1
|
Ujinwal M, Singh N, Langyan S, Singh NK. Genetic dissection of total protein content, phenolic content and seed quality traits in pigeonpea (Cajanus cajan) using 62K pigeonpea genic SNP chip. Mol Genet Genomics 2025; 300:44. [PMID: 40244494 DOI: 10.1007/s00438-025-02235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/10/2025] [Indexed: 04/18/2025]
Abstract
Pigeonpea (Cajanus cajan L. Millsp.), South Asia's second most significant pulse crop and source of dietary protein, is facing production issues due to a lack of improved varieties with high nutritional and seed quality compositions, as well as environmental stress. Identification of genes/alleles governing the nutritional and seed quality traits is key for marker-assisted breeding for quality traits in pigeonpea. Hence, the present study was undertaken to unravel the complex genetic architecture of nutritional and seed quality traits in pigeonpea. We conducted a genome-wide association study (GWAS) to identify SNP markers associated with nutritional traits, namely total protein content (TPC), phenolics content, and seed quality traits, such as seed coat colour, length, width, size, shape, and weight using a 62K SNP genotyping chip array. We estimated TPC of a panel of 287 diverse pigeonpea genotypes using Kjeldahl method to identify 5 significant SNPs associated with TPC on chromosomes 6 and 11 (AX-165344137), encoding a putative disease resistance protein, and Chromosome 11 (AX-165358192), encoding a CBL-interacting serine/threonine-protein kinase. We identified five markers associated with the seed coat colour on Chromosomes 5 (AX-165369586), 2 (AX-165370277), and 8 (AX-165400346). Additionally, we identified 4, 6, 2, 3, 6, and 5 SNPs associated with phenolics content, seed length, seed shape, seed width, seed size, and seed weight, respectively. The study's findings are projected to bring considerable benefits to pigeonpea producers in marker-assisted breeding for the production of varieties with improved protein content and seed quality traits corresponded to consumer preferences, as well as promote improved health and nutrition. Therefore, GWAS provides strong support for exploring the genetic mechanisms underlying important pigeonpea qualities and improving breeding strategies.
Collapse
Affiliation(s)
- Megha Ujinwal
- Gujarat Biotechnology University (GBU), Gandhinagar, Gujarat, 382355, India
- Amity University, Panchgaon, Manesar, Gurgaon, Haryana, 122413, India
| | - Nisha Singh
- Gujarat Biotechnology University (GBU), Gandhinagar, Gujarat, 382355, India.
| | - Sapna Langyan
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Pusa Campus, New Delhi, 110012, India
| | | |
Collapse
|
2
|
Garg V, Barmukh R, Chitikineni A, Roorkiwal M, Ojiewo C, Bohra A, Thudi M, Singh VK, Kudapa H, Saxena RK, Fountain J, Mir RR, Bharadwaj C, Chen X, Xin L, Pandey MK. Celebrating Professor Rajeev K. Varshney's transformative research odyssey from genomics to the field on his induction as Fellow of the Royal Society. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1504-1515. [PMID: 38206288 PMCID: PMC11123405 DOI: 10.1111/pbi.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Professor Rajeev K. Varshney's transformative impact on crop genomics, genetics, and agriculture is the result of his passion, dedication, and unyielding commitment to harnessing the potential of genomics to address the most pressing challenges faced by the global agricultural community. Starting from a small town in India and reaching the global stage, Professor Varshney's academic and professional trajectory has inspired many scientists active in research today. His ground-breaking work, especially his effort to list orphan tropical crops to genomic resource-rich entities, has been transformative. Beyond his scientific achievements, Professor Varshney is recognized by his colleagues as an exemplary mentor, fostering the growth of future researchers, building institutional capacity, and strengthening scientific capability. His focus on translational genomics and strengthening seed system in developing countries for the improvement of agriculture has made a tangible impact on farmers' lives. His skills have been best utilized in roles at leading research centres where he has applied his expertise to deliver a new vision for crop improvement. These efforts have now been recognized by the Royal Society with the award of the Fellowship (FRS). As we mark this significant milestone in his career, we not only celebrate Professor Varshney's accomplishments but also his wider contributions that continue to transform the agricultural landscape.
