1
|
Chen Q, Xu F, Wu H, Xie L, Li H, Jiao C, Zhang H, Chen X. Inhibition of Semaphorin 3A in Hippocampus Alleviates Postpartum Depression-Like Behaviors in Mice. Mol Neurobiol 2025; 62:7723-7737. [PMID: 39934560 PMCID: PMC12078365 DOI: 10.1007/s12035-025-04752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Postpartum depression (PPD) is a widespread psychiatric condition affecting up to 20% of postpartum women. Although it is known to be associated with ovarian hormone withdrawal following delivery, current treatments remain limited due to a lack of underlying mechanism. Here, in mice, we identified that semaphorin 3A (sema3A) exhibited a notable increase in expression within the hippocampus of postpartum depression mice, whereas no such upregulation was observed in female mice experiencing depression induced by lipopolysaccharide or chronic restraint stress. The coexpression rate of sema3A and c-Fos was also elevated in the hippocampal CA3 of postpartum depression mice. Importantly, systemic inhibition or genetic knockdown of hippocampal sema3A significantly alleviated the depressive symptoms induced by ovarian hormone withdrawal. Further, overexpression of sema3A in CA3 induced depressive-like behaviors in naïve female mice. In conclusion, our cumulative findings suggest that sema3A in hippocampal CA3 plays a pivotal role in the pathogenesis of postpartum depression, and could serve as a promising treatment target for ameliorating this widespread disorder.
Collapse
Affiliation(s)
- Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Fang Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Linghua Xie
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Hua Li
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Cuicui Jiao
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Honghai Zhang
- Department of Anesthesiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310006, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
2
|
Shi Z, Wang Q, Li Q, Jia F, Xu W. Oleanolic Acid Cubic Liquid Crystal Nanoparticle-Based Thermosensitive Gel Attenuates Depression Symptoms in Chronic Unpredictable Mild Stress Rats. Drug Des Devel Ther 2025; 19:715-736. [PMID: 39911446 PMCID: PMC11796441 DOI: 10.2147/dddt.s484567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose Major depressive disorder (MDD) is a global health concern. Studies have demonstrated that oleanolic acid (OA) has a regulatory effect on MDD. However, OA is poorly soluble, has low oral bioavailability, and faces challenges in crossing the blood-brain barrier. In this study, building upon a previous formulation of OA cubic liquid crystal nanoparticles (OA-LCNP), we combined nanoparticles with a thermosensitive gel for nasal administration and investigated the pharmacological effects of OA-LCNP thermosensitive gel (OANG) on depression. This study aimed to evaluate the effects of OANG on depression symptoms in rats. Methods OANG was prepared using Poloxamer F127 and F68 as the gel matrix, and the ratios of F127 and F68 were investigated. The pharmacokinetics of OANG was studied in rats, and OA content was determined using liquid chromatography-mass spectrometry (LC-MS). The pharmacological effects of OANG on depression were evaluated in chronic unpredictable mild stress (CUMS) model rats. Results The phase transition temperature of the gel was 34°C, and the release of OA from OANG was slow according to the Higuchi kinetic equation. The AUC0-t of brain tissue after nasal OANG administration was 1.21 times that observed after intravenous administration. Additionally, the brain-targeting efficiency and nasal-brain direct transfer were 29.91% and 9.44% higher, respectively, than those observed after intravenous administration, indicating the brain-targeting capability of the OANG delivery system. Network pharmacological analysis revealed that the anti-depressant effects may be linked to neuroactive ligand-receptor interactions, the PPAR signaling pathway, and efferocytosis signaling pathways. Experimental results from CUMS rats showed that the gel significantly affected interleukin (IL)-4, IL-6, acetylcholinesterase, acetylcholine, 5-hydroxytryptamine, and brain-derived neurotrophic factor, and improved depression-like behavior in rats, as measured by sucrose preference, forced swimming, and box shuttle tests. Conclusion The OANG nasal drug delivery system has specific brain-targeting properties and exerts anti-depressant effects.
Collapse
Affiliation(s)
- Zhiqi Shi
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu, People’s Republic of China
- Liangxi District Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu, People’s Republic of China
| | - Qing Wang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu, People’s Republic of China
| | - Qing Li
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu, People’s Republic of China
- Wuxi Institute of Traditional Chinese Medicine, Wuxi, Jiangsu, People’s Republic of China
| | - Fan Jia
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu, People’s Republic of China
- Wuxi Institute of Traditional Chinese Medicine, Wuxi, Jiangsu, People’s Republic of China
| | - Weifeng Xu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Luo F, Liu L, Guo M, Liang J, Chen L, Shi X, Liu H, Cheng Y, Du Y. Deciphering and Targeting the ESR2-miR-10a-5p-BDNF Axis in the Prefrontal Cortex: Advancing Postpartum Depression Understanding and Therapeutics. RESEARCH (WASHINGTON, D.C.) 2024; 7:0537. [PMID: 39588356 PMCID: PMC11586475 DOI: 10.34133/research.0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
Postpartum depression (PPD) represents a important emotional disorder emerging after childbirth, characterized by its complex etiology and challenging management. Despite extensive preclinical and clinical investigations underscoring the role of estrogen fluctuations and estrogen receptor genes in PPD, the precise mechanisms underpinning this condition have remained elusive. In our present study, animal behavioral studies have elucidated a tight link between the aberrant expression of ESR2, miR-10a-5p, and BDNF in the prefrontal cortex of mice exhibiting postpartum depressive-like behavior, shedding light on the potential molecular pathways involved. Integrating bioinformatics, in vivo, and cell transfection methodologies has unraveled the intricate molecular interplay between ESR2, miR-10a-5p, and BDNF. We identified ESR2 as a negative transcription factor that down-regulates miR-10a transcription, while miR-10a-5p serves as a negative regulator that suppresses BDNF expression. This molecular triad contributes to the pathogenesis of PPD by affecting synaptic plasticity, as evidenced by alterations in synapse-related proteins (e.g., SYP, SYN, and PSD95) and glutamate receptor expression. Additionally, primary neuron culture studies have confirmed the critical roles of ESR2 and miR-10a-5p in maintaining neuronal growth and morphology. Therapeutic interventions, including stereotactic and intranasal administration of antagomir or BDNF, have demonstrated significant potential in treating PPD, highlighting the therapeutic implications of targeting the negative transcriptional and regulatory interactions between ESR2, miR-10a-5p, and BDNF. Our findings endorse the hypothesis that estrogen fluctuations and estrogen receptor gene activity are pivotal stressors and risk factors for PPD, affecting central nervous system functionality and precipitating depressive behaviors postpartum.
