1
|
Wang X, Shang Z, Zhao J, Hou H, Li Y, Song J. Efficacy and Safety of Early Use of Naoxueshu Within 72 hours in the Treatment of Spontaneous Intracerebral Hemorrhage: A Real-World Retrospective Cohort Study. Int J Gen Med 2025; 18:2057-2065. [PMID: 40226803 PMCID: PMC11994074 DOI: 10.2147/ijgm.s511802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
Background Naoxueshu Oral Liquid (NXS) is the only traditional Chinese medicine approved for the treatment of spontaneous intracerebral hemorrhage (ICH). While randomized controlled trials have demonstrated its ability to promote hematoma absorption and improve neurological function prognosis, the efficacy and safety of NXS early use (within 72 hours) remain unclear. This study aims to evaluate the efficacy and safety of early NXS administration (within 72 hours) in a real-world setting. Methods Data were collected from 34 tertiary hospitals in China. Patients were enrolled from March 25, 2019 to December 31, 2023. NXS administration was defined as the exposure. The primary outcome was hematoma volume at 14 days after onset. We employed the 1:1 propensity score matching (PSM) method to deal with confounding factors. Results A total of 1602 patients were enrolled after PSM, including 872 NXS users (exposed group) and 730 non-NXS users (control group). At baseline, there was no significant difference in hematoma volumes between the two groups (21.46±19.47 vs 22.01±14.26mL, P=0.55), the NXS group showed significantly less hematoma volume by day 14 (6.87±8.62 vs 5.43±5.35mL, P<0.001). There was no statistically significant difference in the incidence rate of serious adverse events between the two groups. Subgroup analysis indicated that NXS might have a more pronounced effect on hematoma absorption in supratentorial hemorrhage patients, with earlier administration potentially enhancing efficacy. Conclusion This retrospective study explored the efficacy and safety of NXS in promoting hematoma absorption within 72 hours in real-world ICH patients, but its effect on short-term neurological improvement remains inconclusive. Further studies with longer follow-up periods and more comprehensive functional assessments are warranted to explore the long-term neurological benefits of NXS in ICH patients.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhiyuan Shang
- Department of Neurosurgery, Beijing Fengtai You’anmen Hospital, Beijing, People’s Republic of China
| | - Jiapeng Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Hongping Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Ye Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, People’s Republic of China
| | - Juexian Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Shen J, Xue X, Yuan H, Song Y, Wang J, Cui R, Ke K. Deubiquitylating Enzyme OTUB1 Facilitates Neuronal Survival After Intracerebral Hemorrhage Via Inhibiting NF-κB-triggered Apoptotic Cascades. Mol Neurobiol 2024; 61:1726-1736. [PMID: 37775718 DOI: 10.1007/s12035-023-03676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
The deubiquitylase OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) has been implicated in the pathogenesis of various human diseases. However, the molecular mechanism by which OTUB1 participates in the pathogenesis of intracerebral hemorrhage (ICH) remains elusive. In the present study, we established an autologous whole blood fusion-induced ICH model in C57BL/6 J mice. We showed that the upregulation of OTUB1 contributes to the attenuation of Nuclear factor kappa B (NF-κB) and its downstream apoptotic signaling after ICH. OTUB1 directly associates with NF-κB precursors p105 and p100 after ICH, leading to attenuated polyubiquitylation of p105 and p100. Moreover, we revealed that NF-κB signaling was modestly activated both in ICH tissues and hemin-exposed HT-22 neuronal cells, accompanied with the activation of NF-κB downstream pro-apoptotic signaling. Notably, overexpression of OTUB1 strongly inhibited hemin-induced NF-κB activation, whereas interference of OTUB1 led to the opposite effect. Finally, we revealed that lentiviral transduction of OTUB1 markedly ameliorated hemin-induced apoptotic signaling and HT-22 neuronal death. Collectively, these findings suggest that the upregulation of OTUB1 serves as a neuroprotective mechanism in antagonizing neuroinflammation-induced NF-κB signaling and neuronal death, shed new light on manipulating intracellular deubiquitylating pathways as novel interventive approaches against ICH-induced secondary neuronal damage and death.