Collapse
Affiliation(s)
- Vanika Garg
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Rutwik Barmukh
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Annapurna Chitikineni
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Manish Roorkiwal
- Khalifa Center for Genetic Engineering and BiotechnologyUnited Arab Emirates UniversityAl AinUAE
| | - Chris Ojiewo
- International Maize and Wheat Improvement Center (CIMMYT)NairobiKenya
| | - Abhishek Bohra
- Centre for Crop & Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | | | - Vikas K. Singh
- International Rice Research Institute (IRRI)‐South‐Asia HubInternational Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
| | - Himabindu Kudapa
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | | | - Jake Fountain
- Department of Plant PathologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of AgricultureSKUAST‐KashmirWaduraIndia
| | | | - Xiaoping Chen
- Crops Research InstituteGuangdong Academy of Agricultural Sciences (GDAAS)GuangzhouChina
| | | | - Manish K. Pandey
- Center of Excellence in Genomics & Systems BiologyInternational Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| |
Collapse
|
3
|
Bakala HS, Devi J, Singh G, Singh I. Drought and heat stress: insights into tolerance mechanisms and breeding strategies for pigeonpea improvement. PLANTA 2024; 259:123. [PMID: 38622376 DOI: 10.1007/s00425-024-04401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
MAIN CONCLUSION Pigeonpea has potential to foster sustainable agriculture and resilience in evolving climate change; understanding bio-physiological and molecular mechanisms of heat and drought stress tolerance is imperative to developing resilience cultivars. Pigeonpea is an important legume crop that has potential resilience in the face of evolving climate scenarios. However, compared to other legumes, there has been limited research on abiotic stress tolerance in pigeonpea, particularly towards drought stress (DS) and heat stress (HS). To address this gap, this review delves into the genetic, physiological, and molecular mechanisms that govern pigeonpea's response to DS and HS. It emphasizes the need to understand how this crop combats these stresses and exhibits different types of tolerance and adaptation mechanisms through component traits. The current article provides a comprehensive overview of the complex interplay of factors contributing to the resilience of pigeonpea under adverse environmental conditions. Furthermore, the review synthesizes information on major breeding techniques, encompassing both conventional methods and modern molecular omics-assisted tools and techniques. It highlights the potential of genomics and phenomics tools and their pivotal role in enhancing adaptability and resilience in pigeonpea. Despite the progress made in genomics, phenomics and big data analytics, the complexity of drought and heat tolerance in pigeonpea necessitate continuous exploration at multi-omic levels. High-throughput phenotyping (HTP) is crucial for gaining insights into perplexed interactions among genotype, environment, and management practices (GxExM). Thus, integration of advanced technologies in breeding programs is critical for developing pigeonpea varieties that can withstand the challenges posed by climate change. This review is expected to serve as a valuable resource for researchers, providing a deeper understanding of the mechanisms underlying abiotic stress tolerance in pigeonpea and offering insights into modern breeding strategies that can contribute to the development of resilient varieties suited for changing environmental conditions.
Collapse
Affiliation(s)
- Harmeet Singh Bakala
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jomika Devi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
- Texas A&M University, AgriLife Research Center, Beaumont, TX, 77713, USA.
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
4
|
Susmitha P, Kumar P, Yadav P, Sahoo S, Kaur G, Pandey MK, Singh V, Tseng TM, Gangurde SS. Genome-wide association study as a powerful tool for dissecting competitive traits in legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1123631. [PMID: 37645459 PMCID: PMC10461012 DOI: 10.3389/fpls.2023.1123631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/08/2023] [Indexed: 08/31/2023]
Abstract
Legumes are extremely valuable because of their high protein content and several other nutritional components. The major challenge lies in maintaining the quantity and quality of protein and other nutritional compounds in view of climate change conditions. The global need for plant-based proteins has increased the demand for seeds with a high protein content that includes essential amino acids. Genome-wide association studies (GWAS) have evolved as a standard approach in agricultural genetics for examining such intricate characters. Recent development in machine learning methods shows promising applications for dimensionality reduction, which is a major challenge in GWAS. With the advancement in biotechnology, sequencing, and bioinformatics tools, estimation of linkage disequilibrium (LD) based associations between a genome-wide collection of single-nucleotide polymorphisms (SNPs) and desired phenotypic traits has become accessible. The markers from GWAS could be utilized for genomic selection (GS) to predict superior lines by calculating genomic estimated breeding values (GEBVs). For prediction accuracy, an assortment of statistical models could be utilized, such as ridge regression best linear unbiased prediction (rrBLUP), genomic best linear unbiased predictor (gBLUP), Bayesian, and random forest (RF). Both naturally diverse germplasm panels and family-based breeding populations can be used for association mapping based on the nature of the breeding system (inbred or outbred) in the plant species. MAGIC, MCILs, RIAILs, NAM, and ROAM are being used for association mapping in several crops. Several modifications of NAM, such as doubled haploid NAM (DH-NAM), backcross NAM (BC-NAM), and advanced backcross NAM (AB-NAM), have also been used in crops like rice, wheat, maize, barley mustard, etc. for reliable marker-trait associations (MTAs), phenotyping accuracy is equally important as genotyping. Highthroughput genotyping, phenomics, and computational techniques have advanced during the past few years, making it possible to explore such enormous datasets. Each population has unique virtues and flaws at the genomics and phenomics levels, which will be covered in more detail in this review study. The current investigation includes utilizing elite breeding lines as association mapping population, optimizing the choice of GWAS selection, population size, and hurdles in phenotyping, and statistical methods which will analyze competitive traits in legume breeding.
