1
|
Wu J, Lu L, Dai B, Yu A. Unraveling the role of LDHA and VEGFA in oxidative stress: A pathway to therapeutic interventions in cerebral aneurysms. BIOMOLECULES & BIOMEDICINE 2025; 25:360-374. [PMID: 38829380 PMCID: PMC11734822 DOI: 10.17305/bb.2024.10510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Cerebral aneurysms (CA) are critical conditions often associated with oxidative stress in vascular endothelial cells (VECs). The enzyme lactate dehydrogenase A (LDHA) plays a crucial role in glycolysis and lactate metabolism, processes implicated in the pathogenesis of aneurysms. Understanding these molecular mechanisms can inform the development of novel therapeutic targets. This study investigated the role of lactate metabolism and lactate-related genes, particularly LDHA and vascular endothelial growth factor A (VEGFA) genes, in VECs during oxidative stress. Using the GSE26969 dataset, we identified differential expression of lactate-related genes and performed functional enrichment analysis, revealing significant associations with glycolysis and lactate metabolic pathways. To induce oxidative stress, VECs were treated with H2O2, and the expression of LDHA and VEGFA was analyzed using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB) assays. Under oxygen-glucose deprivation/reperfusion (OGD/R) conditions, the effects of LDHA overexpression and VEGFA knockdown on cell viability and apoptosis were evaluated. Immunoprecipitation combined with western blotting was used to detect the lactylation status of LDHA following OGD/R stimulation and treatment with lactic acid (LA) and 2-deoxyglucose (2-DG). Our results indicated that oxidative stress modulates LDHA expression, glucose uptake, and lactate production, suggesting a metabolic shift towards glycolysis. LDHA overexpression improved cell survival and reduced apoptosis, while VEGFA knockdown had the opposite effect. Additionally, 2-DG treatment reduced LDHA lactylation and apoptosis. Our findings demonstrated that LDHA plays a critical role in the oxidative stress response of VECs, highlighting the potential therapeutic value of targeting glycolysis in CA. This study contributes to the understanding of metabolic adaptations in vascular pathologies and suggests new avenues for therapeutic intervention in CA management.
Collapse
Affiliation(s)
- Jiaying Wu
- Department of Neurology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixia Lu
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beibei Dai
- Department of Ultrasound, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Aiyong Yu
- Department of Neurology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage. Int J Mol Sci 2022; 23:ijms23126479. [PMID: 35742924 PMCID: PMC9223468 DOI: 10.3390/ijms23126479] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a complex and heterogeneous disease, and there is no effective treatment. Spontaneous ICH represents the final manifestation of different types of cerebral small vessel disease, usually categorized as: lobar (mostly related to cerebral amyloid angiopathy) and nonlobar (hypertension-related vasculopathy) ICH. Accurate phenotyping aims to reflect these biological differences in the underlying mechanisms and has been demonstrated to be crucial to the success of genetic studies in this field. This review summarizes how current knowledge on genetics and epigenetics of this devastating stroke subtype are contributing to improve the understanding of ICH pathophysiology and their potential role in developing therapeutic strategies.