Collapse
Affiliation(s)
- Fan Luo
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
- Henan Key Lab of Biological Psychiatry,
Xinxiang Medical University, Xinxiang, China
| | - Liming Liu
- Institute of National Security, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Mei Guo
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Jiaquan Liang
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Lei Chen
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Xiaojie Shi
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Hua Liu
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China.
| | - Yong Cheng
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Yang Du
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry,
Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, China.
| |
Collapse
|
4
|
Zhang JJ, Guan W, Wang Y, Wang YX, An DQ, Hao ZC, Li MM, Kuang HX, Chen QS, Zhang LL, Liu Y, Yang BY. Tandem mass tag-based proteomics reveals the antiepileptic mechanism of steroidal saponins from Anemarrhena asphodeloides in Kainic acid induced epileptic rat model. Biomed Chromatogr 2024; 38:e5989. [PMID: 39171645 DOI: 10.1002/bmc.5989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Epilepsy (EP) is one of the most common neurological diseases in the world. Anemarrhena asphodeloides Bunge. (AA), as a typical heat-cleaning medicine, has been proven to possess the antiepileptic effect in clinical and experimental studies. Anemarrhena asphodeloides steroidal saponins (AAS) are main components. However, the therapeutic effects and underlying mechanisms of AAS against EP are not been fully elucidated. In this study, 63 steroidal saponins were discovered in AAS by UPLC-Q-TOF/MS analysis. Pharmacological and behavioral analysis demonstrated that AAS could significantly lower the Racine classification and reduce the frequency of generalized spike rhythm the rate of tetanic seizures in kainic acid-induced epileptic rats. Hematoxylin and eosin and Nissl staining-indicated AAS could significantly improve hippocampal injury and neuron loss in epileptic rats. TMT proteomic analysis discovered 26 different expressed proteins (DEPs), which were identified as the rescue proteins. After bioinformatic analysis, Heat Shock Protein 90 Alpha Family Class B Member 1 (Hsp90ab1) and Tyrosine 3-Monooxygenase (Ywhab) were screened as key DEPs and verified by western blotting. AAS could significantly inhibited the up-regulation of Hsp90ab1 and Ywhab in EP rats; these two proteins might be the key targets of AAS in treating EP.
Collapse
Affiliation(s)
- Jian-Jia Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Yue Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Yu-Xuan Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Dong-Qi An
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Zhi-Chao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Meng-Meng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Qing-Shan Chen
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Li-Li Zhang
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Beijing, China
- Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-Class Construction Interdiscipline), Beijing, China
| |
Collapse
|
5
|
Wei W, Guo T, Fan W, Ji M, Fu Y, Lian C, Chen S, Ma W, Ma W, Feng S. Integrative analysis of metabolome and transcriptome provides new insights into functional components of Lilii Bulbus. CHINESE HERBAL MEDICINES 2024; 16:435-448. [PMID: 39072198 PMCID: PMC11283230 DOI: 10.1016/j.chmed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 07/30/2024] Open
Abstract
Objective Lilium brownii var. viridulum (LB) and L. lancifolium (LL) are the main sources of medicinal lily (Lilii Bulbus, Baihe in Chinese) in China. However, the functional components of these two species responsible for the treatment efficacy are yet not clear. In order to explore the therapeutic material basis of Lilii Bulbus, we selected L. davidii var. willmottiae (LD) only used for food as the control group to analyze the differences between LD and the other two (LB and LL). Methods Metabolome and transcriptome were carried out to investigate the differences of active components in LD vs LB and LD vs LL. Data of metabolome and transcriptome was analysed using various analysis methods, such as principal component analysis (PCA), hierarchical cluster analysis (HCA), and so on. Differentially expressed genes (DEGs) were enriched through KEGG and GO enrichment analysis. Results The PCA and HCA of the metabolome indicated the metabolites were clearly separated and varied greatly in LL and LB contrasted with LD. There were 318 significantly differential metabolites (SDMs) in LD vs LB group and 298 SDMs in LD vs LL group. Compared with LD group, the significant up-regulation of steroidal saponins and steroidal alkaloids were detected both in LB and LL groups, especially in LB group. The HCA of transcriptome indicated that there was significant difference in LB vs LD group, while the difference between LL and LD varied slightly. Additionally, 47 540 DEGs in LD vs LB group and 18 958 DEGs in LD vs LL group were identified. Notably, CYP450s involving in the biosynthesis of steroidal saponins and steroidal alkaloids were detected, and comparing with LD, CYP724, CYP710A, and CYP734A1 in LB and CYP90B in LL were all up-regulated. Conclusion This study suggested that steroidal saponins and steroidal alkaloids maybe the representative functional components of Lilii Bulbus, which can provide new insights for Lilii Bulbus used in the research and development of classic famous formula.