Collapse
Affiliation(s)
- Pusarla Susmitha
- Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Andhra Pradesh, India
| | - Pawan Kumar
- Department of Genetics and Plant Breeding, College of Agriculture, Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar, India
| | - Pankaj Yadav
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Rajasthan, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, School of Agriculture, Gandhi Institute of Engineering and Technology (GIET) University, Odisha, India
| | - Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Manish K. Pandey
- Department of Genomics, Prebreeding and Bioinformatics, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Varsha Singh
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States
| | - Te Ming Tseng
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States
| | - Sunil S. Gangurde
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| |
Collapse
|
5
|
Barreto de Jesus P, de Mattos Lyra G, Zhang H, Toyota Fujii M, Nauer F, Marcos de Castro Nunes J, Davis CC, Cabral Oliveira M. Phylogenomics and taxon-rich phylogenies of new and historical specimens shed light on the systematics of Hypnea (Cystocloniaceae, Rhodophyta). Mol Phylogenet Evol 2023; 183:107752. [PMID: 36893930 DOI: 10.1016/j.ympev.2023.107752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Cystocloniacae is a highly diverse family of Rhodophyta, including species of ecological and economic importance, whose phylogeny remains largely unresolved. Species delimitation is unclear, particularly in the most speciose genus, Hypnea, and cryptic diversity has been revealed by recent molecular assessments, especially in the tropics. Here, we carried out the first phylogenomic investigation of Cystocloniaceae, focused on the genus Hypnea, inferred from chloroplast and mitochondrial genomes including taxa sampled from new and historical collections. In this work, molecular synapomorphies (gene losses, InDels and gene inversions) were identified to better characterize clades in our congruent organellar phylogenies. We also present taxon-rich phylogenies based on plastid and mitochondrial markers. Molecular and morphological comparisons of historic collections with contemporary specimens revealed the need for taxonomic updates in Hypnea, the synonymization of H. marchantae to a later heterotypic synonym of H. cervicornis and the description of three new species: H. davisiana sp. nov., H. djamilae sp. nov. and H. evaristoae sp. nov.
Collapse
Affiliation(s)
- Priscila Barreto de Jesus
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (CCNH - UFABC), Rua Arcturus 03, São Bernardo do Campo, São Paulo, 09606-070, Brazil; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, São Paulo, 05508-090, Brazil.
| | - Goia de Mattos Lyra
- Programa de Pós-Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Salvador, Bahia, 40170-115, Brasil; Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge Massachusetts 02138, USA; Laboratório de Algas Marinhas, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Salvador Bahia 40170-115, Brasil
| | - Hongrui Zhang
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge Massachusetts 02138, USA
| | - Mutue Toyota Fujii
- Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, Av. Miguel Estefano 3687, 04301-902, São Paulo, Brazil
| | - Fabio Nauer
- Núcleo de Conservação da Biodiversidade, Instituto de Pesquisas Ambientais, Av. Miguel Estefano 3687, 04301-902, São Paulo, Brazil; Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, São Paulo, 05508-090, Brazil
| | - José Marcos de Castro Nunes
- Programa de Pós-Graduação em Biodiversidade e Evolução, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Salvador, Bahia, 40170-115, Brasil; Laboratório de Algas Marinhas, Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Salvador Bahia 40170-115, Brasil
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge Massachusetts 02138, USA
| | - Mariana Cabral Oliveira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, São Paulo, 05508-090, Brazil
| |
Collapse
|
6
|
Salgotra RK, Stewart CN. Genetic Augmentation of Legume Crops Using Genomic Resources and Genotyping Platforms for Nutritional Food Security. PLANTS (BASEL, SWITZERLAND) 2022; 11:1866. [PMID: 35890499 PMCID: PMC9325189 DOI: 10.3390/plants11141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | | |
Collapse
|
7
|
Sikander R, Wang Y, Ghulam A, Wu X. Identification of Enzymes-specific Protein Domain Based on DDE, and Convolutional Neural Network. Front Genet 2021; 12:759384. [PMID: 34917128 PMCID: PMC8670239 DOI: 10.3389/fgene.2021.759384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Predicting the protein sequence information of enzymes and non-enzymes is an important but a very challenging task. Existing methods use protein geometric structures only or protein sequences alone to predict enzymatic functions. Thus, their prediction results are unsatisfactory. In this paper, we propose a novel approach for predicting the amino acid sequences of enzymes and non-enzymes via Convolutional Neural Network (CNN). In CNN, the roles of enzymes are predicted from multiple sides of biological information, including information on sequences and structures. We propose the use of two-dimensional data via 2DCNN to predict the proteins of enzymes and non-enzymes by using the same fivefold cross-validation function. We also use an independent dataset to test the performance of our model, and the results demonstrate that we are able to solve the overfitting problem. We used the CNN model proposed herein to demonstrate the superiority of our model for classifying an entire set of filters, such as 32, 64, and 128 parameters, with the fivefold validation test set as the independent classification. Via the Dipeptide Deviation from Expected Mean (DDE) matrix, mutation information is extracted from amino acid sequences and structural information with the distance and angle of amino acids is conveyed. The derived feature maps are then encoded in DDE exploitation. The independent datasets are then compared with other two methods, namely, GRU and XGBOOST. All analyses were conducted using 32, 64 and 128 filters on our proposed CNN method. The cross-validation datasets achieved an accuracy score of 0.8762%, whereas the accuracy of independent datasets was 0.7621%. Additional variables were derived on the basis of ROC AUC with fivefold cross-validation was achieved score is 0.95%. The performance of our model and that of other models in terms of sensitivity (0.9028%) and specificity (0.8497%) was compared. The overall accuracy of our model was 0.9133% compared with 0.8310% for the other model.
