1
|
Reza MS, Hossen MA, Harun-Or-Roshid M, Siddika MA, Kabir MH, Mollah MNH. Metadata analysis to explore hub of the hub-genes highlighting their functions, pathways and regulators for cervical cancer diagnosis and therapies. Discov Oncol 2022; 13:79. [PMID: 35994213 PMCID: PMC9395557 DOI: 10.1007/s12672-022-00546-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
Cervical cancer (CC) is considered as the fourth most common women cancer globally.that shows malignant features of local infiltration and invasion into adjacent organs and tissues. There are several individual studies in the literature that explored CC-causing hub-genes (HubGs), however, we observed that their results are not so consistent. Therefore, the main objective of this study was to explore hub of the HubGs (hHubGs) that might be more representative CC-causing HubGs compare to the single study based HubGs. We reviewed 52 published articles and found 255 HubGs/studied-genes in total. Among them, we selected 10 HubGs (CDK1, CDK2, CHEK1, MKI67, TOP2A, BRCA1, PLK1, CCNA2, CCNB1, TYMS) as the hHubGs by the protein-protein interaction (PPI) network analysis. Then, we validated their differential expression patterns between CC and control samples through the GPEA database. The enrichment analysis of HubGs revealed some crucial CC-causing biological processes (BPs), molecular functions (MFs) and cellular components (CCs) by involving hHubGs. The gene regulatory network (GRN) analysis identified four TFs proteins and three miRNAs as the key transcriptional and post-transcriptional regulators of hHubGs. Then, we identified hHubGs-guided top-ranked FDA-approved 10 candidate drugs and validated them against the state-of-the-arts independent receptors by molecular docking analysis. Finally, we investigated the binding stability of the top-ranked three candidate drugs (Docetaxel, Temsirolimus, Paclitaxel) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore the finding of this study might be the useful resources for CC diagnosis and therapies.
Collapse
Affiliation(s)
- Md. Selim Reza
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Alim Hossen
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Harun-Or-Roshid
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Mst. Ayesha Siddika
- Microbiology Lab, Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Hadiul Kabir
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
2
|
Gao J, Yang D, Cao R, Huang H, Ma J, Wang Z, Xia J, Pan X. The role of Fbxo5 in the development of human malignant tumors. Am J Cancer Res 2022; 12:1456-1464. [PMID: 35530293 PMCID: PMC9077063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023] Open
Abstract
Fbxo5 (F-Box only protein 5), as a substrate recognition subunit of SCF (SKP1-Cullin1-Fbox) protein, plays a crucial role in various cellular processes through ubiquitination and degradation of multiple proteins. In recent years, many studies have pointed out that Fbxo5 is critically involved in carcinogenesis. Moreover, targeting Fbxo5 could have a therapeutic potential for cancer therapy. This review focuses on the functions of Fbxo5 in various types of human malignancies and its underlying molecular mechanisms. This review might lay the foundation for enhancing future investigation on Fbxo5 functions in cancer development and progression.