Collapse
|
3
|
Kamdee K, Panadsako N, Mueangson O, Nuinoon M, Janwan P, Poonsawat W, Pongpanitanont P, Kitkumthorn N, Thongsroy J, Chunglok W. Promoter polymorphism of TNF-α (rs1800629) is associated with ischemic stroke susceptibility in a southern Thai population. Biomed Rep 2021; 15:78. [PMID: 34405050 PMCID: PMC8329996 DOI: 10.3892/br.2021.1454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/29/2021] [Indexed: 01/19/2023] Open
Abstract
Stroke represents the leading cause of disability and mortality amongst the elderly worldwide. Multiple risk factors, including both genetic and non-genetic components, as well as their interactions, are proposed as etiological factors involved in the development of ischemic stroke (IS). Promoter polymorphisms of the IL-6-174G/C (rs1800795) and TNF-α-308G/A (rs1800629) genes have been considered as predictive risk factors of IS; however, these have not yet been evaluated in a Thai population. The aims of this study were to investigate the association of IL-6-174G/C and TNF-α-308G/A polymorphisms with IS. Genomic DNA from 200 patients with IS and 200 controls were genotyped for IL-6-174G/C and TNF-α-308G/A polymorphisms using TaqMan™ SNP genotyping and quantitative PCR-high resolution melting analysis, respectively. It was found that the TNF-α-308 A allele was significantly associated with an increased risk of IS development compared with the G allele [odds ratio (OR)=2.044; 95% CI=1.154-3.620; P=0.014]. Moreover, the IS risk was significantly higher in the presence of TNF-α-308 GA or AA genotypes compared with that in the presence of GG genotypes with a dominant inheritance (OR=1.971; 95% CI=1.080-3.599; P=0.027). However, there was no association between IL-6-174G/C and the risk of IS development. The interaction study demonstrated that IL-6-174 GG and TNF-α-308 GG genotypes enhanced IS susceptibility when combined with hypertension, hyperlipidemia and alcohol consumption. Hypertensive and hyperlipidemic subjects with the TNF-α-308 GA and AA genotypes were more likely to develop IS compared with those who did not have these two conditions and had the GG genotype. In a matched study design (1:1), the IL-6-174 GC genotype was associated with higher IL-6 levels in the control group. Collectively, the present results highlight the utility of the TNF-α-308G/A polymorphism as a predictive genetic risk factor for development of IS.
Collapse
Affiliation(s)
- Kornyok Kamdee
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nitirat Panadsako
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Onchuma Mueangson
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Manit Nuinoon
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Penchom Janwan
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Wasinee Poonsawat
- Research Institute for Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Jirapan Thongsroy
- School of Medicine, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand.,Food Technology and Innovation Research Center of Excellence, Institute of Research and Innovation, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
4
|
Song Y, Choi JE, Kwon YJ, Chang HJ, Kim JO, Park DH, Park JM, Kim SJ, Lee JW, Hong KW. Identification of susceptibility loci for cardiovascular disease in adults with hypertension, diabetes, and dyslipidemia. J Transl Med 2021; 19:85. [PMID: 33632238 PMCID: PMC7905883 DOI: 10.1186/s12967-021-02751-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hypertension (HTN), diabetes mellitus (DM), and dyslipidemia (DL) are well-known risk factors of cardiovascular disease (CVD), but not all patients develop CVDs. Studies have been limited investigating genetic risk of CVDs specific to individuals with metabolic diseases. This study aimed to identify disease-specific and/or common genetic loci associated with CVD susceptibility in chronic metabolic disease patients. METHODS We conducted a genome-wide association study (GWAS) of a multiple case-control design with data from the City Cohort within Health EXAminees subcohort of the Korean Genome and Epidemiology Study (KoGES_HEXA). KoGES_HEXA is a population-based prospective cohort of 173,357 urban Korean adults that had health examinations at medical centers. 