Collapse
Affiliation(s)
- Rahu Sikander
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Yuping Wang
- School of Computer Science and Technology, Xidian University, Xi'an, China
| | - Ali Ghulam
- Computerization and Network Section, Sindh Agriculture University, Tando Jam, Pakistan
| | - Xianjuan Wu
- School of Computer Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
8
|
Nabi RBS, Cho KS, Tayade R, Oh KW, Lee MH, Kim JI, Kim S, Pae SB, Oh E. Genetic diversity analysis of Korean peanut germplasm using 48 K SNPs 'Axiom_Arachis' Array and its application for cultivar differentiation. Sci Rep 2021; 11:16630. [PMID: 34404839 PMCID: PMC8371136 DOI: 10.1038/s41598-021-96074-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Cultivated peanut (Arachis hypogaea) is one of the important legume oilseed crops. Cultivated peanut has a narrow genetic base. Therefore, it is necessary to widen its genetic base and diversity for additional use. The objective of the present study was to assess the genetic diversity and population structure of 96 peanut genotypes with 9478 high-resolution SNPs identified from a 48 K 'Axiom_Arachis' SNP array. Korean set genotypes were also compared with a mini-core of US genotypes. These sets of genotypes were used for genetic diversity analysis. Model-based structure analysis at K = 2 indicated the presence of two subpopulations in both sets of genotypes. Phylogenetic and PCA analysis clustered these genotypes into two major groups. However, clear genotype distribution was not observed for categories of subspecies, botanical variety, or origin. The analysis also revealed that current Korean genetic resources lacked variability compared to US mini-core genotypes. These results suggest that Korean genetic resources need to be expanded by creating new allele combinations and widening the genetic pool to offer new genetic variations for Korean peanut improvement programs. High-quality SNP data generated in this study could be used for identifying varietal contaminant, QTL, and genes associated with desirable traits by performing mapping, genome-wide association studies.
Collapse
Affiliation(s)
- Rizwana Begum Syed Nabi
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Kwang-Soo Cho
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Rupesh Tayade
- grid.258803.40000 0001 0661 1556Laboratory of Plant Breeding, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ki Won Oh
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Myoung Hee Lee
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Jung In Kim
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Sungup Kim
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Suk-Bok Pae
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| | - Eunyoung Oh
- grid.420186.90000 0004 0636 2782Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, 50424 Republic of Korea
| |
Collapse
|
9
|
Thudi M, Palakurthi R, Schnable JC, Chitikineni A, Dreisigacker S, Mace E, Srivastava RK, Satyavathi CT, Odeny D, Tiwari VK, Lam HM, Hong YB, Singh VK, Li G, Xu Y, Chen X, Kaila S, Nguyen H, Sivasankar S, Jackson SA, Close TJ, Shubo W, Varshney RK. Genomic resources in plant breeding for sustainable agriculture. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153351. [PMID: 33412425 PMCID: PMC7903322 DOI: 10.1016/j.jplph.2020.153351] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 05/19/2023]
Abstract
Climate change during the last 40 years has had a serious impact on agriculture and threatens global food and nutritional security. From over half a million plant species, cereals and legumes are the most important for food and nutritional security. Although systematic plant breeding has a relatively short history, conventional breeding coupled with advances in technology and crop management strategies has increased crop yields by 56 % globally between 1965-85, referred to as the Green Revolution. Nevertheless, increased demand for food, feed, fiber, and fuel necessitates the need to break existing yield barriers in many crop plants. In the first decade of the 21st century we witnessed rapid discovery, transformative technological development and declining costs of genomics technologies. In the second decade, the field turned towards making sense of the vast amount of genomic information and subsequently moved towards accurately predicting gene-to-phenotype associations and tailoring plants for climate resilience and global food security. In this review we focus on genomic resources, genome and germplasm sequencing, sequencing-based trait mapping, and genomics-assisted breeding approaches aimed at developing biotic stress resistant, abiotic stress tolerant and high nutrition varieties in six major cereals (rice, maize, wheat, barley, sorghum and pearl millet), and six major legumes (soybean, groundnut, cowpea, common bean, chickpea and pigeonpea). We further provide a perspective and way forward to use genomic breeding approaches including marker-assisted selection, marker-assisted backcrossing, haplotype based breeding and genomic prediction approaches coupled with machine learning and artificial intelligence, to speed breeding approaches. The overall goal is to accelerate genetic gains and deliver climate resilient and high nutrition crop varieties for sustainable agriculture.
Collapse
Affiliation(s)
- Mahendar Thudi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; University of Southern Queensland, Toowoomba, Australia
| | - Ramesh Palakurthi
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Annapurna Chitikineni
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Emma Mace
- Agri-Science Queensland, Department of Agriculture & Fisheries (DAF), Warwick, Australia
| | - Rakesh K Srivastava
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - C Tara Satyavathi
- Indian Council of Agricultural Research (ICAR)- Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Damaris Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Nairobi, Kenya
| | | | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region
| | - Yan Bin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Vikas K Singh
- South Asia Hub, International Rice Research Institute (IRRI), Hyderabad, India
| | - Guowei Li
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yunbi Xu
- International Maize and Wheat Improvement Center (CYMMIT), Mexico DF, Mexico; Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sanjay Kaila
- Department of Biotechnology, Ministry of Science and Technology, Government of India, India
| | - Henry Nguyen
- National Centre for Soybean Research, University of Missouri, Columbia, USA
| | - Sobhana Sivasankar
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | | | | | - Wan Shubo
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Rajeev K Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
| |
Collapse
|
10
|
Dhaliwal SK, Talukdar A, Gautam A, Sharma P, Sharma V, Kaushik P. Developments and Prospects in Imperative Underexploited Vegetable Legumes Breeding: A Review. Int J Mol Sci 2020; 21:E9615. [PMID: 33348635 PMCID: PMC7766301 DOI: 10.3390/ijms21249615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Vegetable legumes are an essential source of carbohydrates, vitamins, and minerals, along with health-promoting bioactive chemicals. The demand for the use of either fresh or processed vegetable legumes is continually expanding on account of the growing consumer awareness about their well-balanced diet. Therefore, sustaining optimum yields of vegetable legumes is extremely important. Here we seek to present d etails of prospects of underexploited vegetable legumes for food availability, accessibility, and improved livelihood utilization. So far research attention was mainly focused on pulse legumes' performance as compared to vegetable legumes. Wild and cultivated vegetable legumes vary morphologically across diverse habitats. This could make them less known, underutilized, and underexploited, and make them a promising potential nutritional source in developing nations where malnutrition still exists. Research efforts are required to promote underexploited vegetable legumes, for improving their use to feed the ever-increasing population in the future. In view of all the above points, here we have discussed underexploited vegetable legumes with tremendous potential; namely, vegetable pigeon pea (Cajanus cajan), cluster bean (Cyamopsis tetragonoloba), winged bean (Psophocarpus tetragonolobus), dolichos bean (Lablab purpureus), and cowpea (Vigna unguiculata), thereby covering the progress related to various aspects such as pre-breeding, molecular markers, quantitative trait locus (QTLs), genomics, and genetic engineering. Overall, this review has summarized the information related to advancements in the breeding of vegetable legumes which will ultimately help in ensuring food and nutritional security in developing nations.