Collapse
Affiliation(s)
- Junjie Gao
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Dandan Yang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Ruoxue Cao
- Department of Laboratory, Lianyungang Second People’s HospitalLianyungang 222000, Jiangsu, China
| | - Hua Huang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| | - Xueshan Pan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical CollegeBengbu 233030, Anhui, China
| |
Collapse
|
3
|
Bioinformatics Screening of Potential Biomarkers from mRNA Expression Profiles to Discover Drug Targets and Agents for Cervical Cancer. Int J Mol Sci 2022; 23:ijms23073968. [PMID: 35409328 PMCID: PMC8999699 DOI: 10.3390/ijms23073968] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Bioinformatics analysis has been playing a vital role in identifying potential genomic biomarkers more accurately from an enormous number of candidates by reducing time and cost compared to the wet-lab-based experimental procedures for disease diagnosis, prognosis, and therapies. Cervical cancer (CC) is one of the most malignant diseases seen in women worldwide. This study aimed at identifying potential key genes (KGs), highlighting their functions, signaling pathways, and candidate drugs for CC diagnosis and targeting therapies. Four publicly available microarray datasets of CC were analyzed for identifying differentially expressed genes (DEGs) by the LIMMA approach through GEO2R online tool. We identified 116 common DEGs (cDEGs) that were utilized to identify seven KGs (AURKA, BRCA1, CCNB1, CDK1, MCM2, NCAPG2, and TOP2A) by the protein–protein interaction (PPI) network analysis. The GO functional and KEGG pathway enrichment analyses of KGs revealed some important functions and signaling pathways that were significantly associated with CC infections. The interaction network analysis identified four TFs proteins and two miRNAs as the key transcriptional and post-transcriptional regulators of KGs. Considering seven KGs-based proteins, four key TFs proteins, and already published top-ranked seven KGs-based proteins (where five KGs were common with our proposed seven KGs) as drug target receptors, we performed their docking analysis with the 80 meta-drug agents that were already published by different reputed journals as CC drugs. We found Paclitaxel, Vinorelbine, Vincristine, Docetaxel, Everolimus, Temsirolimus, and Cabazitaxel as the top-ranked seven candidate drugs. Finally, we investigated the binding stability of the top-ranked three drugs (Paclitaxel, Vincristine, Vinorelbine) by using 100 ns MD-based MM-PBSA simulations with the three top-ranked proposed receptors (AURKA, CDK1, TOP2A) and observed their stable performance. Therefore, the proposed drugs might play a vital role in the treatment against CC.
Collapse
|
4
|
Alwadi D, Felty Q, Roy D, Yoo C, Deoraj A. Environmental Phenol and Paraben Exposure Risks and Their Potential Influence on the Gene Expression Involved in the Prognosis of Prostate Cancer. Int J Mol Sci 2022; 23:3679. [PMID: 35409038 PMCID: PMC8998918 DOI: 10.3390/ijms23073679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer (PCa) is one of the leading malignant tumors in US men. The lack of understanding of the molecular pathology on the risk of food supply chain exposures of environmental phenol (EP) and paraben (PB) chemicals limits the prevention, diagnosis, and treatment options. This research aims to utilize a risk assessment approach to demonstrate the association of EP and PB exposures detected in the urine samples along with PCa in US men (NHANES data 2005−2015). Further, we employ integrated bioinformatics to examine how EP and PB exposure influences the molecular pathways associated with the progression of PCa. The odds ratio, multiple regression model, and Pearson coefficients were used to evaluate goodness-of-fit analyses. The results demonstrated associations of EPs, PBs, and their metabolites, qualitative and quantitative variables, with PCa. The genes responsive to EP and PB exposures were identified using the Comparative Toxicogenomic Database (CTD). DAVID.6.8, GO, and KEGG enrichment analyses were used to delineate their roles in prostate carcinogenesis. The plug-in CytoHubba and MCODE completed identification of the hub genes in Cytoscape software for their roles in the PCa prognosis. It was then validated by using the UALCAN database by evaluating the expression levels and predictive values of the identified hub genes in prostate cancer prognosis using TCGA data. We demonstrate a significant association of higher levels of EPs and PBs in the urine samples, categorical and numerical confounders, with self-reported PCa cases. The higher expression levels of the hub genes (BUB1B, TOP2A, UBE2C, RRM2, and CENPF) in the aggressive stages (Gleason score > 8) of PCa tissues indicate their potential role(s) in the carcinogenic pathways. Our results present an innovative approach to extrapolate and validate hub genes responsive to the EPs and PBs, which may contribute to the severity of the disease prognosis, especially in the older population of US men.
Collapse
Affiliation(s)
- Diaaidden Alwadi
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (D.A.); (Q.F.); (D.R.)
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (D.A.); (Q.F.); (D.R.)