Collapse
Affiliation(s)
- Wenjun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Tao Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Wenguang Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Mengshan Ji
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Yu Fu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Wenjing Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wenfang Ma
- Lanzhou Shibai Agricultural Biotechnology Co., Ltd., Lanzhou 730050, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
6
|
Talaee N, Azadvar S, Khodadadi S, Abbasi N, Asli-Pashaki ZN, Mirabzadeh Y, Kholghi G, Akhondzadeh S, Vaseghi S. Comparing the effect of fluoxetine, escitalopram, and sertraline, on the level of BDNF and depression in preclinical and clinical studies: a systematic review. Eur J Clin Pharmacol 2024; 80:983-1016. [PMID: 38558317 DOI: 10.1007/s00228-024-03680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) dysfunction is one of the most important mechanisms underlying depression. It seems that selective serotonin reuptake inhibitors (SSRIs) improve depression via affecting BDNF level. In this systematic review, for the first time, we aimed to review the effect of three SSRIs including fluoxetine, escitalopram, and sertraline, on both depression and BDNF level in preclinical and clinical studies. PubMed electronic database was searched, and 193 articles were included in this study. After reviewing all manuscripts, only one important difference was found: subjects. We found that SSRIs induce different effects in animals vs. humans. Preclinical studies showed many controversial effects, while human studies showed only two effects: improvement of depression, with or without the improvement of BDNF. However, most studies used chronic SSRIs treatment, while acute SSRIs were not effectively used and evaluated. In conclusion, it seems that SSRIs are reliable antidepressants, and the improvement effect of SSRIs on depression is not dependent to BDNF level (at least in human studies).
Collapse
Affiliation(s)
- Nastaran Talaee
- Department of Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shataw Azadvar
- Department of Power Electronic, Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Sanaz Khodadadi
- Student Research Committee, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nahal Abbasi
- Department of Health Psychology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Yasaman Mirabzadeh
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Department of Psychiatry, Faculty of Medicine, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, 1419815477, Iran.
| |
Collapse
|
7
|
Xie H, Xie Z, Luan F, Zeng J, Zhang X, Chen L, Zeng N, Liu R. Potential therapeutic effects of Chinese herbal medicine in postpartum depression: Mechanisms and future directions. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117785. [PMID: 38262525 DOI: 10.1016/j.jep.2024.117785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Postpartum depression (PPD) is a common psychiatric disorder in women after childbirth. Per data from epidemiologic studies, PPD affects about 5%-26.32% of postpartum mothers worldwide. Biological factors underlying this condition are multiple and complex and have received extensive inquiries for the roles they play in PPD. Chinese herbal medicine (CHM), which is widely used as a complementary and alternative therapy for neurological disorders, possesses multi-component, multi-target, multi-access, and low side effect therapeutic characteristics. CHM has already shown efficacy in the treatment of PPD, and a lot more research exploring the mechanisms of its potential therapeutic effects is being conducted. AIM OF THE REVIEW This review provides an in-depth and comprehensive overview of the underlying mechanisms of PPD, as well as samples the progress made in researching the potential role of CHM in treating the disorder. MATERIALS AND METHODS Literature was searched comprehensively in scholarly electronic databases, including PubMed, Web of Science, Scopus, CNKI and WanFang DATA, using the search terms "postpartum depression", "genetic", "hormone", "immune", "neuroinflammation", "inflammation", "neurotransmitter", "neurogenesis", "brain-gut axis", "traditional Chinese medicine", "Chinese herbal medicine", "herb", and an assorted combination of these terms. RESULTS PPD is closely associated with genetics, as well as with the hormones, immune inflammatory, and neurotransmitter systems, neurogenesis, and gut microbes, and these biological factors often interact and work together to cause PPD. For example, inflammatory factors could suppress the production of the neurotransmitter serotonin by inducing the regulation of tryptophan-kynurenine in the direction of neurotoxicity. Many CHM constituents improve anxiety- and depression-like behaviors by interfering with the above-mentioned mechanisms and have shown decent efficacy clinically against PPD. For example, Shen-Qi-Jie-Yu-Fang invigorates the neuroendocrine system by boosting the hormone levels of hypothalamic pituitary adrenal (HPA) and hypothalamic pituitary gonadal (HPG) axes, regulating the imbalance of Treg/T-helper cells (Th) 17 and Th1/Th2, and modulating neurotransmitter system to play antidepressant roles. The Shenguiren Mixture interferes with the extracellular signal-regulated kinase (ERK) pathway to enhance the number, morphology and apoptosis of neurons in the hippocampus of PPD rats. Other herbal extracts and active ingredients of CHM, such as Paeoniflorin, hypericin, timosaponin B-III and more, also manage depression by remedying the neuroendocrine system and reducing neuroinflammation. CONCLUSIONS The pathogenesis of PPD is complex and diverse, with the main pathogenesis not clear. Still, CHM constituents, like Shen-Qi-Jie-Yu-Fang, the Shenguiren Mixture, Paeoniflorin, hypericin and other Chinese Medicinal Formulae, active monomers and Crude extracts, treats PPD through multifaceted interventions. Therefore, developing more CHM components for the treatment of PPD is an essential step forward.