42,393 participants (16,309 HTN; 5,314 DM; 20,770 DL) were analyzed, and each metabolic disease group was divided into three CVD case-controls: coronary artery disease (CAD), ischemic stroke (IS), and cardio-cerebrovascular disease (CCD). GWASs were conducted for each case-control group with 7,975,321 imputed single nucleotide polymorphisms using the Phase 3 Asian panel from 1000 Genomes Project, by logistic regression and controlled for confounding variables. Genome-wide significant levels were implemented to identify important susceptibility loci. RESULTS Totaling 42,393 individuals, this study included 16,309 HTN (mean age [SD], 57.28 [7.45]; 816 CAD, 398 IS, and 1,185 CCD cases), 5,314 DM (57.79 [7.39]; 361 CAD, 153 IS, and 497 CCD cases), and 20,770 DL patients (55.34 [7.63]; 768 CAD, 295 IS, and 1,039 CCD cases). Six genome-wide significant CVD risk loci were identified, with relatively large effect sizes: 1 locus in HTN (HTN-CAD: 17q25.3/CBX8-CBX4 [OR, 2.607; P = 6.37 × 10-9]), 2 in DM (DM-IS: 4q32.3/MARCH1-LINC01207 [OR, 5.587; P = 1.34 × 10-8], and DM-CCD: 17q25.3/RPTOR [OR, 3.511; P = 1.99 × 10-8]), and 3 in DL (DL-CAD: 9q22.2/UNQ6494-LOC101927847 [OR, 2.282; P = 7.78 × 10-9], DL-IS: 3p22.1/ULK4 [OR, 2.162; P = 2.97 × 10-8], and DL-CCD: 2p22.2/CYP1B1-CYP1B1-AS1 [OR, 2.027; P = 4.24 × 10-8]). CONCLUSIONS This study identified 6 susceptibility loci and positional candidate genes for CVDs in HTN, DM, and DL patients using an unprecedented study design. 1 locus (17q25.3) was commonly associated with CAD. These associations warrant validation in additional studies for potential therapeutic applications.
Collapse
Affiliation(s)
- Youhyun Song
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonju-ro, Gangnam-gu, Seoul, 06273, Korea
| | - Ja-Eun Choi
- Healthcare R&D Division, Theragen Bio Co., Ltd., Gwanggyo-ro 145, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si, 16995, Gyeonggi-do, Korea
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Jung Oh Kim
- Healthcare R&D Division, Theragen Bio Co., Ltd., Gwanggyo-ro 145, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Da-Hyun Park
- Healthcare R&D Division, Theragen Bio Co., Ltd., Gwanggyo-ro 145, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Jae-Min Park
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonju-ro, Gangnam-gu, Seoul, 06273, Korea
| | - Seong-Jin Kim
- Healthcare R&D Division, Theragen Bio Co., Ltd., Gwanggyo-ro 145, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Ji Won Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211, Eonju-ro, Gangnam-gu, Seoul, 06273, Korea.
| | - Kyung-Won Hong
- Healthcare R&D Division, Theragen Bio Co., Ltd., Gwanggyo-ro 145, Suwon-si, Gyeonggi-do, 16229, Republic of Korea.
| |
Collapse
|
5
|
Endo S, Motomura K, Tsuhako M, Kakazu Y, Nakamura M, M. Otaki J. Search for Human-Specific Proteins Based on Availability Scores of Short Constituent Sequences: Identification of a WRWSH Protein in Human Testis. Comput Biol Chem 2020. [DOI: 10.5772/intechopen.89653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Little is known about protein sequences unique in humans. Here, we performed alignment-free sequence comparisons based on the availability (frequency bias) of short constituent amino acid (aa) sequences (SCSs) in proteins to search for human-specific proteins. Focusing on 5-aa SCSs (pentats), exhaustive comparisons of availability scores among the human proteome and other nine mammalian proteomes in the nonredundant (nr) database identified a candidate protein containing WRWSH, here called FAM75, as human-specific. Examination of various human genome sequences revealed that FAM75 had genomic DNA sequences for either WRWSH or WRWSR due to a single nucleotide polymorphism (SNP). FAM75 and its related protein FAM205A were found to be produced through alternative splicing. The FAM75 transcript was found only in humans, but the FAM205A transcript was also present in other mammals. In humans, both FAM75 and FAM205A were expressed specifically in testis at the mRNA level, and they were immunohistochemically located in cells in seminiferous ducts and in acrosomes in spermatids at the protein level, suggesting their possible function in sperm development and fertilization. This study highlights a practical application of SCS-based methods for protein searches and suggests possible contributions of SNP variants and alternative splicing of FAM75 to human evolution.