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (D.A.); (Q.F.); (D.R.)
| | - Changwon Yoo
- Biostatistics Department, Florida International University, Miami, FL 33199, USA;
| | - Alok Deoraj
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (D.A.); (Q.F.); (D.R.)
| |
Collapse
|
5
|
Øvestad IT, Engesæter B, Halle MK, Akbari S, Bicskei B, Lapin M, Austdal M, Janssen EAM, Krakstad C, Lillesand M, Nordhus M, Munk AC, Gudlaugsson EG. High-Grade Cervical Intraepithelial Neoplasia (CIN) Associates with Increased Proliferation and Attenuated Immune Signaling. Int J Mol Sci 2021; 23:ijms23010373. [PMID: 35008799 PMCID: PMC8745058 DOI: 10.3390/ijms23010373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Implementation of high-risk human papilloma virus (HPV) screening and the increasing proportion of HPV vaccinated women in the screening program will reduce the percentage of HPV positive women with oncogenic potential. In search of more specific markers to identify women with high risk of cancer development, we used RNA sequencing to compare the transcriptomic immune-profile of 13 lesions with cervical intraepithelial neoplasia grade 3 (CIN3) or adenocarcinoma in situ (AIS) and 14 normal biopsies from women with detected HPV infections. In CIN3/AIS lesions as compared to normal tissue, 27 differential expressed genes were identified. Transcriptomic analysis revealed significantly higher expression of a number of genes related to proliferation, (CDKN2A, MELK, CDK1, MKI67, CCNB2, BUB1, FOXM1, CDKN3), but significantly lower expression of genes related to a favorable immune response (NCAM1, ARG1, CD160, IL18, CX3CL1). Compared to the RNA sequencing results, good correlation was achieved with relative quantitative PCR analysis for NCAM1 and CDKN2A. Quantification of NCAM1 positive cells with immunohistochemistry showed epithelial reduction of NCAM1 in CIN3/AIS lesions. In conclusion, NCAM1 and CDKN2A are two promising candidates to distinguish whether women are at high risk of developing cervical cancer and in need of frequent follow-up.
Collapse
Affiliation(s)
- Irene Tveiterås Øvestad
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
- Correspondence: ; Tel.: +47-9093-2314
| | - Birgit Engesæter
- Section for Cervical Cancer Screening, Cancer Registry of Norway, 0304 Oslo, Norway;
| | - Mari Kyllesø Halle
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, 5053 Bergen, Norway; (M.K.H.); (C.K.)
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5053 Bergen, Norway
| | - Saleha Akbari
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Beatrix Bicskei
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Morten Lapin
- Department of Haematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway;
| | - Marie Austdal
- Section of Biostatistics, Department of Research, Stavanger University Hospital, 4011 Stavanger, Norway;
| | - Emiel A. M. Janssen
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Camilla Krakstad
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, 5053 Bergen, Norway; (M.K.H.); (C.K.)
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5053 Bergen, Norway
| | - Melinda Lillesand
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Marit Nordhus
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Ane Cecilie Munk
- Department of Gynaecology, Sørlandet Hospital, 4604 Kristiansand, Norway;
| | - Einar G. Gudlaugsson
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| |
Collapse
|
6
|
Kim SH, Hwang S, Song GW, Jung DH, Moon DB, Yang JD, Yu HC. Identification of key genes and carcinogenic pathways in hepatitis B virus-associated hepatocellular carcinoma through bioinformatics analysis. Ann Hepatobiliary Pancreat Surg 2021; 26:58-68. [PMID: 34907098 PMCID: PMC8901975 DOI: 10.14701/ahbps.21-108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Backgrounds/Aims Mechanisms for the development of hepatocellular carcinoma (HCC) in hepatitis B virus (HBV)-infected patients remain unclear. The aim of the present study was to identify genes and pathways involved in the development of HBV-associated HCC. Methods The GSE121248 gene dataset, which included 70 HCCs and 37 adjacent liver tissues, was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) in HCCs and adjacent liver tissues were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses were then performed. Results Of 134 DEGs identified, 34 were up-regulated and 100 were down-regulated in HCCs. The 34 up-regulated DEGs were mainly involved in nuclear division, organelle fission, spindle and midbody formation, histone kinase activity, and p53 signaling pathway, whereas the 100 down-regulated DEGs