Collapse
Affiliation(s)
- Jiabing Shen
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Xiaoli Xue
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Qidong People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Huimin Yuan
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Qidong People's Hospital, Qidong, Jiangsu, People's Republic of China
| | - Yan Song
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
| | - Jinglei Wang
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Neurology, Affiliated Hai'an Hospital of Nantong University and Hai'an People's Hospital, Hai'an, People's Republic of China
| | - Ronghui Cui
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| | - Kaifu Ke
- Department of Neurology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, People's Republic of China.
| |
Collapse
|
3
|
Shirzad S, Vafaee F, Forouzanfar F. The Neuroprotective Effects and Probable Mechanisms of Everolimus in a Rat Model of Intracerebral Hemorrhage. Cell Mol Neurobiol 2023; 43:4219-4230. [PMID: 37747596 PMCID: PMC11407710 DOI: 10.1007/s10571-023-01409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a central regulator of cellular growth and homeostasis. Changes in mTOR activity are often observed in many neurological diseases, such as stroke. Intracerebral hemorrhage (ICH) is associated with high mortality and morbidity. However, there are currently no treatments that have been shown to enhance outcomes following ICH, so new treatments are urgently required. In this study, a selective mTOR inhibitor, everolimus, was applied to investigate the outcome after ICH and the possible underlying mechanism. The ICH model was established by autologous blood injection. Everolimus (50 and 100 µg/kg) was administered intraperitoneally for 14 consecutive days' post-operation. The neurological functions were examined at 3, 7, and 14 days' post-ICH. Samples of brain tissue were collected to perform histopathological and immunohistochemical (NF-k-positive cell) examinations. Besides, the striatum was used to evaluate parameters related to oxidative stress (superoxide dismutase (SOD) activity, malondialdehyde (MDA), and total thiol levels) and inflammation markers (TNF-α and NO). Everolimus ameliorated ICH-induced neurological deficits. In addition, treatment with everolimus reduced infarct volume and NF-k-β positive cells as compared to the ICH group. Furthermore, everolimus significantly increased total thiol content and SOD activity while significantly reducing MDA, NO, and TNF- levels as compared to the ICH group. Collectively, our investigation showed that everolimus improves ICH outcome and modulates oxidative stress and inflammation after ICH. Treatment with rapamycin reduced neurological deficient, oxidative stress, and inflammation in a rat model of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Shima Shirzad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, Farahabadi MH, Jafarli A, Divani AA. Neuroinflammation in Acute Ischemic and Hemorrhagic Stroke. Curr Neurol Neurosci Rep 2023; 23:407-431. [PMID: 37395873 PMCID: PMC10544736 DOI: 10.1007/s11910-023-01282-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW This review aims to provide an overview of neuroinflammation in ischemic and hemorrhagic stroke, including recent findings on the mechanisms and cellular players involved in the inflammatory response to brain injury. RECENT FINDINGS Neuroinflammation is a crucial process following acute ischemic stroke (AIS) and hemorrhagic stroke (HS). In AIS, neuroinflammation is initiated within minutes of the ischemia onset and continues for several days. In HS, neuroinflammation is initiated by blood byproducts in the subarachnoid space and/or brain parenchyma. In both cases, neuroinflammation is characterized by the activation of resident immune cells, such as microglia and astrocytes, and infiltration of peripheral immune cells, leading to the release of pro-inflammatory cytokines, chemokines, and reactive oxygen species. These inflammatory mediators contribute to blood-brain barrier disruption, neuronal damage, and cerebral edema, promoting neuronal apoptosis and impairing neuroplasticity, ultimately exacerbating the neurologic deficit. However, neuroinflammation can also have beneficial effects by clearing cellular debris and promoting tissue repair. The role of neuroinflammation in AIS and ICH is complex and multifaceted, and further research is necessary to develop effective therapies that target this process. Intracerebral hemorrhage (ICH) will be the HS subtype addressed in this review. Neuroinflammation is a significant contributor to brain tissue damage following AIS and HS. Understanding the mechanisms and cellular players involved in neuroinflammation is essential for developing effective therapies to reduce secondary injury and improve stroke outcomes. Recent findings have provided new insights into the pathophysiology of neuroinflammation, highlighting the potential for targeting specific cytokines, chemokines, and glial cells as therapeutic strategies.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| | - José Biller
- Department of Neurology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Sasan Andalib
- Research Unit of Neurology, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Roysten Rodrigues
- Department of Neurology, University of Louisville, Louisville, KY, USA
| | - Miguel Rodriguez
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Magdy Selim
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Alibay Jafarli