Collapse
|
6
|
Park JJ, Kim BJ, Youn DH, Choi HJ, Jeon JP. A Preliminary Study of the Association between SOX17 Gene Variants and Intracranial Aneurysms Using Exome Sequencing. J Korean Neurosurg Soc 2020; 63:559-565. [PMID: 32380586 PMCID: PMC7477156 DOI: 10.3340/jkns.2019.0225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Conflicting results regarding SOX17 genes and the risk of intracranial aneurysms (IA) exist in the Korean population, although significant positive correlations were noted in genome-wide association studies in European and Japanese populations. Therefore, we aimed to investigate an association between SOX17 gene variants and IA using exome sequencing data. METHODS This study included 26 age-gender matched IA patients and 26 control subjects. The SOX17 gene variants identified from whole-exome sequencing data were examined. Genetic associations to estimate odds ratio (OR) and 95% confidence interval (CI) were performed using the software EPACTS. RESULTS The mean age of the IA and control groups were 51.0±9.3 years and 49.4±14.3 years, respectively (p=0.623). Seven variants of SOX17, including six single nucleotide polymorphisms and one insertion and deletion, were observed. Among these variants, rs12544958 (A>G) showed the most association with IA, but the association was not statistically significant (OR, 1.97; 95% CI, 0.81-4.74; p=0.125). Minor allele frequencies of the IA patients and controls were 0.788 and 0.653, respectively. None of the remaining variants were significantly associated with IA formation. CONCLUSION No significant association between SOX17 gene variants and IA were noted in the Korean population. A large-scale exome sequencing study is necessary to investigate any Korean-specific genetic susceptibility to IA.
Collapse
Affiliation(s)
- Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Hyuk Jai Choi
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
7
|
Örd T, Puurand T, Örd D, Annilo T, Möls M, Remm M, Örd T. A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals. PLoS Genet 2020; 16:e1008981. [PMID: 32745133 PMCID: PMC7425993 DOI: 10.1371/journal.pgen.1008981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/13/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Tribbles homolog 3 (TRIB3) is pseudokinase involved in intracellular regulatory processes and has been implicated in several diseases. In this article, we report that human TRIB3 promoter contains a 33-bp variable number tandem repeat (VNTR) and characterize the heterogeneity and function of this genetic element. Analysis of human populations around the world uncovered the existence of alleles ranging from 1 to 5 copies of the repeat, with 2-, 3- and 5-copy alleles being the most common but displaying considerable geographical differences in frequency. The repeated sequence overlaps a C/EBP-ATF transcriptional regulatory element and is highly conserved, but not repeated, in various mammalian species, including great apes. The repeat is however evident in Neanderthal and Denisovan genomes. Reporter plasmid experiments in human cell culture reveal that an increased copy number of the TRIB3 promoter 33-bp repeat results in increased transcriptional activity. In line with this, analysis of whole genome sequencing and RNA-Seq data from human cohorts demonstrates that the copy number of TRIB3 promoter 33-bp repeats is positively correlated with TRIB3 mRNA expression level in many tissues throughout the body. Moreover, the copy number of the TRIB3 33-bp repeat appears to be linked to known TRIB3 eQTL SNPs as well as TRIB3 SNPs reported in genetic association studies. Taken together, the results indicate that the promoter 33-bp VNTR constitutes a causal variant for TRIB3 expression variation between individuals and could underlie the results of SNP-based genetic studies.
