1
|
Shafiek MZ, Zaki HF, Mohamed AF, Ibrahim WW. Novel Trajectories Towards Possible Effects of Semaglutide for Amelioration of Reserpine-induced Fibromyalgia in Rats: Contribution of cAMP/PKA/p-CREB and M1/M2 Microglia Polarization. J Neuroimmune Pharmacol 2025; 20:43. [PMID: 40240584 PMCID: PMC12003577 DOI: 10.1007/s11481-025-10196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025]
Abstract
Fibromyalgia (FM) is a pain disorder characterized by pervasive musculoskeletal pain associated with exhaustion, depression, and irregular sleep patterns. Semaglutide, an innovative glucagon-like peptide-1 (GLP-1) agonist, has shown analgesic effects by modulating pain hypersensitivity in animal models of inflammatory pain. The objective of this study is to ascertain semaglutide's therapeutic potential against FM-like symptoms caused by reserpine. Reserpine (1 mg/kg/day; SC) was administered into rats for 3 consecutive days, then they were treated daily with semaglutide intraperitoneally in low (5 nmol/kg), intermediate (10 nmol/kg), or high doses (20 nmol/kg), respectively, for 14 consecutive days. Semaglutide alleviated reserpine induced histopathological and immunohistopathological changes in spinal cord of rats evidenced by a remarkable rise in immuno-expression of cluster of differentiation 163 (CD163) contrary to a significant diminution in CD86 level as compared with reserpine group. Semaglutide also had an analgesic effect and improved motor incoordination, and depression brought on by reserpine. Furthermore, it had an anti-inflammatory impact via stimulating cyclic adenosine monophosphate (cAMP)/ protein kinase A (PKA)/ cAMP response element (CRE)-binding protein (CREB) signaling pathway and shifting M1/M2 macrophage polarization towards the M2. Semaglutide's anti-inflammatory actions were manifested through inhibition of inducible nitric oxide synthase and reduction in dorsal root ganglia concentrations of tumor necrosis factor-α together with elevation in the levels of arginase-1 and interleukin-4.
Collapse
Affiliation(s)
- Mena Z Shafiek
- Department of Pharmacology and Toxicology, Faculty of Dentistry, Misr International University, Cairo, Egypt.
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai 46612, Sinai, Egypt
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Kamal MAM, Essam RM, Abdelkader NF, Zaki HF. Modafinil Ameliorated Fibromyalgia Syndrome in Rats by Modulating Mast Cells and Microglia Activation Through Dopamine/Substance P/MRGPRX/Histamine and PI3K/p-Akt/NF-κB Signaling Pathways. J Neuroimmune Pharmacol 2025; 20:38. [PMID: 40234306 PMCID: PMC12000277 DOI: 10.1007/s11481-025-10194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
Fibromyalgia syndrome (FMS) is characterized by prolonged, widespread musculoskeletal pain accompanied by various physical and psychological disturbances. Modafinil, a wake-promoting drug, manages pain symptoms in several diseases by inhibiting dopamine reuptake and exhibiting anti-inflammatory and immunomodulatory effects, including the impairment of cytokine production, microglia, and mast cell activation. Central inflammation may involve microglial activation, which is correlated with mast cell activation. Restoring dopamine levels and modulating the communication between mast cells and microglia may represent a promising approach to managing pain symptoms in FMS. Thus, this study intended to explore the interplay between brain mast cells and microglia as an underlying mechanism in the pathophysiology of FMS and how this interaction is controlled by modafinil, with a focus on dopamine/SP/MRGPRX2/histamine and PI3K/p-Akt/NF-κB signaling pathways. Rats were arbitrarily distributed between 4 groups. Group 1 served as normal control. Reserpine (1 mg/kg/day; s.c) was injected into the remaining groups for three consecutive days. In groups 3 and 4, modafinil (100 mg/kg/day; p.o) was administered either alone or in conjunction with haloperidol (1 mg/kg/day; ip), respectively, for the following 21 days. Modafinil ameliorated reserpine-induced thermal/mechanical allodynia (1.3-fold, 2.3-fold) and hyperalgesia (0.5-fold), attenuated depression (0.5-fold), and enhanced motor coordination (1.2-fold). It mitigated the histopathological alterations and increased dopamine levels in the thalamus of rats by 88.5%. Modafinil displayed anti-inflammatory effects via inhibiting mast cells and microglia activation, manifested by reductions in SP/MRGPRX2/IL-17/histamine (52%, 58%, 56.7%, and 63.7%) and PI3K/p-Akt/t-Akt/NF-κB/TNF-α/IL-6 (31.7%, 55.5%, 41%, 47.6%, and 76.9%), respectively. Ultimately, modafinil alleviated FMS behavioral, histopathological, and biochemical abnormalities and suppressed mast cell-microglial neuroinflammation in the thalamus of rats exposed to reserpine. This study highlights the potential of repurposing modafinil to improve FMS symptoms.