Collapse
Affiliation(s)
- Sandeep Kaur Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India; (S.K.D.); (P.S.)
| | - Akshay Talukdar
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Ashish Gautam
- Department of Genetics and Plant Breeding, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145, India;
| | - Pankaj Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India; (S.K.D.); (P.S.)
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
- Nagano University, Ueda 386-0031, Japan
| |
Collapse
|
11
|
Singh N, Rai V, Singh NK. Multi-omics strategies and prospects to enhance seed quality and nutritional traits in pigeonpea. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00341-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Perry A, Wachowiak W, Downing A, Talbot R, Cavers S. Development of a single nucleotide polymorphism array for population genomic studies in four European pine species. Mol Ecol Resour 2020; 20:1697-1705. [PMID: 32633888 DOI: 10.1111/1755-0998.13223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Pines are some of the most ecologically and economically important tree species in the world, and many have enormous natural distributions or have been extensively planted. However, a lack of rapid genotyping capability is hampering progress in understanding the molecular basis of genetic variation in these species. Here, we deliver an efficient tool for genotyping thousands of single nucleotide polymorphism (SNP) markers across the genome that can be applied to genetic studies in pines. Polymorphisms from resequenced candidate genes and transcriptome sequences of P. sylvestris, P. mugo, P. uncinata, P. uliginosa and P. radiata were used to design a 49,829 SNP array (Axiom_PineGAP, Thermo Fisher). Over a third (34.68%) of the unigenes identified from the P. sylvestris transcriptome were represented on the array, which was used to screen samples of four pine species. The conversion rate for the array on all samples was 42% (N = 20,795 SNPs) and was similar for SNPs sourced from resequenced candidate gene and transcriptome sequences. The broad representation of gene ontology terms by unigenes containing converted SNPs reflected their coverage across the full transcriptome. Over a quarter of successfully converted SNPs were polymorphic among all species, and the data were successful in discriminating among the species and some individual populations. The SNP array provides a valuable new tool to advance genetic studies in these species and demonstrates the effectiveness of the technology for rapid genotyping in species with large and complex genomes.
Collapse
Affiliation(s)
- Annika Perry
- UK Centre for Ecology & Hydrology Edinburgh, Penicuik, UK
| | - Witold Wachowiak
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Alison Downing
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Richard Talbot
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Stephen Cavers
- UK Centre for Ecology & Hydrology Edinburgh, Penicuik, UK
| |
Collapse
|
13
|
Saxena RK, Molla J, Yadav P, Varshney RK. High resolution mapping of restoration of fertility (Rf) by combining large population and high density genetic map in pigeonpea [Cajanus cajan (L.) Millsp]. BMC Genomics 2020; 21:460. [PMID: 32620075 PMCID: PMC7333333 DOI: 10.1186/s12864-020-06859-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/22/2020] [Indexed: 11/16/2022] Open
Abstract
Background Restoration of fertility (Rf) is an important trait for pigeonpea hybrid breeding. Few coarse quantitative trait locus (QTL) studies conducted in the past identified QTLs with large confidence intervals on the genetic map and could not provide any information on possible genes responsible for Rf in pigeonpea. Therefore, a larger population comprising of 369 F2s derived from ICPA 2039 × ICPL 87119 was genotyped with high density Axiom Cajanus SNP Array with 56 K single nucleotide polymorphism (SNPs) for high resolution mapping of Rf. Results A genetic map with 4867 markers was developed and a total of four QTLs for Rf were identified. While one major effect QTL (qRf8.1) was co-localized with the QTL identified in two previous studies and its size was refined from 1.2 Mb to 0.41 Mb. Further analysis of qRf8.1 QTL with genome sequence provided 20 genes including two genes namely flowering locus protein T and 2-oxoglutarate/Fe (II)-dependent dioxygenases (2-ODDs) superfamily protein with known function in the restoration of fertility. Conclusion The qRf8.1 QTL and the potential candidate genes present in this QTL will be valuable for genomics-assisted breeding and identification of causal genes/nucleotides for the restoration of fertility in the hybrid breeding program of pigeonpea.
