1
|
Akosman MS, Türkmen R, Demirel HH. Investigation of the protective effect of resveratrol in an MK-801-induced mouse model of schizophrenia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65872-65884. [PMID: 34322799 DOI: 10.1007/s11356-021-15664-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 05/20/2023]
Abstract
Increasing evidence supports the view that oxidative stress and brain demyelination play an important role in the pathogenesis of schizophrenia. Resveratrol is a powerful antioxidant with neuroprotective effects. This study aimed to assess the effect of resveratrol on schizophrenia-like behaviors and possible brain demyelination induced by MK-801, an N-methyl-D-aspartate glutamate receptor antagonist, and the underlying neuroprotective mechanism. Resveratrol (40 mg/kg/day/, intraperitoneal) was administered to mice for 14 days. MK-801 (1 mg/kg/day, intraperitoneal) was injected into the mice 4 h after the resveratrol administration for 14 days. The open-field and elevated-plus maze tests were performed to detect behavior changes on the 15th day. Following the behavioral tests, the expression of the myelin basic protein (MBP) was measured with the real-time PCR (RT-PCR) method, while total oxidant capacity (TOS) and total antioxidant capacity (TAS), which are the biomarkers of oxidative damage, were measured with the ELISA method. Hematoxylin-eosin staining was also used to identify stereological and pathological changes in the brain. According to the results obtained, this study showed for the first time that resveratrol prevented glial cell infiltration induced in the brain by MK-801 and shrinkage of nerve cell nuclei in the hippocampus and corpus callosum. However, the resveratrol administrations did not correct behavioral disorders and demyelination of schizophrenia. Although resveratrol partially prevented oxidative damage in the brain in the mice that were injected with MK-801, it was determined that this effect was not statistically significant. These results showed that resveratrol administration partially protects tissues against MK-801-induced neurodegeneration, and resveratrol may be used in combination with different antioxidants or at different doses in future studies.
Collapse
Affiliation(s)
- Murat Sırrı Akosman
- Department of Anatomy, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyon, Turkey
| | - Ruhi Türkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyon, Turkey.
| | | |
Collapse
|
2
|
Anwar H, Rasul A, Iqbal J, Ahmad N, Imran A, Malik SA, Ijaz F, Akram R, Maqbool J, Sajid F, Sun T, Hussain G, Manzoor MF. Dietary biomolecules as promising regenerative agents for peripheral nerve injury: An emerging nutraceutical-based therapeutic approach. J Food Biochem 2021; 45:e13989. [PMID: 34719796 DOI: 10.1111/jfbc.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
Peripheral nerve damage is a debilitating condition that can result in partial or complete functional loss as a result of axonal degeneration, as well as lifelong dependence. Many therapies have been imbued with a plethora of positive features while posing little risks. It is worth noting that these biomolecules work by activating several intrinsic pathways that are known to be important in peripheral nerve regeneration. Although the underlying mechanism is used for accurate and speedy functional recovery, none of them are without side effects. As a result, it is believed that effective therapy is currently lacking. The dietary biomolecules-based intervention, among other ways, is appealing, safe, and effective. Upregulation of transcription factors, neurotrophic factors, and growth factors such as NGF, GDNF, BDNF, and CTNF may occur as a result of these substances' dietary intake. Upregulation of the signaling pathways ERK, JNK, p38, and PKA has also been seen, which aids in axonal regeneration. Although several mechanistic approaches to understanding their involvement have been suggested, more work is needed to reveal the amazing properties of these biomolecules. We have discussed in this article that how different dietary biomolecules can help with functional recovery and regeneration after an injury. PRACTICAL APPLICATIONS: Based on the information known to date, we may conclude that treatment techniques for peripheral nerve injury have downsides, such as complications, donor shortages, adverse effects, unaffordability, and a lack of precision in efficacy. These difficulties cast doubt on their efficacy and raise severe concerns about the prescription. In this situation, the need for safe and effective therapeutic techniques is unavoidable, and dietary biomolecules appear to be a safe, cost-efficient, and effective way to promote nerve regeneration following an injury. The information on these biomolecules has been summarized here. Upregulation of transcription factors, neurotrophic factors, and growth factors, such as NGF, GDNF, BDNF, and CTNF, as well as the ERK, JNK, p38, and PKA, signaling pathways, may stimulate axonal regeneration.
Collapse
Affiliation(s)
- Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Nazir Ahmad
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shoaib Ahmad Malik
- Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Fazeela Ijaz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
3
|
The Role of Cardiac N-Methyl-D-Aspartate Receptors in Heart Conditioning-Effects on Heart Function and Oxidative Stress. Biomolecules 2020; 10:biom10071065. [PMID: 32708792 PMCID: PMC7408261 DOI: 10.3390/biom10071065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
As well as the most known role of N-methyl-D-aspartate receptors (NMDARs) in the nervous system, there is a plethora of evidence that NMDARs are also present in the cardiovascular system where they participate in various physiological processes, as well as pathological conditions. The aim of this study was to assess the effects of preconditioning and postconditioning of isolated rat heart with NMDAR agonists and antagonists on heart function and release of oxidative stress biomarkers. The hearts of male Wistar albino rats were subjected to global ischemia for 20 min, followed by 30 min of reperfusion, using the Langendorff technique, and cardiodynamic parameters were determined during the subsequent preconditioning with the NMDAR agonists glutamate (100 µmol/L) and (RS)-(Tetrazol-5-yl)glycine (5 μmol/L) and the NMDAR antagonists memantine (100 μmol/L) and MK-801 (30 μmol/L). In the postconditioning group, the hearts were perfused with the same dose of drugs during the first 3 min of reperfusion. The oxidative stress biomarkers were determined spectrophotometrically in samples of coronary venous effluent. The NMDAR antagonists, especially MK-801, applied in postconditioning had a marked antioxidative effect with a most pronounced protective effect. The results from this study suggest that NMDARs could be a potential therapeutic target in the prevention and treatment of ischemic and reperfusion injury of the heart.
Collapse
|
4
|
Abstract
In the peripheral nervous system, the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves. Axons within the nerves are in close contact with myelinating glia, the Schwann cells that are ideally placed to respond to, and possibly shape, axonal activity. The mechanisms of intercellular communication in the peripheral nerves may involve direct contact between the cells, as well as signalling via diffusible substances. Neurotransmitter glutamate has been proposed as a candidate extracellular molecule mediating the cross-talk between cells in the peripheral nerves. Two types of experimental findings support this idea: first, glutamate has been detected in the nerves and can be released upon electrical or chemical stimulation of the nerves; second, axons and Schwann cells in the peripheral nerves express glutamate receptors. Yet, the studies providing direct experimental evidence that intercellular glutamatergic signalling takes place in the peripheral nerves during physiological or pathological conditions are largely missing. Remarkably, in the central nervous system, axons and myelinating glia are involved in glutamatergic signalling. This signalling occurs via different mechanisms, the most intriguing of which is fast synaptic communication between axons and oligodendrocyte precursor cells. Glutamate receptors and/or synaptic axon-glia signalling are involved in regulation of proliferation, migration, and differentiation of oligodendrocyte precursor cells, survival of oligodendrocytes, and re-myelination of axons after damage. Does synaptic signalling exist between axons and Schwann cells in the peripheral nerves? What is the functional role of glutamate receptors in the peripheral nerves? Is activation of glutamate receptors in the nerves beneficial or harmful during diseases? In this review, we summarise the limited information regarding glutamate release and glutamate receptors in the peripheral nerves and speculate about possible mechanisms of glutamatergic signalling in the nerves. We highlight the necessity of further research on this topic because it should help to understand the mechanisms of peripheral nervous system development and nerve regeneration during diseases.
Collapse
Affiliation(s)
- Ting-Jiun Chen
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Centre, Washington, DC, USA
| | - Maria Kukley
- Group of Neuron Glia Interaction, University of Tübingen; Research Institute of Ophthalmology, Tübingen University Hospital, Tübingen, Germany
| |
Collapse
|
5
|
Pan PT, Lin HY, Chuang CW, Wang PK, Wan HC, Lee MC, Kao MC. Resveratrol alleviates nuclear factor-κB-mediated neuroinflammation in vasculitic peripheral neuropathy induced by ischaemia-reperfusion via suppressing endoplasmic reticulum stress. Clin Exp Pharmacol Physiol 2019; 46:770-779. [PMID: 31090224 DOI: 10.1111/1440-1681.13105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 12/29/2022]
Abstract
Vasculitic peripheral neuropathy (VPN) arises from an inflammatory obstruction in the blood vessels supplying peripheral nerves and subsequent ischaemic insults, which exhibits the clinical features of neuropathic pain and impaired peripheral nerve function. VPN induced by ischaemia-reperfusion (IR) has been reported to involve nuclear factor-κB (NF-κB)-mediated neuroinflammation. Recent studies have suggested that endoplasmic reticulum (ER) stress has been implicated in the development of peripheral neuropathies. Resveratrol possesses a potent anti-inflammatory capacity. We hypothesized that resveratrol may exert a protective effect against VPN through modulating the interrelated ER stress and NF-κB pathways. Male Sprague-Dawley rats were allocated into five groups: sham, sham + resveratrol 40 mg/kg (R40), IR, IR + R20 and IR + R40. VPN was induced by occluding the right femoral artery for 4 hours followed by reperfusion. Our data have shown that VPN induced by IR led to hind paw mechanical allodynia, heat hyperalgaesia, and impaired motor nerve conduction velocity (MNCV). With resveratrol intervention, the behavioural parameters were improved in a dose-dependent manner and the MNCV levels were increased as well. The molecular data revealed that VPN induced by IR significantly increased the expression of NF-κB as well as the ER stress sensor proteins, protein kinase RNA-like endoplasmic reticulum kinase, inositol-requiring enzyme 1 and activating transcription factor 6 in the sciatic nerves. More importantly, resveratrol significantly attenuated the expression of NF-κB and the ER stress sensor proteins after IR. In conclusion, resveratrol alleviates VPN induced by IR. The mechanisms may involve modulating NF-κB-mediated neuroinflammation via suppressing ER stress.
Collapse
Affiliation(s)
- Po-Ting Pan
- Department of Anesthesiology, Buddhist Tzu Chi Medical Foundation, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Han-Yu Lin
- Department of Anesthesiology, Buddhist Tzu Chi Medical Foundation, Taipei Tzu Chi Hospital, New Taipei City, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ching-Wei Chuang
- Department of Anesthesiology, Buddhist Tzu Chi Medical Foundation, Taipei Tzu Chi Hospital, New Taipei City, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Po-Kai Wang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hung-Chieh Wan
- Department of Anesthesiology, Buddhist Tzu Chi Medical Foundation, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Ming-Cheng Lee
- Department of Research, Buddhist Tzu Chi Medical Foundation, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| | - Ming-Chang Kao
- Department of Anesthesiology, Buddhist Tzu Chi Medical Foundation, Taipei Tzu Chi Hospital, New Taipei City, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
6
|
Chen CH, Shih PC, Lin HY, Wang PK, Pan PT, Chuang CW, Kao MC. 4-Phenylbutyric acid protects against vasculitic peripheral neuropathy induced by ischaemia–reperfusion through attenuating endoplasmic reticulum stress. Inflammopharmacology 2019; 27:713-722. [DOI: 10.1007/s10787-019-00604-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/11/2019] [Indexed: 12/19/2022]
|
7
|
El-Azab NEE, El-Mahalaway AM, Mostafa O, Sabry D. Histological and immunohistochemical study of the potential therapeutic impacts of bone marrow mesenchymal stem cells and exosomes for sciatic nerve crush injury model in rats. J Histotechnol 2018. [DOI: 10.1080/01478885.2018.1505205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Nahla El-Eraky El-Azab
- Benha Faculty of Medicine, Department of Histology and Cell Biology, Benha University, Benha, Egypt
| | - Abeer M. El-Mahalaway
- Benha Faculty of Medicine, Department of Histology and Cell Biology, Benha University, Benha, Egypt
| | - Ola Mostafa
- Benha Faculty of Medicine, Department of Histology and Cell Biology, Benha University, Benha, Egypt
| | - Dina Sabry
- Faculty of Medicine, Department of Medical Biochemistry and molecular biology, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Cui D, Xu J, Xu Q, Zuo G. DL-2-amino-3-phosphonopropionic acid protects primary neurons from oxygen-glucose deprivation induced injury. Bosn J Basic Med Sci 2017; 17:12-16. [PMID: 27968708 DOI: 10.17305/bjbms.2016.1553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 02/05/2023] Open
Abstract
Cerebral infarction is a type of ischemic stroke and is one of the main causes of irreversible brain damage. Although multiple neuroprotective agents have been investigated recently, the potential of DL-2-amino-3-phosphonopropionic acid (DL-AP3) in treating oxygen-glucose deprivation (OGD)-induced neuronal injury, has not been clarified yet. This study was aimed to explore the role of DL-AP3 in primary neuronal cell cultures. Primary neurons were divided into four groups: (1) a control group that was not treated; (2) DL-AP3 group treated with 10 μM of DL-AP3; (3) OGD group, in which neurons were cultured under OGD conditions; and (4) OGD + DL-AP3 group, in which OGD model was first established and then the cells were treated with 10 μM of DL-AP3. Neuronal viability and apoptosis were measured using Cell Counting Kit-8 and flow cytometry. Expressions of phospho-Akt1 (p-Akt1) and cytochrome c were detected using Western blot. The results showed that DL-AP3 did not affect neuronal viability and apoptosis in DL-AP3 group, nor it changed p-Akt1 and cytochrome c expression (p > 0.05). In OGD + DL-AP3 group, DL-AP3 significantly attenuated the inhibitory effects of OGD on neuronal viability (p < 0.001), and reduced OGD induced apoptosis (p < 0.01). Additionally, the down-regulation of p-Akt1 and up-regulation of cytochrome c, induced by OGD, were recovered to some extent after DL-AP3 treatment (p < 0.05 or p < 0.001). Overall, DL-AP3 could protect primary neurons from OGD-induced injury by affecting the viability and apoptosis of neurons, and by regulating the expressions of p-Akt1 and cytochrome c.
Collapse
Affiliation(s)
- Di Cui
- Department of Robot and Neuro-Rehabilitation, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China; Department of Computer Science, Ningbo University of Technology, Ningbo, China.
| | | | | | | |
Collapse
|