Collapse
Affiliation(s)
| | - Reham M Essam
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hala F Zaki
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Fülöp B, Borbély É, Helyes Z. How does chronic psychosocial distress induce pain? Focus on neuroinflammation and neuroplasticity changes. Brain Behav Immun Health 2025; 44:100964. [PMID: 40034488 PMCID: PMC11875130 DOI: 10.1016/j.bbih.2025.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 03/05/2025] Open
Abstract
Chronic primary pain including fibromyalgia for the musculoskeletal system persists for more than 3 months. Its etiological factors and the pathophysiological mechanisms are not known, and therefore, there is no satisfactory therapy, it is an unmet medical need condition. The only etiological and aggravating factor is chronic psychosocial distress, which is known to cause neuroimmune and endocrine changes both in the periphery and the central nervous system. In this short review, we introduce our research perspective by summarizing the recent literature on the interactions between chronic pain, stress, and commonly co-morbid mood disorders. Immune activation, autoimmunity, neuro-immune-vascular crosstalks and neuroinflammation play roles in the pathophysiology of these conditions. Data on stress-induced neuroplasticity changes at cellular and molecular levels were also collected in relation to chronic primary pain both from clinical studies and animal experiments of translational relevance. Understanding these mechanisms could help to identify novel therapeutic targets for chronic primary pain including fibromyalgia.
Collapse
Affiliation(s)
- Barbara Fülöp
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Centre for Neuroscience, Pécs, Hungary
- HUN-REN-PTE Chronic Pain Research Group, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Centre for Neuroscience, Pécs, Hungary
- HUN-REN-PTE Chronic Pain Research Group, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Medical School, Centre for Neuroscience, Pécs, Hungary
- HUN-REN-PTE Chronic Pain Research Group, Pécs, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2. H-1117, Budapest, Hungary
| |
Collapse
|
4
|
Kamaly NA, Kamel AS, Sadik NA, Shahin NN. Milnacipran and Vanillin Alleviate Fibromyalgia-Associated Depression in Reserpine-Induced Rat Model: Role of Wnt/β-Catenin Signaling. Mol Neurobiol 2025:10.1007/s12035-025-04723-w. [PMID: 39924579 DOI: 10.1007/s12035-025-04723-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Fibromyalgia (FM) patients are highly susceptible to depression. Wnt/β-catenin signaling has shown a crucial role against depression in several studies. The FDA-approved FM drug, milnacipran (Miln), has shown antinociceptive potential against FM. Yet, no study has investigated its antidepressant potential in FM. Vanillin (Van), a well-known phytochemical often employed as flavoring agent, has been previously reported for its antidepressant and antinociceptive effects in several animal models, but has not been tested so far in FM. This study explored the antidepressant effect of Van and Miln in FM through investigating Wnt/β-catenin signaling. FM was induced in female Wistar rats by injecting reserpine (1 mg/kg/day s.c) for 3 days. Thereafter, animals received either Miln (30 mg/kg/day p.o) or Van (100 mg/kg/day p.o) for the subsequent 14 days. Results showed that both drugs demonstrated antidepressant effect in forced swimming test besides analgesic, and antiallodynic influences observed in Randall-Selitto, hot plate, cold allodynia, Von-Frey, and tail immersion tests. Biochemically, Miln and Van significantly enhanced serotonergic transmission in the hippocampus and upregulated the protein expression of the Wnt/GSK-3β/β-catenin signaling axis, including the downstream proteins, T cell factor, and dicer. This is followed by subsequent upregulation of the resilience micro ribonucleic acids (miRNAs) 124 and 135. Histopathological examinations corroborated the biochemical and molecular findings. Interestingly, these effects of Miln and Van were overturned via administration of the β-catenin inhibitor, XAV939 (0.1 mg/kg, i.p., daily). In conclusion, this study outlined the antidepressant aptitude of Miln and Van through activating Wnt/β-catenin signaling in the hippocampus in reserpine-induced FM.