Collapse
Affiliation(s)
- Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| | - Johiruddin Molla
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.,Ghatal Rabindra Satabarsiki Mahavidyalay, Ghatal, Paschim Medinipur, 721212, India
| | - Pooja Yadav
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| |
Collapse
|
14
|
Gangurde SS, Wang H, Yaduru S, Pandey MK, Fountain JC, Chu Y, Isleib T, Holbrook CC, Xavier A, Culbreath AK, Ozias‐Akins P, Varshney RK, Guo B. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1457-1471. [PMID: 31808273 PMCID: PMC7206994 DOI: 10.1111/pbi.13311] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/05/2023]
Abstract
Multiparental genetic mapping populations such as nested-association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida-07, were used for dissecting genetic control of 100-pod weight (PW) and 100-seed weight (SW) in peanut. Two high-density SNP-based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida-07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida-07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP-trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida-07 for PW and SW, respectively. These significant STAs were co-localized, suggesting that PW and SW are co-regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high-resolution trait mapping in peanut.
Collapse
Affiliation(s)
- Sunil S. Gangurde
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Hui Wang
- Crop Protection and Management Research UnitUSDA‐ARSTiftonGAUSA
- Department of Plant PathologyUniversity of GeorgiaTiftonGAUSA
| | - Shasidhar Yaduru
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
- Crop Protection and Management Research UnitUSDA‐ARSTiftonGAUSA
- Department of Plant PathologyUniversity of GeorgiaTiftonGAUSA
| | - Manish K. Pandey
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Jake C. Fountain
- Crop Protection and Management Research UnitUSDA‐ARSTiftonGAUSA
- Department of Plant PathologyUniversity of GeorgiaTiftonGAUSA
| | - Ye Chu
- Horticulture DepartmentUniversity of GeorgiaTiftonGAUSA
| | - Thomas Isleib
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | | | | | | | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Baozhu Guo
- Department of Plant PathologyUniversity of GeorgiaTiftonGAUSA
| |
Collapse
|
15
|
Bohra A, Saxena KB, Varshney RK, Saxena RK. Genomics-assisted breeding for pigeonpea improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1721-1737. [PMID: 32062675 DOI: 10.1007/s00122-020-03563-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/08/2020] [Indexed: 05/25/2023]
Abstract
The review outlines advances in pigeonpea genomics, breeding and seed delivery systems to achieve yield gains at farmers' field. Pigeonpea is a nutritious and stress-tolerant grain legume crop of tropical and subtropical regions. Decades of breeding efforts in pigeonpea have resulted in development of a number of high-yielding cultivars. Of late, the development of CMS-based hybrid technology has allowed the exploitation of heterosis for yield enhancement in this crop. Despite these positive developments, the actual on-farm yield of pigeonpea is still well below its potential productivity. Growing needs for high and sustainable pigeonpea yields motivate scientists to improve the breeding efficiency to deliver a steady stream of cultivars that will provide yield benefits under both ideal and stressed environments. To achieve this objective in the shortest possible time, it is imperative that various crop breeding activities are integrated with appropriate new genomics technologies. In this context, the last decade has seen a remarkable rise in the generation of important genomic resources such as genome-wide markers, high-throughput genotyping assays, saturated genome maps, marker/gene-trait associations, whole-genome sequence and germplasm resequencing data. In some cases, marker/gene-trait associations are being employed in pigeonpea breeding programs to improve the valuable yield and market-preferred traits. Embracing new breeding tools like genomic selection and speed breeding is likely to improve genetic gains. Breeding high-yielding pigeonpea cultivars with key adaptation traits also calls for a renewed focus on systematic selection and utilization of targeted genetic resources. Of equal importance is to overcome the difficulties being faced by seed industry to take the new cultivars to the doorstep of farmers.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - K B Saxena
- , 17, NMC Housing, Al Ain, Abu Dhabi, United Arab Emirates
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| |
Collapse
|
16
|
Jaganathan D, Bohra A, Thudi M, Varshney RK. Fine mapping and gene cloning in the post-NGS era: advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1791-1810. [PMID: 32040676 PMCID: PMC7214393 DOI: 10.1007/s00122-020-03560-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Improvement in traits of agronomic importance is the top breeding priority of crop improvement programs. Majority of these agronomic traits show complex quantitative inheritance. Identification of quantitative trait loci (QTLs) followed by fine mapping QTLs and cloning of candidate genes/QTLs is central to trait analysis. Advances in genomic technologies revolutionized our understanding of genetics of complex traits, and genomic regions associated with traits were employed in marker-assisted breeding or cloning of QTLs/genes. Next-generation sequencing (NGS) technologies have enabled genome-wide methodologies for the development of ultra-high-density genetic linkage maps in different crops, thus allowing placement of candidate loci within few kbs in genomes. In this review, we compare the marker systems used for fine mapping and QTL cloning in the pre- and post-NGS era. We then discuss how different NGS platforms in combination with advanced experimental designs have improved trait analysis and fine mapping. We opine that efficient genotyping/sequencing assays may circumvent the need for cumbersome procedures that were earlier used for fine mapping. A deeper understanding of the trait architectures of agricultural significance will be crucial to accelerate crop improvement.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| |