- Department of Neurology, Tufts Medical Center, Boston, MA, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Li X, Wang B, Yu N, Yang L, Nan C, Sun Z, Guo L, Zhao Z. Gabapentin Alleviates Brain Injury in Intracerebral Hemorrhage Through Suppressing Neuroinflammation and Apoptosis. Neurochem Res 2022; 47:3063-3075. [PMID: 35809188 DOI: 10.1007/s11064-022-03657-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
Neuroinflammation plays an important role in brain tissue injury during intracerebral hemorrhage. Gabapentin can reduce inflammation and oxidative stress through inhibiting nuclear factor κB (NFκB) signals. Here, we showed that gabapentin reduced brain tissue injury in ICH through suppressing NFκB-mediated neuroinflammation. ICH was induced by injecting collagenase IV into the right striatum of Sprague-Dawley rats. PC12 and BV2 cells injury induced by Hemin were used to simulate ICH in vitro. Inflammation and apoptosis were assessed in rat brain tissue and in vitro cells. The neurobehavioral scores were significantly decreased in ICH rats compared with sham rats. Phosphorylated IκB-α and cleaved caspase3, and apoptosis rate were significantly higher in tissue surrounding the hematoma than in brain tissues from rats subjected to sham surgery. Furthermore, serum IL-6 levels in ICH rats were higher than in sham rats. Gabapentin treatment significantly improved the behavioral scores, decreased levels of phosphorylated IκB-α and cleaved caspase3, apoptosis rate, and serum IL-6 level in ICH rats. Hemin-treated BV2 cells displayed higher levels of phosphorylated IκB-α, cleaved caspase3, and IL-6 in the supernatant compared with vehicle-treated cells. Hemin treatment induced a significantly lower level of peroxisome proliferator-activated receptor γ (PPARγ) in BV2 cells. BV2-PC12 co-culture cells treated by hemin displayed higher levels of cleaved caspase3 in PC12 cells. Furthermore, gabapentin treatment could reduce these effects induced by hemin and the protective effects of gabapentin were significantly attenuated by PPARγ inhibitor. Therefore, gabapentin may reduce inflammation and apoptosis induced by the ICH through PPARγ-NFκB pathway.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.,Department of Neurosurgery, The First Hospital of Handan City, Handan, 056000, HeBei, China
| | - Bingqian Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.,Department of Neurosurgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, 054000, HeBei, China
| | - Ning Yu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, HeBei, China
| | - Liang Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China
| | - Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China
| | - Zhimin Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.,Department of Neurosurgery, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050000, HeBei, China
| | - Lisi Guo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.
| |
Collapse
|
6
|
Alaqel SI, Dlamini S, Almarghalani DA, Shettigar A, Alhadidi Q, Kodithuwakku SH, Stary C, Tillekeratne LMV, Shah ZA. Synthesis and Development of a Novel First-in-Class Cofilin Inhibitor for Neuroinflammation in Hemorrhagic Brain Injury. ACS Chem Neurosci 2022; 13:1014-1029. [PMID: 35302736 PMCID: PMC9996837 DOI: 10.1021/acschemneuro.2c00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is devastating among stroke types with high mortality. To date, not a single therapeutic intervention has been successful. Cofilin plays a critical role in inflammation and cell death. In the current study, we embarked on designing and synthesizing a first-in-class small-molecule inhibitor of cofilin to target secondary complications of ICH, mainly neuroinflammation. A series of compounds were synthesized, and two lead compounds SZ-3 and SK-1-32 were selected for further studies. Neuronal and microglial viabilities were assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay using neuroblastoma (SHSY-5Y) and human microglial (HMC-3) cell lines, respectively. Lipopolysaccharide (LPS)-induced inflammation in HMC-3 cells was used for neurotoxicity assay. Other assays include nitric oxide (NO) by Griess reagent, cofilin inhibition by F-actin depolymerization, migration by scratch wound assay, tumor necrosis factor (TNF-α) by enzyme-linked immunosorbent assay (ELISA), protease-activated receptor-1 (PAR-1) by immunocytochemistry and Western blotting (WB), and protein expression levels of several proteins by WB. SK-1-32 increased neuronal/microglial survival, reduced NO, and prevented neurotoxicity. However, SZ-3 showed no effect on neuronal/microglial survival but prevented microglia from LPS-induced inflammation by decreasing NO and preventing neurotoxicity. Therefore, we selected SZ-3 for further molecular studies, as it showed potent anti-inflammatory activities. SZ-3 decreased cofilin severing activity, and its treatment of LPS-activated HMC-3 cells attenuated microglial activation and suppressed migration and proliferation. HMC-3 cells subjected to thrombin, as an in vitro model for hemorrhagic stroke, and treated with SZ-3 after 3 h showed significantly decreased NO and TNF-α, significantly increased protein expression of phosphocofilin, and decreased PAR-1. In addition, SZ-3-treated SHSY-5Y showed a significant increase in cell viability by significantly reducing nuclear factor-κ B (NF-κB), caspase-3, and high-temperature requirement (HtrA2). Together, our results support the novel idea of targeting cofilin to counter neuroinflammation during secondary injury following ICH.