were involved in steroid and hormone metabolism, collagen-coated extracellular matrix, oxidoreductase activity, and activity on paired donors, including incorporation or reduction of molecular oxygen, monooxygenase activity, and retinol metabolism. Analyses of protein-protein interaction networks with a high degree of connectivity identified significant modules containing 14 hub genes, including ANLN, ASPM, BUB1B, CCNB1, CDK1, CDKN3, ECT2, HMMR, NEK2, PBK, PRC1, RACGAP1, RRM2, and TOP2A, which were mainly associated with nuclear division, organelle fission, spindle formation, protein serine/threonine kinase activity, p53 signaling pathway, and cell cycle. Conclusions This study identified key genes and carcinogenic pathways that play essential roles in the development of HBV-associated HCC. This may provide important information for the development of diagnostic and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong-Hwan Jung
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Deok-Bog Moon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Do Yang
- Department of Surgery, Jeonbuk National University Hospital, Jeonju, Korea
| | - Hee Chul Yu
- Department of Surgery, Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
7
|
Wu B, Xi S. Bioinformatics analysis of differentially expressed genes and pathways in the development of cervical cancer. BMC Cancer 2021; 21:733. [PMID: 34174849 PMCID: PMC8236200 DOI: 10.1186/s12885-021-08412-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to explore and identify key genes and signaling pathways that contribute to the progression of cervical cancer to improve prognosis. Methods Three gene expression profiles (GSE63514, GSE64217 and GSE138080) were screened and downloaded from the Gene Expression Omnibus database (GEO). Differentially expressed genes (DEGs) were screened using the GEO2R and Venn diagram tools. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Gene set enrichment analysis (GSEA) was performed to analyze the three gene expression profiles. Moreover, a protein–protein interaction (PPI) network of the DEGs was constructed, and functional enrichment analysis was performed. On this basis, hub genes from critical PPI subnetworks were explored with Cytoscape software. The expression of these genes in tumors was verified, and survival analysis of potential prognostic genes from critical subnetworks was conducted. Functional annotation, multiple gene comparison and dimensionality reduction in candidate genes indicated the clinical significance of potential targets. Results A total of 476 DEGs were screened: 253 upregulated genes and 223 downregulated genes. DEGs were enriched in 22 biological processes, 16 cellular components and 9 molecular functions in precancerous lesions and cervical cancer. DEGs were mainly enriched in 10 KEGG pathways. Through intersection analysis and data mining, 3 key KEGG pathways and related core genes were revealed by GSEA. Moreover, a PPI network of 476 DEGs was constructed, hub genes from 12 critical subnetworks were explored, and a total of 14 potential molecular targets were obtained. Conclusions These findings promote the understanding of the molecular mechanism of and clinically related molecular targets for cervical cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08412-4.
Collapse
Affiliation(s)
- Baojie Wu
- Shanghai Zerun Biotechnology Co., Ltd., Pilot Department, Building 9, 1690 Zhangheng Road Pudong, Shanghai, 201203, China.
| | - Shuyi Xi
- Shanghai Zerun Biotechnology Co., Ltd., Pilot Department, Building 9, 1690 Zhangheng Road Pudong, Shanghai, 201203, China
| |
Collapse
|
8
|
Liu Y, Pan B, Qu W, Cao Y, Li J, Zhao H. Systematic analysis of the expression and prognosis relevance of FBXO family reveals the significance of FBXO1 in human breast cancer. Cancer Cell Int 2021; 21:130. [PMID: 33622332 PMCID: PMC7903729 DOI: 10.1186/s12935-021-01833-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer (BC) remains a prevalent and common form of cancer with high heterogeneity. Making efforts to explore novel molecular biomarkers and serve as potential disease indicators, which is essential to effectively enhance the prognosis and individualized treatment of BC. FBXO proteins act as the core component of E3 ubiquitin ligase, which play essential regulators roles in multiple cellular processes. Recently, research has indicated that FBXOs also play significant roles in cancer development. However, the molecular functions of these family members in BC have not been fully elucidated. Methods In this research, we investigated the expression data, survival relevance and mutation situation