolnNebraska
| | - Harkamal Walia
- Department of Agronomy and HorticultureUniversity of Nebraska LincolnLincolnNebraska
| | - Gota Morota
- Department of Animal and Poultry SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginia
| |
Collapse
|
32
|
Guo Z, Yang W, Chang Y, Ma X, Tu H, Xiong F, Jiang N, Feng H, Huang C, Yang P, Zhao H, Chen G, Liu H, Luo L, Hu H, Liu Q, Xiong L. Genome-Wide Association Studies of Image Traits Reveal Genetic Architecture of Drought Resistance in Rice. MOLECULAR PLANT 2018; 11:789-805. [PMID: 29614319 DOI: 10.1016/j.molp.2018.03.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/14/2018] [Accepted: 03/26/2018] [Indexed: 05/19/2023]
Abstract
Understanding how plants respond to drought can benefit drought resistance (DR) breeding. Using a non-destructive phenotyping facility, 51 image-based traits (i-traits) for 507 rice accessions were extracted. These i-traits can be used to monitor drought responses and evaluate DR. High heritability and large variation of these traits was observed under drought stress in the natural population. A genome-wide association study (GWAS) of i-traits and traditional DR traits identified 470 association loci, some containing known DR-related genes. Of these 470 loci, 443 loci (94%) were identified using i-traits, 437 loci (93%) co-localized with previously reported DR-related quantitative trait loci, and 313 loci (66.6%) were reproducibly identified by GWAS in different years. Association networks, established based on GWAS results, revealed hub i-traits and hub loci. This demonstrates the feasibility and necessity of dissecting the complex DR trait into heritable and simple i-traits. As proof of principle, we illustrated the power of this integrated approach to identify previously unreported DR-related genes. OsPP15 was associated with a hub i-trait, and its role in DR was confirmed by genetic transformation experiments. Furthermore, i-traits can be used for DR linkage analyses, and 69 i-trait locus associations were identified by both GWAS and linkage analysis of a recombinant inbred line population. Finally, we confirmed the relevance of i-traits to DR in the field. Our study provides a promising novel approach for the genetic dissection and discovery of causal genes for DR.
Collapse
Affiliation(s)
- Zilong Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaosong Ma
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Feng
- Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenglong Huang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Yang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Guoxing Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|