Collapse
|
17
|
Singh S, Mahato AK, Jayaswal PK, Singh N, Dheer M, Goel P, Raje RS, Yasin JK, Sreevathsa R, Rai V, Gaikwad K, Singh NK. A 62K genic-SNP chip array for genetic studies and breeding applications in pigeonpea (Cajanus cajan L. Millsp.). Sci Rep 2020; 10:4960. [PMID: 32188919 PMCID: PMC7080765 DOI: 10.1038/s41598-020-61889-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/04/2020] [Indexed: 12/05/2022] Open
Abstract
Pigeonpea is the second most important pulse legume crop for food and nutritional security of South Asia that requires accelerated breeding using high throughput genomic tools. Single nucleotide polymorphisms (SNPs) are highly suitable markers for this purpose because of their bi-allelic nature, reproducibility and high abundance in the genome. Here we report on development and use of a pigeonpea 62 K SNP chip array ‘CcSNPnks’ for Affymetrix GeneTitan® platform. The array was designed after filtering 645,662 genic-SNPs identified by re-sequencing of 45 diverse genotypes and has 62,053 SNPs from 9629 genes belonging to five different categories, including 4314 single-copy genes unique to pigeonpea, 4328 single-copy genes conserved between soybean and pigeonpea, 156 homologs of agronomically important cloned genes, 746 disease resistance and defense response genes and 85 multi-copy genes of pigeonpea. This fully genic chip has 28.94% exonic, 33.04% intronic, 27.56% 5′UTR and 10.46% 3′UTR SNPs and incorporates multiple SNPs per gene allowing gene haplotype network analysis. It was used successfully for the analysis of genetic diversity and population structure of 95 pigeonpea varieties and high resolution mapping of 11 yield related QTLs for number of branches, pod bearing length and number of seeds per pod in a biparental RIL population. As an accurate high-density genotyping tool, ‘CcSNPnks’ chip array will be useful for high resolution fingerprinting, QTL mapping and genome wide as well as gene-based association studies in pigeonpea.
Collapse
Affiliation(s)
- Sangeeta Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Ajay K Mahato
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Pawan K Jayaswal
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nisha Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Meenakshi Dheer
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Preeti Goel
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ranjeet S Raje
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jeshima K Yasin
- ICAR-National Bureau of Plant Genetic Resources Pusa Campus, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Vandna Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
18
|
Saxena RK, Kale S, Mir RR, Mallikarjuna N, Yadav P, Das RR, Molla J, Sonnappa M, Ghanta A, Narasimhan Y, Rathore A, Kumar CVS, Varshney RK. Genotyping-by-sequencing and multilocation evaluation of two interspecific backcross populations identify QTLs for yield-related traits in pigeonpea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:737-749. [PMID: 31844966 DOI: 10.1007/s00122-019-03504-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
This study has identified single-nucleotide polymorphism (SNP) markers associated with nine yield-related traits in pigeonpea by using two backcross populations (BP) developed through interspecific crosses and evaluating them at two locations and 3 years. In both the populations, markers have shown strong segregation distortion; therefore, a quantitative trait locus (QTL) mapping mixed model was used. A total of 86 QTLs explaining 12-21% phenotypic variation were detected in BP-1. On the other hand, 107 QTLs explaining 11-29% phenotypic variation were detected in BP-2. Although most QTLs were environment and trait specific, few stable and consistent QTLs were also detected. Interestingly, 11 QTLs in BP-2 were associated with more than one trait. Among these QTLs, eight QTLs associated with days to 50% flowering and days to 75% maturity were located on CcLG07. One SNP "S7_14185076" marker in BP-2 population has been found associated with four traits, namely days to 50% flowering, days to 75% maturity, primary branches per plant and secondary branches per plant with positive additive effect. Hence, the present study has not only identified QTLs for yield-related traits, but also discovered novel alleles from wild species, which can be used for improvement of traits through genomics-assisted breeding.
Collapse
Affiliation(s)
- Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - Sandip Kale
- The Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, OT Gatersleben, Germany
| | - Reyazul Rouf Mir
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Wadura Campus, Sopore, Kashmir, 193201, India
| | - Nalini Mallikarjuna
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - Pooja Yadav
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - Roma Rani Das
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - Johiruddin Molla
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - Muniswamy Sonnappa
- Agricultural Research Station (UAS-Raichur), Gulbarga, Karnataka, 585101, India
| | - Anuradha Ghanta
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Yamini Narasimhan
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India
| | - C V Sameer Kumar
- Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRSAT), Patancheru, Telangana, 502324, India.