Collapse
Affiliation(s)
- Nour A Kamaly
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | | | - Nancy N Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
5
|
Shafiek MZ, Zaki HF, Mohamed AF. New ways to repurpose salmeterol in an animal model of fibromyalgia. Fundam Clin Pharmacol 2025; 39:e13041. [PMID: 39496328 DOI: 10.1111/fcp.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Fibromyalgia (FM) is a syndrome of pervasive chronic pain accompanied by low mood, sleep disorders, and cognitive decline. The dysfunction of central pain processing systems along with neurotransmitter disturbances are possible contributing mechanisms. Genetic polymorphism of the 𝛽2 adrenergic receptors is reported in FM patients. It is reported that chronic β2 agonists administration is effective for neuropathic pain alleviation. No current information, however, exists on their potential to alleviate nociplastic pain, such as FM. Therefore, the purpose of the current study is to examine salmeterol's potential antiallodynic effects in experimentally produced FM and explore some of the possible contributing mechanisms. METHODS Thirty rats are allocated into three groups (n = 10): a normal group, a reserpine group that received reserpine (1 mg/kg; s.c.) for 3 days, and a reserpine + salmeterol group that received salmeterol (1 mg/kg; i.p.) for 21 consecutive days following last reserpine injection. RESULTS Reserpine administration resulted in behavioral and biochemical changes consistent with FM, including thermal and mechanical hyperalgesia, depressive behavior, and motor incoordination. This is coupled with disturbed spinal monoamine levels, depressed cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling, disturbed mitochondrial function/dynamics, and compromised blood-nerve barrier integrity. Treatment with salmeterol conceivably reversed these effects. CONCLUSION β2 receptor agonists such as salmeterol could be regarded as a promising strategy for the management of FM.
Collapse
Affiliation(s)
- Mena Z Shafiek
- Department of Pharmacology and Toxicology, Faculty of Dentistry, Misr International University, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt
| |
Collapse
|
6
|
Antonelli A, Bianchi M, Fear EJ, Giorgi L, Rossi L. Management of Fibromyalgia: Novel Nutraceutical Therapies Beyond Traditional Pharmaceuticals. Nutrients 2025; 17:530. [PMID: 39940388 PMCID: PMC11820827 DOI: 10.3390/nu17030530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
The pathophysiology of fibromyalgia, a condition that causes chronic pain throughout the body, involves abnormal pain signaling, genetic predispositions, and abnormal neuroendocrine function, significantly impairing quality of life. Fibromyalgia is commonly characterized by musculoskeletal pain, chronic fatigue, and severe sleep alterations. Changes in the central processing of sensory input and defects in endogenous pain inhibition could be the basis of enhanced and persistent pain sensitivity in individuals with fibromyalgia. The term central sensitivity syndrome was chosen as an umbrella term for fibromyalgia and related illnesses, including myalgic encephalomyelitis/chronic fatigue syndrome, migraine, and irritable bowel syndrome. Given the substantial impact of fibromyalgia on health, there is a need for new prevention and treatment strategies, particularly those involving bioavailable nutraceuticals and/or phytochemicals. This approach is particularly important considering the adverse effects of current fibromyalgia pharmaceutical treatments, such as antidepressants and anticonvulsants, which can lead to physical dependence and tolerance. Natural products have recently been considered for the design of innovative analgesics and antinociceptive agents to manage fibromyalgia pain. Polyphenols show promise in the management of neuropathic pain and fibromyalgia, especially considering how anti-inflammatory treatments, including corticosteroids and nonsteroidal medical drugs, are effective only when inflammatory processes coexist and are not recommended as the primary treatment for fibromyalgia.
Collapse
Affiliation(s)
- Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy; (M.B.); (L.R.)
| | - Marzia Bianchi
- Department of Biomolecular Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy; (M.B.); (L.R.)
| | - Elizabeth Jane Fear
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, University “G. D’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luca Giorgi
- Department of Pure and Applied Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy;
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino, Cà Le Suore 2/4, 61029 Urbino, Italy; (M.B.); (L.R.)
| |
Collapse
|
7
|
Alharthy KM, Rashid S, Yusufoglu HS, Alqasoumi SI, Ganaie MA, Alam A. Neuroprotective potential of Afzelin: A novel approach for alleviating catalepsy and modulating Bcl-2 expression in Parkinson's disease therapy. Saudi Pharm J 2024; 32:101928. [PMID: 38261905 PMCID: PMC10797200 DOI: 10.1016/j.jsps.2023.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/17/2023] [Indexed: 01/25/2024] Open
Abstract
The lost dopaminergic neurons in the brain prevent mobility in Parkinson's disease (PD). It is impossible to stop the disease's progress by means of symptoms management. Research focuses on oxidative stress, mitochondrial dysfunction, and neuronal degeneration. Exploration of potential neuroprotective drugs against prosurvival B-cell lymphoma 2 (Bcl-2) protein is ongoing. An investigable cause behind PD, as well as preventive measures, could be discovered considering the association between such behavioural manifestations (cataleptic behaviours) and PD. The compound Afzelin, known to guard the nervous system, was chosen for this study. The study was done on rats divided into six different groups. First, there was a control group. The other group was treated with Reserpine (RES) (1 mg/kg). The third group received RES (1 mg/kg) and levodopa (30 mg/kg). The remaining three groups were given RES (1 mg/kg) in conjunction with Afzelin at the following doses: 5 mg/kg, 10 mg/kg, and 20 mg/kg. Cataleptic behavior and mobility in rats was assessed using the rotarod, open field, and modified forced-swim tests. thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), biogenic amines, and Bcl-2 level in rat tissue homogenates were considered. According to the study's findings, the rats treated through co-administration of RES and Afzelin improved significantly in their cataleptic behaviours and locomotor activity. In addition, administering Afzelin itself caused Bcl-2 expression, which could have some neuroprotection properties. This study provides meaningful information on the effectiveness of Afzelin in handling catalepsy and other degenerative neurologic disorders. As a result, other studies need to be conducted to establish the reasons behind the reactions and determine the long-term effects of Afzelin on these conditions.