Collapse
Affiliation(s)
- Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Zhiqiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Xiumeng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
8
|
Fernandes HDB, Oliveira BDS, Machado CA, Carvalho BC, de Brito Toscano EC, da Silva MCM, Vieira ÉLM, de Oliveira ACP, Teixeira AL, de Miranda AS, da Silva AM. Behavioral, neurochemical and neuroimmune features of RasGEF1b deficient mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110908. [PMID: 38048936 DOI: 10.1016/j.pnpbp.2023.110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
The factor RasGEF1b is a Ras guanine exchange factor involved in immune responses. Studies have also implicated RasGEF1b in the CNS development. It is still limited the understanding of the role of RasGEF1b in CNS functioning. Using RasGEF1b deficient mice (RasGEF1b-cKO), we investigated the impact of this gene deletion in behavior, cognition, brain neurochemistry and microglia morphology. We showed that RasGEF1b-cKO mice display spontaneous hyperlocomotion and anhedonia. RasGEF1b-cKO mice also exhibited compulsive-like behavior that was restored after acute treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine (5 mg/kg). A down-regulation of mRNA of dopamine receptor (Drd1, Drd2, Drd4 and Drd5) and serotonin receptor genes (5Htr1a, 5Htr1b and 5Htr1d) was observed in hippocampus of RasGEF1b-cKO mice. These mice also had reduction of Drd1 and Drd2 in prefrontal cortex and 5Htr1d in striatum. In addition, morphological alterations were observed in RasGEF1b deficient microglia along with decreased levels of hippocampal BDNF. We provided original evidence that the deletion of RasGEF1b leads to unique behavioral features, implicating this factor in CNS functioning.
Collapse
Affiliation(s)
- Heliana de Barros Fernandes
- Laboratório de Genes Inflamatórios, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil; Laboratório de Neurobiologia, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil.
| | - Bruna da Silva Oliveira
- Laboratório de Neurobiologia, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Caroline Amaral Machado
- Laboratório de Neurobiologia, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Brener Cunha Carvalho
- Laboratório de Genes Inflamatórios, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Eliana Cristina de Brito Toscano
- Laboratório Integrado de Pesquisas em Patologia, Departamento de Patologia, Faculdade de Medicina, Universidade Federal de Juiz de Fora, Av. Eugênio do Nascimento, s/n°, Dom Bosco, CEP: 36038-330, Juiz de Fora, MG, Brazil
| | - Maria Carolina M da Silva
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Érica Leandro Marciano Vieira
- Campbell Family Mental Health Research Institute, Center of Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Antônio Carlos Pinheiro de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Fisiologia e Farmacologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Departament of Psychiatry and Behavioral Science McGovern School, Behavioral and Biomedical Sciences Building (BBSB), The University of Texas Health Science Center, 941 East Road, Houston, TX 77054, United States of America
| | - Aline Silva de Miranda
- Laboratório de Neurobiologia, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| | - Aristóbolo Mendes da Silva
- Laboratório de Genes Inflamatórios, Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
9
|
Shenoy S, Ibrahim S. Perinatal Depression and the Role of Synaptic Plasticity in Its Pathogenesis and Treatment. Behav Sci (Basel) 2023; 13:942. [PMID: 37998688 PMCID: PMC10669186 DOI: 10.3390/bs13110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Emerging evidence indicates that synaptic plasticity is significantly involved in the pathophysiology and treatment of perinatal depression. Animal models have demonstrated the effects of overstimulated or weakened synapses in various circuits of the brain in causing affective disturbances. GABAergic theory of depression, stress, and the neuroplasticity model of depression indicate the role of synaptic plasticity in the pathogenesis of depression. Multiple factors related to perinatal depression like hormonal shifts, newer antidepressants, mood stabilizers, monoamine systems, biomarkers, neurotrophins, cytokines, psychotherapy and electroconvulsive therapy have demonstrated direct and indirect effects on synaptic plasticity. In this review, we discuss and summarize the various patho-physiology-related effects of synaptic plasticity in depression. We also discuss the association of treatment-related aspects related to psychotropics, electroconvulsive therapy, neuromodulation, psychotherapy, physical exercise and yoga with synaptic plasticity in perinatal depression. Future insights into newer methods of treatment directed towards the modulation of neuroplasticity for perinatal depression will be discussed.
Collapse
Affiliation(s)
- Sonia Shenoy
- Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Sufyan Ibrahim
- Neuro-Informatics Laboratory, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
10
|
Zheng R, Zhang X, Gao Y, Gao D, Gong W, Zhang C, Dong G, Li Z. Biological effects of exposure to 2650 MHz electromagnetic radiation on the behavior, learning, and memory of mice. Brain Behav 2023; 13:e3004. [PMID: 37118929 PMCID: PMC10275548 DOI: 10.1002/brb3.3004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND With the development of communication technology, the public is paying increasing attention to whether electromagnetic radiation is harmful to health. Mobile phone communication has entered the 5G era, and there are almost no reports on electromagnetic radiation at 2650 MHz. Therefore, it is necessary to evaluate the risk of adverse effects of 5G mobile phone EMR exposure on the human brain. METHODS Male animals were continuously exposed to 2650 MHz-EMR for 28 days with a whole-body averaged specific absorption rate (WBSAR) of 2.06 W/kg for 4 h per day. Mouse behavior was assessed using the open-field test (OFT), elevated-plus maze (EPM), and tail suspension test (TST). The Morris water maze (MWM), HE staining, and TUNEL staining were used to evaluate the spatial memory ability and pathological morphology of hippocampal dentate gyrus cells. Additionally, the expression levels of brain-derived neurotrophic factor (BDNF), aminobutyric acid (GABA), and glucocorticoid (GR) in the hippocampus were detected by western blotting and immunohistochemistry, while the corticosterone (CORT) level in serum was detected by ELISA. RESULTS In the OFT, the total distance traveled, central distance traveled, and residence time significantly decreased in the EMR exposure group (p < .05). In EPM, the percentage of the number of times to open the arm and the percentage of time to open the arm significantly decreased in the EMR exposure group. However, in the TST, the two groups had no significant difference in the 4-min immobility time. In the MWM, the escape latency of the EMR exposure group was shorter than that of the control group, with no significant difference. Furthermore, CORT levels in serum were significantly increased in the EMR exposure group (p < .05), while the expression of BDNF and GR proteins in the hippocampus was reduced (p < .05), but there was no significant difference in GABA expression. CONCLUSIONS Our results indicate that exposure to 2650 MHz-EMR (WBSAR: 2.06 W/kg, 28 days, 4 h per day) had no significant effect on the spatial memory ability of mice (in comparison to little effect). The exposure may be associated with anxiety-like behavior in mice but not related to depression-like behavior in mice.
Collapse
Affiliation(s)
- Rongqi Zheng
- Laboratory of Electromagnetic Biological Effects, Beijing Insititute of Radiation and MedicineBeijingChina
| | - Xianxie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation and MedicineBeijingChina
| | - Yan Gao
- Laboratory of Electromagnetic Biological Effects, Beijing Insititute of Radiation and MedicineBeijingChina
| | - Dawen Gao
- Laboratory of Electromagnetic Biological Effects, Beijing Insititute of Radiation and MedicineBeijingChina
| | - Wenjing Gong
- Laboratory of Electromagnetic Biological Effects, Beijing Insititute of Radiation and MedicineBeijingChina
| | - Chenggang Zhang
- Laboratory of Electromagnetic Biological Effects, Beijing Insititute of Radiation and MedicineBeijingChina
| | - Guofu Dong
- Laboratory of Electromagnetic Biological Effects, Beijing Insititute of Radiation and MedicineBeijingChina
| | - Zhihui Li
- Laboratory of Electromagnetic Biological Effects, Beijing Insititute of Radiation and MedicineBeijingChina
| |
Collapse
|
11
|
Yan Y, Li J, Zhang Y, Wang H, Qin X, Zhai K, Du C. Screening the effective components of Suanzaoren decoction on the treatment of chronic restraint stress induced anxiety-like mice by integrated chinmedomics and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154853. [PMID: 37156059 DOI: 10.1016/j.phymed.2023.154853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Suanzaoren decoction (SZRD) is a classical traditional Chinese prescription. It is widely used to treat mental disorders, including insomnia, anxiety, and depression, in China and other Asian countries. However, the effective components and mechanisms underlying SZRD remained unclear. PURPOSE We aimed to develop a new strategy to discover the effects and potential mechanisms of SZRD against anxiety and to further reveal the effective components of SZRD in treating anxiety. STUDY DESIGN AND METHODS First, the chronic restraint stress (CRS)-induced mouse model of anxiety was orally administered SZRD, and behavioral indicators and biochemical parameters were applied to assess efficacy. A chinmedomics strategy based on UHPLC-Q-TOF-MS technology and network pharmacology were then used to screen and explore potentially effective components and therapeutic mechanisms. Finally, molecular docking was applied to further confirm the effective components of SZRD, and a multivariate network for anxiolytic effects was constructed. RESULTS SZRD exerted anxiolytic effects by increasing the percentage of entries into open arms and the time spent in open arms; improving hippocampal 5-HT, GABA, and NE levels; and increasing serum corticosterone (CORT) and corticotropin-releasing hormone (CRH) levels caused by CRS challenge. Beside, SZRD exerted a sedative effect by decreasing sleep time and prolonging sleep latency with no muscle relaxation effect in CRS mice. A total of 110 components were identified in SZRD, 20 of which were absorbed in the blood. Twenty-one serum biomarkers involved in arachidonic acid, tryptophan, sphingolipid, and linoleic acid metabolism were identified after SZRD intervention. Finally, a multivariate network including prescription-effective components-targets-pathway of SZRD treating anxiety, including 11 effective components, 4 targets and 2 pathway was constructed. CONCLUSION The current study demonstrated that integrating chinmedomics and network pharmacology was a powerful approach to investigating the effective components and therapeutic mechanisms of SZRD and provided a solid basis for the quality marker (Q-marker) of SZRD.
Collapse
Affiliation(s)
- Yan Yan
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Jiahan Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Yinjie Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Hui Wang
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, Shanxi 030619, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, 49, Bianhe Road, Suzhou, Anhui 234000, China.
| | - Chenhui Du
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, No. 121, Daxue Street, Taiyuan, Shanxi 030619, China.