Collapse
Affiliation(s)
- Saleh I. Alaqel
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Samkeliso Dlamini
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Daniyah A. Almarghalani
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH, USA 43614
| | - Arjun Shettigar
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Sinali H. Kodithuwakku
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| | - Creed Stary
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA 94305
| | | | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, The University of Toledo, Toledo, OH, USA 43614
| |
Collapse
|
7
|
Imai T, Matsubara H, Hara H. Potential therapeutic effects of Nrf2 activators on intracranial hemorrhage. J Cereb Blood Flow Metab 2021; 41:1483-1500. [PMID: 33444090 PMCID: PMC8221764 DOI: 10.1177/0271678x20984565] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracranial hemorrhage (ICH) is a devastating disease which induces high mortality and poor outcomes including severe neurological dysfunctions. ICH pathology is divided into two types: primary brain injury (PBI) and secondary brain injury (SBI). Although there are numerous preclinical studies documenting neuroprotective agents in experimental ICH models, no effective drugs have been developed for clinical use due to complicated ICH pathology. Oxidative and inflammatory stresses play central roles in the onset and progression of brain injury after ICH, especially SBI. Nrf2 is a crucial transcription factor in the anti-oxidative stress defense system. Under normal conditions, Nrf2 is tightly regulated by the Keap1. Under ICH pathological conditions, such as overproduction of reactive oxygen species (ROS), Nrf2 is translocated into the nucleus where it up-regulates the expression of several anti-oxidative phase II enzymes such as heme oxygenase-1 (HO-1). Recently, many reports have suggested the therapeutic potential of Nrf2 activators (including natural or synthesized compounds) for treating neurodegenerative diseases. Moreover, several Nrf2 activators attenuate ischemic stroke-induced brain injury in several animal models. This review summarizes the efficacy of several Nrf2 activators in ICH animal models. In the future, Nrf2 activators might be approved for the treatment of ICH patients.
Collapse
Affiliation(s)
- Takahiko Imai
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirofumi Matsubara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.,Department of Neurosurgery, School of Medicine, Gifu University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
8
|
Madboli AENA, Seif MM. Adiantum capillus-veneris Linn protects female reproductive system against carbendazim toxicity in rats: immunohistochemical, histopathological, and pathophysiological studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19768-19782. [PMID: 33405113 DOI: 10.1007/s11356-020-11279-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
This experimental study is done to clarify the protective role of the Adiantum capillus-veneris linn plant extracts (ACVL) in Sprague-Dawley female rat reproductive organs that are intoxicated by carbendazim pesticide (CBZ). This aim is achieved by the immunohistochemical detection of the inflammatory marker NF-ҡB-P65. This aim is achieved by the immunohistochemical detection of the inflammatory marker NF-ҡB-P65 and also, description of the histopathological and pathophysiological changes. Thirty-two rats were divided into four groups (n = 8) and were daily treated orally for 4 weeks. The first group as a control, the second group was treated with ACVL plant extract 200 mg/kg b.w., the third group was treated with CBZ 25 mg/kg b.w., and the fourth group was treated with CBZ 25 mg + ACVL plant extract 200 mg/kg b.w. The pathophysiological results showed that in the third group, the ovarian tissue malondialdehyde content was elevated, but the fourth group exhibited it at a normal level. Reductions in the ovarian tissue content of glutathione, superoxide dismutase activity, 3β-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase, and also serum FSH, LH, and estradiol hormones were observed in the third group, while, in the fourth group, all these items recorded normal level. The histopathological findings in the third group exhibited severe congestion and hemorrhage in the ovaries, oviducts, myometrium, gastric submucosa, splenic white pulps, and brain subarachnoid spaces. The fourth group showed protection from the congestion and hemorrhage, and no histopathological changes occurred. The immunohistochemical results in the third group revealed strong positive immunoreaction against the NF-ҡB-P65 antigen in the uterus and stomach. Ovaries, spleen, and brain showed moderate positive immunoreaction. The fourth group disclosed negative immunoreaction for the NF-ҡB-P65 antigen. In conclusion, CBZ toxicity induced histopathological changes in female rat reproductive organs. CBZ induced changes in the enzymatic activities measured in ovarian and brain tissue homogenates. CBZ causes an elevation in NF-ҡB P65 as an inflammatory marker, especially in the uterus and stomach. The ACVL plant extract acts as a protective factor to prevent the CBZ toxicity and also has an anti-inflammatory effect by decreasing the synthesis of NF-ҡB-P65.