| |
Collapse
|
19
|
Tayade R, Kulkarni KP, Jo H, Song JT, Lee JD. Insight Into the Prospects for the Improvement of Seed Starch in Legume-A Review. FRONTIERS IN PLANT SCIENCE 2019; 10:1213. [PMID: 31736985 PMCID: PMC6836628 DOI: 10.3389/fpls.2019.01213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/03/2019] [Indexed: 05/18/2023]
Abstract
In addition to proteins and/or oils, mature seeds of most legume crops contain important carbohydrate components, including starches and sugars. Starch is also an essential nutritional component of human and animal diets and has various food and non-food industrial applications. Starch is a primary insoluble polymeric carbohydrate produced by higher plants and consists of amylose and amylopectin as a major fraction. Legume seeds are an affordable source of not only protein but also the starch, which has an advantage of being resistant starch compared with cereal, root, and tuber starch. For these reasons, legume seeds form a good source of resistant starch-rich healthy food with a high protein content and can be utilized in various food applications. The genetics and molecular details of starch and other carbohydrate components are well studied in cereal crops but have received little attention in legumes. In order to improve legume starch content, quality, and quantity, it is necessary to understand the genetic and molecular factors regulating carbohydrate metabolism in legume crops. In this review, we assessed the current literature reporting the genetic and molecular basis of legume carbohydrate components, primarily focused on seed starch content. We provided an overview of starch biosynthesis in the heterotrophic organs, the chemical composition of major consumable legumes, the factors influencing starch digestibility, and advances in the genetic, transcriptomic, and metabolomic studies in important legume crops. Further, we discussed breeding and biotechnological approaches for the improvement of the starch composition in major legume crops. The information reviewed in this study will be helpful in facilitating the food and non-food applications of legume starch and provide economic benefits to farmers and industries.
Collapse
Affiliation(s)
| | | | | | | | - Jeong-Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
20
|
Yadav P, Saxena KB, Hingane A, Kumar CVS, Kandalkar VS, Varshney RK, Saxena RK. An "Axiom Cajanus SNP Array" based high density genetic map and QTL mapping for high-selfing flower and seed quality traits in pigeonpea. BMC Genomics 2019; 20:235. [PMID: 30898108 PMCID: PMC6429735 DOI: 10.1186/s12864-019-5595-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pigeonpea has considerable extent of insect-aided natural out-crossing that impedes genetic purity of seeds. Pre-anthesis cleistogamy in pigeonpea promotes self-pollination which helps in maintaining genetic purity. The cleistogamous flowers are linked with shriveled seeds, an undesirable trait from variety adoption point of view, and breeding using genomics tools can help in overcoming this constraint. Therefore, in order to identify genomic regions governing these target traits, one recombinant inbred line (RIL) population was developed using contrasting parents (ICPL 99010 and ICP 5529) for flower shape and shriveled seeds. The RILs were phenotyped for two years and genotyped using the Axiom Cajanus SNP Array. RESULTS Out of the 56,512 unique sequence variations on the array, the mapping population showed 8634 single nucleotide polymorphism (SNPs) segregating across the genome. These data facilitated generation of a high density genetic map covering 6818 SNPs in 974 cM with an average inter-marker distance of 0.1 cM, which is the lowest amongst all pigeonpea genetic maps reported. Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified 5 QTLs associated with cleistogamous flower, 3 QTLs for shriveled seed and 1 QTL for seed size. The phenotypic variance explained by these QTLs ranged from 9.1 to 50.6%. A consistent QTL "qCl3.2" was identified for cleistogamous flower on CcLG03 covering a span of 42 kb in the pigeonpea genome. Epistatic QTLs were also identified for cleistogamous flower and shriveled seed traits. CONCLUSION Identified QTLs and genomic interactions for cleistogamous flower, shriveled seed and seed size will help in incorporating the required floral architecture in pigeonpea varieties/lines. Besides, it will also be useful in understanding the molecular mechanisms, and map-based gene cloning for the target traits.
Collapse
Affiliation(s)
- Pooja Yadav
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India.,Department of Genetics and Plant Breeding, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya (RVSKVV), Gwalior, 474 002, India
| | - K B Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Anupama Hingane
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - C V Sameer Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - V S Kandalkar
- Department of Genetics and Plant Breeding, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya (RVSKVV), Gwalior, 474 002, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, India.
| |
Collapse
|
21
|
Varshney RK, Pandey MK, Bohra A, Singh VK, Thudi M, Saxena RK. Toward the sequence-based breeding in legumes in the post-genome sequencing era. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:797-816. [PMID: 30560464 PMCID: PMC6439141 DOI: 10.1007/s00122-018-3252-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 05/19/2023]
Abstract
Efficiency of breeding programs of legume crops such as chickpea, pigeonpea and groundnut has been considerably improved over the past decade through deployment of modern genomic tools and technologies. For instance, next-generation sequencing technologies have facilitated availability of genome sequence assemblies, re-sequencing of several hundred lines, development of HapMaps, high-density genetic maps, a range of marker genotyping platforms and identification of markers associated with a number of agronomic traits in these legume crops. Although marker-assisted backcrossing and marker-assisted selection approaches have been used to develop superior lines in several cases, it is the need of the hour for continuous population improvement after every breeding cycle to accelerate genetic gain in the breeding programs. In this context, we propose a sequence-based breeding approach which includes use of independent or combination of parental selection, enhancing genetic diversity of breeding programs, forward breeding for early generation selection, and genomic selection using sequencing/genotyping technologies. Also, adoption of speed breeding technology by generating 4-6 generations per year will be contributing to accelerate genetic gain. While we see a huge potential of the sequence-based breeding to revolutionize crop improvement programs in these legumes, we anticipate several challenges especially associated with high-quality and precise phenotyping at affordable costs, data analysis and management related to improving breeding operation efficiency. Finally, integration of improved seed systems and better agronomic packages with the development of improved varieties by using sequence-based breeding will ensure higher genetic gains in farmers' fields.
Collapse
Affiliation(s)
- Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), IRRI South Asia Hub, ICRISAT, Hyderabad, 502324, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| |
Collapse
|