| |
Collapse
|
12
|
Liu C, Cong Z, Wang S, Zhang X, Song H, Xu T, Kong H, Gao P, Liu X. A review of the botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality of Anemarrhena asphodeloides Bunge. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115857. [PMID: 36330891 DOI: 10.1016/j.jep.2022.115857] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizomes of Anemarrhena asphodeloides Bunge., belonging to the family Liliaceae, are named 'Zhi-mu' according to traditional Chinese medicine theory. It is a medicinal plant that has long been used as a tonic agent in various ethnomedicinal systems in East Asia, especially in China, and also for treating arthralgia, hematochezia, tidal fever, night sweats, cough, dry mouth and tongue, hemoptysis, etc. THE ARM OF THE REVIEW: The review aims to provide a systematic overview of botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality control of Anemarrhena asphodeloides and to explore the future therapeutic potential and scientific potential of this plant. MATERIALS AND METHODS A comprehensive literature search was performed on Anemarrhena asphodeloides using scientific databases including Web of Science, PubMed, Google Scholar, CNKI, Elsevier, SpringerLink, ACS publications, ancient books, Doctoral and master's Theses. Collected data from different sources was comprehensively summarised for botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality control of Anemarrhena asphodeloides. RESULTS A comprehensive analysis of the literature as mentioned above confirmed that the ethnomedical uses of Anemarrhena asphodeloides had a history of thousands of years in eastern Asian countries. Two hundred sixty-nine compounds have been identified from Anemarrhena asphodeloides, including steroidal saponins, flavonoids, phenylpropanoids, alkaloids, steroids, organic acids, polysaccharides, benzophenones and other ingredients. Studies have shown that the extracts and compounds from Anemarrhena asphodeloides have extensive pharmacological activities, such as nervous system activity, antitumour, anti-inflammatory, antidiabetic, antiosteoporotic, antiallergic, antiplatelet aggregation, antimicrobial, antiviral, anti-ageing, hair growth promoting, preventing cell damage, etc. Evaluating the quality and toxicity of Anemarrhena asphodeloides is essential to confirm its safe use in humans. CONCLUSION Anemarrhena asphodeloides is widely used in traditional medicine and have diverse chemical constituents with obvious biological activities. Nevertheless, more studies should be carried out in animals and humans to evaluate the cellular and molecular mechanisms involved in its biological activity and confirm its safe use.
Collapse
Affiliation(s)
- Congying Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute, Shandong Cancer Hospital and Institute, Jinan, 250117, China
| | - Shengguang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xin Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Huaying Song
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tianren Xu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Hongwei Kong
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Peng Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaonan Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
13
|
Zaccarelli-Magalhães J, Abreu GR, Fukushima AR, Pantaleon LP, Ribeiro BB, Munhoz C, Manes M, de Lima MA, Miglioli J, Flório JC, Lebrun I, Waziry PAF, Fonseca TL, Bocco BMLC, Bianco AC, Ricci EL, Spinosa HS. Postpartum depression in rats causes poor maternal care and neurochemical alterations on dams and long-lasting impairment in sociability on the offspring. Behav Brain Res 2023; 436:114082. [PMID: 36041571 PMCID: PMC10823501 DOI: 10.1016/j.bbr.2022.114082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022]
Abstract
Postpartum depression is a mentally disabling disease with multifactorial etiology that affects women worldwide. It can also influence child development and lead to behavioral and cognitive alterations. Despite the high prevalence, the disease is underdiagnosed and poorly studied. To study the postpartum depression caused by maternal separation model in rats, dams were separated from their litter for 3 h daily starting from lactating day (LD) 2 through LD12. Maternal studies were conducted from LD5 to LD21 and the offspring studies from postnatal day (PND) 2 through PND90. The stress caused by the dam-offspring separation led to poor maternal care and a transient increase in anxiety in the offspring detected during infancy. The female offspring also exhibited a permanent impairment in sociability during adult life. These changes were associated with neurochemical alterations in the prefrontal cortex and hippocampus, and low TSH concentrations in the dams, and in the hypothalamus, hippocampus and striatum of the offspring. These results indicate that the postpartum depression resulted in a depressive phenotype, changes in the brain neurochemistry and in thyroid economy that remained until the end of lactation. Changes observed in the offspring were long-lasting and resemble what is observed in children of depressant mothers.
Collapse
Affiliation(s)
- Julia Zaccarelli-Magalhães
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil.
| | - Gabriel R Abreu
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - André R Fukushima
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil; School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Lorena P Pantaleon
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Beatriz B Ribeiro
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Camila Munhoz
- Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Marianna Manes
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Mayara A de Lima
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Júlia Miglioli
- Centro Universitário das Américas, Rua Augusta, 1508, 01304-001 São Paulo, Brazil
| | - Jorge C Flório
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| | - Ivo Lebrun
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Avenida Vital Brazil, 1500, 05503-900 São Paulo, Brazil
| | - Paula A F Waziry
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States
| | - Tatiana L Fonseca
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Bárbara M L C Bocco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Antônio C Bianco
- Section of Endocrinology, Diabetes, and Metabolism, University of Chicago Medical Center, 5841 South Maryland Avenue, Chicago, IL 60637, United States
| | - Esther L Ricci
- School of Health Sciences IGESP, Rua da Consolação, 1025, 01301-000 São Paulo, Brazil; Health Science Institute, Presbyterian Mackenzie University, Rua da Consolação, 930, 01302-907 São Paulo, Brazil
| | - Helenice S Spinosa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Avenida Professor Doutor Orlando Marques de Paiva, 87, 05508-270 São Paulo, Brazil
| |
Collapse
|
14
|
Comparison of the chronic unpredictable mild stress and the maternal separation in mice postpartum depression modeling. Biochem Biophys Res Commun 2022; 632:24-31. [DOI: 10.1016/j.bbrc.2022.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
|
15
|
Zhao Q, Pan W, Shi H, Qi F, Liu Y, Yang T, Si H, Si G. Network pharmacology and molecular docking analysis on the mechanism of Baihe Zhimu decoction in the treatment of postpartum depression. Medicine (Baltimore) 2022; 101:e29323. [PMID: 36316904 PMCID: PMC9622608 DOI: 10.1097/md.0000000000029323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Baihe Zhimu decoction (BZD) has significant antidepressant properties and is widely used to treat mental diseases. However, the multitarget mechanism of BZD in postpartum depression (PPD) remains to be elucidated. Therefore, the aim of this study was to explore the molecular mechanisms of BDZ in treating PPD using network pharmacology and molecular docking. Active components and their target proteins were screened from the traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The PPD-related targets were obtained from the OMIM, CTD, and GeneCards databases. After overlap, the targets of BZD against PPD were collected. Protein-protein interaction (PPI) network and core target analyses were conducted using the STRING network platform and Cytoscape software. Moreover, molecular docking methods were used to confirm the high affinity between BZD and targets. Finally, the DAVID online tool was used to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of overlapping targets. The TCMSP database showed that BZD contained 23 active ingredients in PPD. KEGG analysis showed that overlapping genes were mainly enriched in HIF-1, dopaminergic synapses, estrogen, and serotonergic synaptic signalling pathways. Combining the PPI network and KEGG enrichment analysis, we found that ESR1, MAOA, NR3C1, VEGFA, and mTOR were the key targets of PPD. In addition, molecular docking confirmed the high affinity between BZD and the PPD target. Verified by a network pharmacology approach based on data mining and molecular docking methods, the multi-target drug BZD may serve as a promising therapeutic candidate for PPD, but further in vivo/in vitro experiments are needed.