of 10 FBXO members (FBXO1, 2, 5, 6, 16, 17, 22, 28, 31 and 45) in patients with BC from the Oncomine, GEPIA, HPA, Kaplan–Meier Plotter, UALCAN and cBioPortal databases. The high transcriptional levels of FBXO1 in different subtypes of BC were verified by immunohistochemical staining and the specific mutations of FBXO1 were obtained from COSMIC database. Top 10 genes with the highest correlation to FBXO1 were identified through cBioPortal and COXPRESdb tools. Additionally, functional enrichment analysis, PPI network and survival relevance of FBXO1 and co-expressed genes in BC were obtained from DAVID, STRING, UCSC Xena, GEPIA, bc-GenExMiner and Kaplan–Meier Plotter databases. FBXO1 siRNAs were transfected into MCF-7 and MDA-MB-231 cell lines. Expression of FBXO1 in BC cell lines was detected by western-blot and RT-qPCR. Cell proliferation was detected by using CCK-8 kit and colony formation assay. Cell migration was detected by wound‐healing and transwell migration assay. Results We found that FBXO2, FBXO6, FBXO16 and FBXO17 were potential favorable prognostic factors for BC. FBXO1, FBXO5, FBXO22, FBXO28, FBXO31 and FBXO45 may be the independent poor prognostic factors for BC. All of them were correlated to clinicopathological staging. Moreover, knockdown of FBXO1 in MCF7 and MDA-MB-231 cell lines resulted in decreased cell proliferation and migration in vitro. We identified that FBXO1 was an excellent molecular biomarker and therapeutic target for different molecular typing of BC. Conclusion This study implies that FBXO1, FBXO2, FBXO5, FBXO6, FBXO16, FBXO17, FBXO22, FBXO28, FBXO31 and FBXO45 genes are potential clinical targets and prognostic biomarkers for patients with different molecular typing of BC. In addition, the overexpression of FBXO1 is always found in breast cancer and predicts disadvantageous prognosis, implicating it could as an appealing therapeutic target for breast cancer patients.
Collapse
Affiliation(s)
- Yaqian Liu
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Bo Pan
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Weikun Qu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yilong Cao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jun Li
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Haidong Zhao
- Department of Oncology & Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
9
|
Dudea-Simon M, Mihu D, Irimie A, Cojocneanu R, Korban SS, Oprean R, Braicu C, Berindan-Neagoe I. Identification of Core Genes Involved in the Progression of Cervical Cancer Using an Integrative mRNA Analysis. Int J Mol Sci 2020; 21:ijms21197323. [PMID: 33023042 PMCID: PMC7583959 DOI: 10.3390/ijms21197323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
In spite of being a preventable disease, cervical cancer (CC) remains at high incidence, and it has a significant mortality rate. Although hijacking of the host cellular pathway is fundamental for developing a better understanding of the human papillomavirus (HPV) pathogenesis, a major obstacle is identifying the central molecular targets involved in HPV-driven CC. The aim of this study is to investigate transcriptomic patterns of HPV-infected and normal tissues to identify novel prognostic markers. Analyses of functional enrichment and interaction networks reveal that altered genes are mainly involved in cell cycle, DNA damage, and regulated cell-to-cell signaling. Analysis of The Cancer Genome Atlas (TCGA) data has suggested that patients with unfavorable prognostics are more likely to have DNA repair defects attributed, in most cases, to the presence of HPV. However, further studies are needed to fully unravel the molecular mechanisms of such genes involved in CC.
Collapse
Affiliation(s)
- Marina Dudea-Simon
- 2nd Obstetrics and Gynecology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.D.-S.); (D.M.)
| | - Dan Mihu
- 2nd Obstetrics and Gynecology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.D.-S.); (D.M.)
| | - Alexandru Irimie
- Department of Surgery, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania;
- Department of Surgical Oncology and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (R.C.); (I.B.-N.)
| | - Schuyler S. Korban
- Department of Natural and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Radu Oprean
- Analytical Chemistry Department, Iuliu Hatieganu University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (R.C.); (I.B.-N.)
- Correspondence:
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (R.C.); (I.B.-N.)
- Department of Functional Genomics and Experimental Pathology, “Prof. Dr. Ion Chiricuţă” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|