Collapse
Affiliation(s)
- Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hasan S. Yusufoglu
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Al-Qassim 51418, Saudi Arabia
| | - Saleh I. Alqasoumi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, 51418 Buraydah, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
8
|
de Souza VS, Medeiros LF, Stein DJ, de Oliveira CL, Medeiros HR, Dussan-Sarria JA, Caumo W, de Souza A, Torres ILS. Transcranial direct current stimulation is more effective than pregabalin in controlling nociceptive and anxiety-like behaviors in a rat fibromyalgia-like model. Scand J Pain 2024; 24:sjpain-2023-0038. [PMID: 38557595 DOI: 10.1515/sjpain-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES Despite the fact that fibromyalgia, a widespread disease of the musculoskeletal system, has no specific treatment, patients have shown improvement after pharmacological intervention. Pregabalin has demonstrated efficacy; however, its adverse effects may reduce treatment adherence. In this context, neuromodulatory techniques such as transcranial direct current stimulation (tDCS) may be employed as a complementary pain-relieving method. Consequently, the purpose of this study was to evaluate the effect of pregabalin and tDCS treatments on the behavioral and biomarker parameters of rats submitted to a fibromyalgia-like model. METHODS Forty adult male Wistar rats were divided into two groups: control and reserpine. Five days after the end of the administration of reserpine (1 mg/kg/3 days) to induce a fibromyalgia-like model, rats were randomly assigned to receive either vehicle or pregabalin (30 mg/kg) along with sham or active- tDCS treatments. The evaluated behavioral parameters included mechanical allodynia by von Frey test and anxiety-like behaviors by elevated plus-maze test (time spent in opened and closed arms, number of entries in opened and closed arms, protected head-dipping, unprotected head-dipping [NPHD], grooming, rearing, fecal boluses). The biomarker analysis (brain-derived neurotrophic factor [BDNF] and tumor necrosis factor-α [TNF-α]) was performed in brainstem and cerebral cortex and in serum. RESULTS tDCS reversed the reduction in the mechanical nociceptive threshold and the decrease in the serum BDNF levels induced by the model of fibromyalgia; however, there was no effect of pregabalin in the mechanical threshold. There were no effects of pregabalin or tDCS found in TNF-α levels. The pain model induced an increase in grooming time and a decrease in NPHD and rearing; while tDCS reversed the increase in grooming, pregabalin reversed the decrease in NPHD. CONCLUSIONS tDCS was more effective than pregabalin in controlling nociception and anxiety-like behavior in a rat model-like fibromyalgia. Considering the translational aspect, our findings suggest that tDCS could be a potential non-pharmacological treatment for fibromyalgia.
Collapse
Affiliation(s)
- Vanessa Silva de Souza
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Liciane Fernandes Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Universidade La Salle, Canoas, RS, 92010-000, Brazil
- Post graduate program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Dirson João Stein
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Post graduate Program in Medicine: Medical Science, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Camila Lino de Oliveira
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Helouise Richardt Medeiros
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Post graduate Program in Medicine: Medical Science, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | | | - Wolnei Caumo
- Post graduate Program in Medicine: Medical Science, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| | - Andressa de Souza
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
| | - Iraci L S Torres
- Institute of Basic Health Sciences, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Center for Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil
- Department of Pharmacology, Universidade Federal Rio Grande do Sul, Porto Alegre, RS, 90050-170, Brazil
| |
Collapse
|
9
|
Cheng PF, Yuan-He, Ge MM, Ye DW, Chen JP, Wang JX. Targeting the Main Sources of Reactive Oxygen Species Production: Possible Therapeutic Implications in Chronic Pain. Curr Neuropharmacol 2024; 22:1960-1985. [PMID: 37921169 PMCID: PMC11333790 DOI: 10.2174/1570159x22999231024140544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 11/04/2023] Open
Abstract
Humans have long been combating chronic pain. In clinical practice, opioids are firstchoice analgesics, but long-term use of these drugs can lead to serious adverse reactions. Finding new, safe and effective pain relievers that are useful treatments for chronic pain is an urgent medical need. Based on accumulating evidence from numerous studies, excess reactive oxygen species (ROS) contribute to the development and maintenance of chronic pain. