1
|
Hou JY, Wu JR, Chen YB, Xu D, Liu S, Shang DD, Fan GW, Cui YL. Systematic identification of the interventional mechanism of Qingfei Xiaoyan Wan (QFXYW) in treatment of the cytokine storm in acute lung injury using transcriptomics-based system pharmacological analyses. PHARMACEUTICAL BIOLOGY 2022; 60:743-754. [PMID: 35357989 PMCID: PMC8979529 DOI: 10.1080/13880209.2022.2055090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Acute lung injury (ALI) is a complex, severe inflammation disease with high mortality, and there is no specific and effective treatment for ALI. Qingfei Xiaoyan Wan (QFXYW) has been widely used to treat lung-related diseases for centuries. OBJECTIVE This study evaluates the potential effects and elucidates the therapeutic mechanism of QFXYW against LPS induced ALI in mice. MATERIALS AND METHODS BALB/c Mice in each group were first orally administered medicines (0.9% saline solution for the control group, 0.5 mg/kg Dexamethasone, or 1.3, 2.6, 5.2 g/kg QFXYW), after 4 h, the groups were injected LPS (1.0 mg/kg) to induce ALI, then the same medicines were administered repeatedly. The transcriptomics-based system pharmacological analyses were applied to screen the hub genes, RT-PCR, ELISA, and protein array assay was applied to verify the predicted hub genes and key pathways. RESULTS QFXYW significantly decreased the number of leukocytes from (6.34 ± 0.51) × 105/mL to (4.01 ± 0.11) × 105/mL, accompanied by the neutrophil from (1.41 ± 0.19) × 105/mL to (0.77 ± 0.10) × 105/mL in bronchoalveolar lavage fluid (BALF). Based on Degree of node connection (Degree) and BottleNeck (BN), important parameters of network topology, the protein-protein interaction (PPI) network screened hub genes, including IL-6, TNF-α, CCL2, TLR2, CXCL1, and MMP-9. The results of RT-PCR, ELISA, and protein chip assay revealed that QFXYW could effectively inhibit ALI via multiple key targets and the cytokine-cytokine signalling pathway. CONCLUSIONS This study showed that QFXYW decreased the number of leukocytes and neutrophils by attenuating inflammatory response, which provides an important basis for the use of QFXYW in the treatment of ALI.
Collapse
Affiliation(s)
- Jing-Yi Hou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Jia-Rong Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Yi-Bing Chen
- Tianjin Key Laboratory of Transformation of Traditional Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dong Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Shu Liu
- Tianjin Zhongxin Pharmaceutical Group Corporation Limited Darentang Pharmaceutical Factory, Tianjin, China
| | - Dan-dan Shang
- Tianjin Zhongxin Pharmaceutical Group Corporation Limited Darentang Pharmaceutical Factory, Tianjin, China
| | - Guan-Wei Fan
- Tianjin Key Laboratory of Transformation of Traditional Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Guan-Wei Fan Tianjin Key Laboratory of Transformation of Traditional Chinese Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- CONTACT Yuan-Lu Cui State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
2
|
Zhang Y, Ma R, Wang J. Protective effects of fargesin on cadmium-induced lung injury through regulating aryl hydrocarbon receptor. J Biochem Mol Toxicol 2022; 36:e23197. [PMID: 35983679 DOI: 10.1002/jbt.23197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/04/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Fragesin, a traditional Chinese medicine, has been shown to exert anti-inflammatory effect. The aim of this study was to figure out the possible effectiveness of the fargesin, and to invest the mechanisms by which it works in the cadmium-induced lung injury in mice. Fargesin was given 1 h before cadmium treatment for 7 days. Then, the bronchoalveolar lavage fluid (BALF) were harvested to test inflammatory cells and pro-inflammatory cytokine production. Lung histopathological changes, myeloperoxidase (MPO) activity, and aryl hydrocarbon receptor (AhR) and nuclear factor kappa B (NF-κB) activation were measured. Fargesin dose-dependently reduced inflammatory cells and pro-inflammatory cytokines in BALF, improved lung histopathological injury, and inhibited lung wet/dry ratio and MPO activity. Furthermore, fargesin inhibited cadmium-induced NF-κB activation. In addition, fargesin was found to increase AhR expression. In conclusion, fargesin attenuates cadmium-induced lung injury may be via activating AhR, which subsequently suppressing the inflammatory response.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Ophthalmology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Ma
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese, Jinan, China
| | - Juan Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China.,NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| |
Collapse
|
3
|
Prophylactic Penehyclidine Inhalation for Prevention of Postoperative Pulmonary Complications in High-risk Patients: A Double-blind Randomized Trial. Anesthesiology 2022; 136:551-566. [PMID: 35226725 DOI: 10.1097/aln.0000000000004159] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Postoperative pulmonary complications are common. Aging and respiratory disease provoke airway hyperresponsiveness, high-risk surgery induces diaphragmatic dysfunction, and general anesthesia contributes to atelectasis and peripheral airway injury. This study therefore tested the hypothesis that inhalation of penehyclidine, a long-acting muscarinic antagonist, reduces the incidence of pulmonary complications in high-risk patients over the initial 30 postoperative days. METHODS This single-center double-blind trial enrolled 864 patients age over 50 yr who were scheduled for major upper-abdominal or noncardiac thoracic surgery lasting 2 h or more and who had an Assess Respiratory Risk in Surgical Patients in Catalonia score of 45 or higher. The patients were randomly assigned to placebo or prophylactic penehyclidine inhalation from the night before surgery through postoperative day 2 at 12-h intervals. The primary outcome was the incidence of a composite of pulmonary complications within 30 postoperative days, including respiratory infection, respiratory failure, pleural effusion, atelectasis, pneumothorax, bronchospasm, and aspiration pneumonitis. RESULTS A total of 826 patients (mean age, 64 yr; 63% male) were included in the intention-to-treat analysis. A composite of pulmonary complications was less common in patients assigned to penehyclidine (18.9% [79 of 417]) than those receiving the placebo (26.4% [108 of 409]; relative risk, 0.72; 95% CI, 0.56 to 0.93; P = 0.010; number needed to treat, 13). Bronchospasm was less common in penehyclidine than placebo patients: 1.4% (6 of 417) versus 4.4% (18 of 409; relative risk, 0.327; 95% CI, 0.131 to 0.82; P = 0.011). None of the other individual pulmonary complications differed significantly. Peak airway pressures greater than 40 cm H2O were also less common in patients given penehyclidine: 1.9% (8 of 432) versus 4.9% (21 of 432; relative risk, 0.381; 95% CI, 0.171 to 0.85; P = 0.014). The incidence of other adverse events, including dry mouth and delirium, that were potentially related to penehyclidine inhalation did not differ between the groups. CONCLUSIONS In high-risk patients having major upper-abdominal or noncardiac thoracic surgery, prophylactic penehyclidine inhalation reduced the incidence of pulmonary complications without provoking complications. EDITOR’S PERSPECTIVE
Collapse
|
4
|
Trauma-induced lung injury is associated with infiltration of activated TLR expressing myeloid cells. Cytokine 2021; 141:155457. [PMID: 33581471 DOI: 10.1016/j.cyto.2021.155457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Traumatic injury with hemorrhage (TH) induces an inflammatory response in the lung resulting in lung injury involving activation of immune cells including myeloid cells (i.e., monocytes, granulocytes and macrophages), in part through TLRs. TLRs, via the recognition of damage associated molecular patterns (DAMPs), are a key link between tissue injury and inflammation. Nonetheless, the role of TLRs in myeloid cell activation and TH-induced lung injury remains ill defined. METHODS C57BL/6 male mice were subjected to TH or sham treatment (n = 4-6 /group). Lung tissues were collected two hrs. after injury. Single cells were isolated from the lungs by enzymatic digestion and myeloid cell TLR expression and activation (i.e., cytokine production) were assessed using flow cytometry techniques. RESULTS The injury was associated with a profound change in the lung myeloid cell population. TH markedly increased lung CD11b+ monocyte numbers and Gr1+ granulocyte numbers as compared to sham mice. The number of cells expressing TLR2, TLR4, and TLR9 were increased 4-7 fold in the TH mice. Activation for elevated cytokine (TNFα, IL-10) production was observed in the lung monocyte population of the TH mice. CONCLUSIONS Trauma-induced lung injury is associated with infiltration of the lungs with TLR expressing myeloid cells that are activated for elevated cytokine responses. This elevation in TLR expression may contribute to DAMP-mediated pulmonary complications of an inflammatory nature and warrants further investigation.
Collapse
|
5
|
Lats2-Underexpressing Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice. Mediators Inflamm 2019; 2019:4851431. [PMID: 31772503 PMCID: PMC6854183 DOI: 10.1155/2019/4851431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/18/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022] Open
Abstract
The pathophysiology of the acute lung injury (ALI) is characterized by the damage of alveolar epithelial cells, which can be repaired by exogenous bone marrow-derived mesenchymal stem cells (BMSCs). However, the migration and differentiation abilities of BMSCs are not sufficient for the purpose, and a new approach that could strengthen the repair effects of BMSCs in ALI still needs to be clarified. We have previously proved that in vitro large tumor suppressor kinase 2- (Lats2-) underexpressing BMSCs may enhance their tissue repair effects in ALI; thus, in the present study, we tried to explore whether Lats2-underexpressing BMSCs could rescue lipopolysaccharide- (LPS-) induced ALI in vivo. BMSCs from C57BL/6 mice transfected with Lats2-interfering lentivirus vector or lentivirus blank controls were transplanted intratracheally into LPS-induced ALI mice. The retention and differentiation of BMSCs in the lung were evaluated by in vivo imaging, immunofluorescence staining, and Western blotting. The lung edema and permeability were assessed by lung wet weight/body weight ratio (LWW/BW) and measurements of proteins in bronchoalveolar lavage fluid (BALF) using ELISA. Acute lung inflammation was measured by the cytokines in the lung homogenate and BALF using RT-qPCR and ELISA, respectively. Lung injury was evaluated by HE staining and lung injury scoring. Pulmonary fibrosis was evaluated by Picrosirius red staining, immunohistochemistry for α-SMA and TGF-β1, and hydroxyproline assay and RT-qPCR for Col1α1 and Col3α1. Lats2-mediated inhibition of the Hippo pathway increased the retention of BMSCs and their differentiation toward type II alveolar epithelial cells in the lung. Furthermore, Lats2-underexpressing BMSCs improved lung edema, permeability of the lung epithelium, and lung inflammation. Finally, Lats2-underexpressing BMSCs alleviated lung injury and early pulmonary fibrosis. Our studies suggest that underexpression of Lats2 could further enhance the repair effects of BMSCs against epithelial impair and the therapeutic potential of BMSCs in ALI mice.
Collapse
|
6
|
Kong D, Wang Z, Tian J, Liu T, Zhou H. Glycyrrhizin inactivates toll-like receptor (TLR) signaling pathway to reduce lipopolysaccharide-induced acute lung injury by inhibiting TLR2. J Cell Physiol 2018; 234:4597-4607. [PMID: 30203548 DOI: 10.1002/jcp.27242] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study aimed to explore glycyrrhizin on acute lung injury (ALI) and how glycyrrhizin (GL) attenuated lipopolysaccharide (LPS)-induced ALI. METHODS Bioinformatics analysis was performed to screen the expressed genes in LPS-induced ALI mice. The enrichment of functions and signaling pathways of deregulated genes were conducted. Combined with DIGSEE and STICH, the target gene for further investigation was chosen. To verify target gene in mice, we performed experiment in vivo. Forty mice were randomized into NC, LPS, LPS + S, and LPS + GL group. Mice in the LPS + GL group received glycyrrhizin l mg and mice in LPS + S received saline. Then, HE and Masson staining detected pathological changes of lung tissues; enzyme-linked immunosorbent assay analyzed bronchoalveolar lavage fluid concentrations of MIP-2, mice growth-related oncogene homologue (KC), IL-4, IL-6, GM-CSF, IFN-γ, and IgM; western blot analysis determined the expression of toll-like receptor (TLR) signaling and NF-κB pathway-related proteins. RESULTS Tlr2 which was not only upregulated but also closely related to glycyrrhizin. TLR2 was upregulated in following LPS induced in cells and TLR2 overexpression-activated TLR signaling pathway to promote ALI. After glycyrrhizin treatment, the expression of TLR2 was reduced. Furthermore, it was found out that the number of inflammatory cells, collagen deposition, MIP-2, KC, IL-4, IL-6, GM-CSF, and IFN-γ expression increased in ALI mice and glycyrrhizin mitigated it. Similarly, the expression of TLR signaling pathway and NF-κB pathway-related protein also increased. CONCLUSION Glycyrrhizin functioned as a suppressor in TLR signaling pathway to reduce LPS-induced ALI by inhibiting TLR2.
Collapse
Affiliation(s)
- Delei Kong
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zanfeng Wang
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jie Tian
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tingwei Liu
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hui Zhou
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Hu H, Shi D, Hu C, Yuan X, Zhang J, Sun H. Dexmedetomidine mitigates CLP-stimulated acute lung injury via restraining the RAGE pathway. Am J Transl Res 2017; 9:5245-5258. [PMID: 29312480 PMCID: PMC5752878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE RAGE pathway plays crucial effects in causing acute lung injury (ALI). Dexmedetomidine (DEX) is showed to mitigate sepsis-stimulated ALI. However, its mechanisms have not been verified. The study was to evaluate whether the RAGE pathway participated in the actions of DEX on sepsis-stimulated ALI in rats. METHODS Male rats were administrated with intravenously DEX 30 min after sepsis. At 24 h of sepsis, lung myeloperoxidase (MPO) and macrophages in the bronchoalveolarlavage fluid (BALF) were observed. The actions of DEX on pro-inflammatory molecules and related mechanisms were determined by immunological methods. RESULTS It was indicated that DEX markedly attenuated CLP-stimulated augment of lung inflammatory cells infiltration, along with significantly mitigated MPO activity. Besides, DEX obviously reduced lung wet/dry weight ratio and the levels of HMGB1 and RAGE in BALF and lung tissue. Moreover, DEX post-treatment apparently attenuated the histopathological lung injury compared with CLP model group. Furthermore, western blot analysis revealed that DEX efficiently restrained the activation of IκB-α, NF-κB p65, and MAPK. CONCLUSION Our studies demonstrated that DEX attenuates the aggravation of sepsis-stimulated ALI via down regulation of RAGE pathway, which has a potential value in the clinical therapy.
Collapse
Affiliation(s)
- Hongyi Hu
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Dongsheng Shi
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Chenlu Hu
- Department of General Surgery, The Second Affiliated Hospital Zhejiang University School of MedicineZhejiang, China
| | - Xiao Yuan
- Department of Endocrinology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Juan Zhang
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Huaqin Sun
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| |
Collapse
|
8
|
Bi J, Cui R, Li Z, Liu C, Zhang J. Astaxanthin alleviated acute lung injury by inhibiting oxidative/nitrative stress and the inflammatory response in mice. Biomed Pharmacother 2017; 95:974-982. [PMID: 28915539 DOI: 10.1016/j.biopha.2017.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022] Open
Abstract
The purpose of the present study was to assess the effect of astaxanthin (ASX) treatment on the acute lung injury (ALI) induced by cecal ligation and puncture (CLP) in mice. Mice were randomly allocated into the following groups: (1) the saline control group, in which mice were given saline before sham operation; (2) the ASX control group, in which mice received ASX before sham operation; (3) the ALI group, in which mice were given saline before CLP operation; and (4) the ALI+ASX group, in which mice received ASX before CLP operation. ASX was dissolved in olive oil and administrated by oral gavage for 14days consecutively before the CLP or sham operation. In experiment 1, Kaplan-Meier survival analysis was conducted for 72h after CLP. In experiment 2, blood, bronchoalveolar lavage fluid (BALF) and lung tissues were collected at 24h after the CLP or sham operation to determine the severity of lung injury. The results showed that ASX treatment could significantly decrease the CLP-induced mortality rate in mice. Meanwhile, ASX treatment significantly attenuated CLP-induced lung histopathological injury, inflammatory infiltration, total protein and albumin concentration, and total cell and neutrophil counts in the BALF. Furthermore, ASX treatment alleviated oxidative/nitrative stress, inflammation levels and pulmonary apoptosis in lung tissues. In addition, ASX treatment markedly down-regulated the expression of inducible nitric oxide synthase (i-NOS), nitrotyrosine (NT) and nuclear factor-kappa B (NF-Κb) P65 in the lung tissues compared with that in the ALI group. Astaxanthin treatment had markedly protective effect against ALI in mice, and the potential mechanism is associated with its ability to inhibit the inflammatory response, oxidative/nitrative stress, and pulmonary apoptosis, as well as down-regulate NF-κB P65 expression.
Collapse
Affiliation(s)
- Jianbin Bi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Ruixia Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China; Department of ICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Zeyu Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China; Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China.
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China; Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China.
| |
Collapse
|
9
|
MyD88 gene knockout attenuates paraquat-induced acute lung injury. Toxicol Lett 2017; 269:41-46. [DOI: 10.1016/j.toxlet.2017.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/17/2017] [Accepted: 01/21/2017] [Indexed: 12/19/2022]
|