Collapse
Affiliation(s)
- Qiong Zhao
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wengu Pan
- Department of Kidney transplantation, The second hospital of Shandong University, Jinan, China
| | - Hongshuo Shi
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yuan Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Tiantian Yang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hao Si
- Ai Kunwei Pharmaceutical Technology Co, Ltd, Shanghai, China
| | - Guomin Si
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- *Correspondence: Guomin Si, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China (e-mail: )
| |
Collapse
|
16
|
Yan M, Bo X, Zhang X, Zhang J, Liao Y, Zhang H, Cheng Y, Guo J, Cheng J. Mangiferin Alleviates Postpartum Depression-Like Behaviors by Inhibiting MAPK Signaling in Microglia. Front Pharmacol 2022; 13:840567. [PMID: 35721155 PMCID: PMC9204178 DOI: 10.3389/fphar.2022.840567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Postpartum depression (PPD), a severe mental health disorder, is closely associated with decreased gonadal hormone levels during the postpartum period. Mangiferin (MGF) possesses a wide range of pharmacological activities, including anti-inflammation. Growing evidence has suggested that neuroinflammation is involved in the development of depression. However, the role of MGF in the development of PPD is largely unknown. In the present study, by establishing a hormone-simulated pregnancy PPD mouse model, we found that the administration of MGF significantly alleviated PPD-like behaviors. Mechanistically, MGF treatment inhibited microglial activation and neuroinflammation. Moreover, we found that MGF treatment inhibited mitogen-activated protein kinase (MAPK) signaling in vivo and in vitro. Together, these results highlight an important role of MGF in microglial activation and thus give insights into the potential therapeutic strategy for PPD treatment.
Collapse
Affiliation(s)
- Meichen Yan
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Xuena Bo
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Xinchao Zhang
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Jingdan Zhang
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Yajin Liao
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Haiyan Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| | - Junxia Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China.,The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Lin Y, Zhao WR, Shi WT, Zhang J, Zhang KY, Ding Q, Chen XL, Tang JY, Zhou ZY. Pharmacological Activity, Pharmacokinetics, and Toxicity of Timosaponin AIII, a Natural Product Isolated From Anemarrhena asphodeloides Bunge: A Review. Front Pharmacol 2020; 11:764. [PMID: 32581782 PMCID: PMC7283383 DOI: 10.3389/fphar.2020.00764] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Anemarrhena asphodeloides Bunge is a famous Chinese Materia Medica and has been used in traditional Chinese medicine for more than two thousand years. Steroidal saponins are important active components isolated from A. asphodeloides Bunge. Among which, the accumulation of numerous experimental studies involved in Timosaponin AIII (Timo AIII) draws our attention in the recent decades. In this review, we searched all the scientific literatures using the key word "timosaponin AIII" in the PubMed database update to March 2020. We comprehensively summarized the pharmacological activity, pharmacokinetics, and toxicity of Timo AIII. We found that Timo AIII presents multiple-pharmacological activities, such as anti-cancer, anti-neuronal disorders, anti-inflammation, anti-coagulant, and so on. And the anti-cancer effect of Timo AIII in various cancers, especially hepatocellular cancer and breast cancer, is supposed as its most potential activity. The anti-inflammatory activity of Timo AIII is also beneficial to many diseases. Moreover, VEGFR, X-linked inhibitor of apoptosis protein (XIAP), B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), thromboxane (Tx) A2 receptor, mTOR, NF-κB, COX-2, MMPs, acetylcholinesterase (AChE), and so on are identified as the crucial pharmacological targets of Timo AIII. Furthermore, the hepatotoxicity of Timo AIII was most concerned, and the pharmacokinetics and toxicity of Timo AIII need further studies in diverse animal models. In conclusion, Timo AIII is potent as a compound or leading compound for further drug development while still needs in-depth studies.