Collapse
Affiliation(s)
- Abd El-Nasser A Madboli
- Veterinary Research Division, Department of Animal Reproduction and Artificial Insemination, National Research Centre, 33 El-Buhouth St., Dokki, 12622, Giza, Egypt.
| | - Mohamed M Seif
- Food Industries and Nutrition Division, Toxicology and Food Contaminants Department, National Research Centre, Dokki, 12622, Giza, Egypt
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
9
|
Menzel A, Samouda H, Dohet F, Loap S, Ellulu MS, Bohn T. Common and Novel Markers for Measuring Inflammation and Oxidative Stress Ex Vivo in Research and Clinical Practice-Which to Use Regarding Disease Outcomes? Antioxidants (Basel) 2021; 10:antiox10030414. [PMID: 33803155 PMCID: PMC8001241 DOI: 10.3390/antiox10030414] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Many chronic conditions such as cancer, chronic obstructive pulmonary disease, type-2 diabetes, obesity, peripheral/coronary artery disease and auto-immune diseases are associated with low-grade inflammation. Closely related to inflammation is oxidative stress (OS), which can be either causal or secondary to inflammation. While a low level of OS is physiological, chronically increased OS is deleterious. Therefore, valid biomarkers of these signalling pathways may enable detection and following progression of OS/inflammation as well as to evaluate treatment efficacy. Such biomarkers should be stable and obtainable through non-invasive methods and their determination should be affordable and easy. The most frequently used inflammatory markers include acute-phase proteins, essentially CRP, serum amyloid A, fibrinogen and procalcitonin, and cytokines, predominantly TNFα, interleukins 1β, 6, 8, 10 and 12 and their receptors and IFNγ. Some cytokines appear to be disease-specific. Conversely, OS-being ubiquitous-and its biomarkers appear less disease or tissue-specific. These include lipid peroxidation products, e.g., F2-isoprostanes and malondialdehyde, DNA breakdown products (e.g., 8-OH-dG), protein adducts (e.g., carbonylated proteins), or antioxidant status. More novel markers include also -omics related ones, as well as non-invasive, questionnaire-based measures, such as the dietary inflammatory-index (DII), but their link to biological responses may be variable. Nevertheless, many of these markers have been clearly related to a number of diseases. However, their use in clinical practice is often limited, due to lacking analytical or clinical validation, or technical challenges. In this review, we strive to highlight frequently employed and useful markers of inflammation-related OS, including novel promising markers.
Collapse
Affiliation(s)
- Alain Menzel
- Laboratoires Réunis, 38, Rue Hiehl, L-6131 Junglinster, Luxembourg; (A.M.); (F.D.)
| | - Hanen Samouda
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg;
| | - Francois Dohet
- Laboratoires Réunis, 38, Rue Hiehl, L-6131 Junglinster, Luxembourg; (A.M.); (F.D.)
| | - Suva Loap
- Clinic Cryo Esthetic, 11 Rue Éblé, 75007 Paris, France;
| | - Mohammed S. Ellulu
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Al-Azhar University of Gaza (AUG), Gaza City 00970, Palestine;
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Population Health, Luxembourg Institute of Health, 1 A-B, Rue Thomas Edison, L-1445 Strassen, Luxembourg;
- Correspondence:
| |
Collapse
|