Collapse
Affiliation(s)
- Tiit Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tarmo Puurand
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Daima Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tarmo Annilo
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Märt Möls
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
| | - Maido Remm
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tõnis Örd
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
8
|
Coltell O, Sorlí JV, Asensio EM, Barragán R, González JI, Giménez-Alba IM, Zanón-Moreno V, Estruch R, Ramírez-Sabio JB, Pascual EC, Ortega-Azorín C, Ordovas JM, Corella D. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic Syndrome. Nutrients 2020; 12:E310. [PMID: 31991592 PMCID: PMC7071282 DOI: 10.3390/nu12020310] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Many early studies presented beneficial effects of polyunsaturated fatty acids (PUFA) on cardiovascular risk factors and disease. However, results from recent meta-analyses indicate that this effect would be very low or nil. One of the factors that may contribute to the inconsistency of the results is that, in most studies, genetic factors have not been taken into consideration. It is known that fatty acid desaturase (FADS) gene cluster in chromosome 11 is a very important determinant of plasma PUFA, and that the prevalence of the single nucleotide polymorphisms (SNPs) varies greatly between populations and may constitute a bias in meta-analyses. Previous genome-wide association studies (GWAS) have been carried out in other populations and none of them have investigated sex and Mediterranean dietary pattern interactions at the genome-wide level. Our aims were to undertake a GWAS to discover the genes most associated with serum PUFA concentrations (omega-3, omega-6, and some fatty acids) in a scarcely studied Mediterranean population with metabolic syndrome, and to explore sex and adherence to Mediterranean diet (MedDiet) interactions at the genome-wide level. Serum PUFA were determined by NMR spectroscopy. We found strong robust associations between various SNPs in the FADS cluster and omega-3 concentrations (top-ranked in the adjusted model: FADS1-rs174547, p = 3.34 × 10-14; FADS1-rs174550, p = 5.35 × 10-14; FADS2-rs1535, p = 5.85 × 10-14; FADS1-rs174546, p = 6.72 × 10-14; FADS2-rs174546, p = 9.75 × 10-14; FADS2- rs174576, p = 1.17 × 10-13; FADS2-rs174577, p = 1.12 × 10-12, among others). We also detected a genome-wide significant association with other genes in chromosome 11: MYRF (myelin regulatory factor)-rs174535, p = 1.49 × 10-12; TMEM258 (transmembrane protein 258)-rs102275, p = 2.43 × 10-12; FEN1 (flap structure-specific endonuclease 1)-rs174538, p = 1.96 × 10-11). Similar genome-wide statistically significant results were found for docosahexaenoic fatty acid (DHA). However, no such associations were detected for omega-6 PUFAs or linoleic acid (LA). For total PUFA, we observed a consistent gene*sex interaction with the DNTTIP2 (deoxynucleotidyl transferase terminal interacting protein 2)-rs3747965 p = 1.36 × 10-8. For adherence to MedDiet, we obtained a relevant interaction with the ME1 (malic enzyme 1) gene (a gene strongly regulated by fat) in determining serum omega-3. The top-ranked SNP for this interaction was ME1-rs3798890 (p = 2.15 × 10-7). In the regional-wide association study, specifically focused on the FADS1/FASD2/FADS3 and ELOVL (fatty acid elongase) 2/ELOVL 5 regions, we detected several statistically significant associations at p < 0.05. In conclusion, our results confirm a robust role of the FADS cluster on serum PUFA in this population, but the associations vary depending on the PUFA. Moreover, the detection of some sex and diet interactions underlines the need for these associations/interactions to be studied in all specific populations so as to better understand the complex metabolism of PUFA.
Collapse
Affiliation(s)
- Oscar Coltell
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
| | - Jose V. Sorlí
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Eva M. Asensio
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Rocío Barragán
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - José I. González
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Ignacio M. Giménez-Alba
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Vicente Zanón-Moreno
- Area of Health Sciences, Valencian International University, 46002 Valencia, Spain;
- Red Temática de Investigación Cooperativa en Patología Ocular (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Ophthalmology Research Unit “Santiago Grisolia”, Dr. Peset University Hospital, 46017 Valencia, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
| | | | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- Assisted Reproduction Unit of the University Hospital of Valencia, 46010 Valencia, Spain
| | - Carolina Ortega-Azorín
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111 USA;
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.V.S.); (E.M.A.); (R.B.); (J.I.G.); (I.M.G.-A.); (R.E.); (C.O.-A.)
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|