Collapse
Affiliation(s)
- Yan Lin
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wai-Rong Zhao
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ting Shi
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai-Yu Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Ding
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xin-Lin Chen
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong-Yan Zhou
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, Macau
| |
Collapse
|
18
|
Zhong M, Tian X, Chen S, Chen M, Guo Z, Zhang M, Zheng G, Li Z, Shi Z, Wang G, Gao H, Liu F, Huang C. Identifying the active components of Baihe-Zhimu decoction that ameliorate depressive disease by an effective integrated strategy: a systemic pharmacokinetics study combined with classical depression model tests. Chin Med 2019; 14:37. [PMID: 31572489 PMCID: PMC6757420 DOI: 10.1186/s13020-019-0254-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Background Modern pharmacological studies have demonstrated that Baihe–Zhimu decoction (BZD) has antidepressant effects. However, the complex composition and lack of clear evaluation standards for BZD make it less likely to be understood and accepted than evidence-based active natural compounds. Methods In this study, an effective method for the identification of antidepressant components was demonstrated and applied to BZD. The first step was to evaluate the efficacy of BZD by the forced swimming test (FST) and the tail suspension test (TST), followed by successive quantitative analyses of the absorbed constituents at different stages, such as before hepatic disposition, liver distribution, after hepatic disposition and brain distribution after the oral administration of BZD. Finally, the compounds detected in the brain were confirmed by activity testing. Results Our investigation observed that timosaponin BII and timosaponin BIII were accurately determined in the brain after oral administration of BZD, and they were further confirmed to reduce the immobility time in the FST and TST. As described above, timosaponin BII and timosaponin BIII were used to scientifically and reasonably explain the effective chemical basis of the effect of BZD on depression. Conclusions This research affords an effective method to discover lead molecules for antidepressants from traditional Chinese medicine.
Collapse
Affiliation(s)
- Ming Zhong
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 People's Republic of China
| | - Xiaoting Tian
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Shuoji Chen
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Mingcang Chen
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Ziqiong Guo
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Minna Zhang
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 People's Republic of China
| | - Gongpu Zheng
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 People's Republic of China
| | - Zhixiong Li
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Zhangpeng Shi
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Guanghui Wang
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 People's Republic of China
| | - Honggang Gao
- 1College of Pharmacy, Jining Medical University, Rizhao, 276826 People's Republic of China
| | - Fang Liu
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| | - Chenggang Huang
- 2Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai, 201203 People's Republic of China
| |
Collapse
|
19
|
Estrogenic Regulation of Neuroprotective and Neuroinflammatory Mechanisms: Implications for Depression and Cognition. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-11355-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Hu Z, Du X, Yang Y, Botchway BOA, Fang M. Progesterone and fluoxetine treatments of postpartum depressive-like behavior in rat model. Cell Biol Int 2019; 43:539-552. [PMID: 30811083 DOI: 10.1002/cbin.11123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/23/2019] [Indexed: 12/19/2022]
Abstract
Research studies have indicated that alterations in plasma progesterone levels might be associated with the hippocampal synaptic plasticity of postpartum depressive-like behavior. Herein, we assess both progesterone and fluoxetine effects in adult female Sprague-Dawley rats with postpartum depressive-like behavior. Depressive-like behavior of postpartum rats was established using chronic ultra-mild stress (CUMS) method for 1 week from gestation day 15. Postpartum rats that showed depressive-like behavior were treated with either progesterone (subcutaneously, 0.5 mg/kg) from gestation day 17 to gestation day 22 or fluoxetine (by gavage, 10 mg/kg/day) for 4 weeks after birth. Open field and sucrose preference tests were conducted at the start, week 2 and week 4 postpartum. Golgi staining, immunofluorescence and Western blot analyses of rats' hippocampi were conducted on week 4 postpartum. Results showed CUMS increases depressive-like behavior, however, treatment with progesterone and fluoxetine improves this behavior. Both progesterone and fluoxetine treatments increase the numbers of dendritic spines pyramidal neurons in the CA3 region of the hippocampus as well as protein expression levels of microtubule-associated protein 2 (MAP-2) and synaptophysin (SYP). CUMS-induced decrement of MAP-2 and SYP protein expressions can be prevented by treatment with progesterone in advanced pregnant stage and fluoxetine in the postpartum period.
Collapse
Affiliation(s)
- Zhiying Hu
- Hangzhou Red Cross Hospital, Hangzhou, China
| | - Xiaoxue Du
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yang Yang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
21
|
Anti-Inflammatory Activities of Compounds Isolated from the Rhizome of Anemarrhena asphodeloides. Molecules 2018; 23:molecules23102631. [PMID: 30322157 PMCID: PMC6222787 DOI: 10.3390/molecules23102631] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 01/28/2023] Open
Abstract
Fifteen unreported compounds in Anemarrhena asphodeloides, iriflophene (3), hostaplantagineoside C (7), tuberoside G (8), spicatoside B (9), platycodin D (14), platycoside A (15), platycodin D2 (16), polygalacin D2 (17), platycodin D3 (18), isovitexin (20), vitexin (21), 3,4-dihydroxyallylbenzene-3-O-α-l-rhamnopyranosyl(1→6)-β-d-glucopyranoside (22), iryptophan (24), adenosine (25), α-d-Glucose monoallyl ether (26), together with eleven known compounds (1, 2, 4⁻6, 10⁻13, 19 and 23), were isolated from the rhizomes of Anemarrhena asphodeloides. The chemical structures of these compounds were characterized using HRMS and NMR. The anti-inflammatory activities of the compounds were evaluated by investigating their ability to inhibit LPS-induced NO production in N9 microglial cells. Timosaponin BIII (TBIII) and trans-hinokiresinol (t-HL) exhibited significant inhibitory effects on the NO production in a dose-dependent manner with IC50 values of 11.91 and 39.08 μM, respectively. Immunoblotting demonstrated that TBIII and t-HL suppressed NO production by inhibiting the expressions of iNOS in LPS-stimulated N9 microglial cells. Further results revealed that pretreatment of N9 microglial cells with TBIII and t-HL attenuated the LPS-induced expression tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) at mRNAs and protein levels. Moreover, the activation of nuclear factor-κB (NF-κB) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways were inhibited by TBIII and t-HL, respectively. Our findings indicate that the therapeutic implication of TBIII and t-HL for neurogenerative disease associated with neuroinflammation.
Collapse
|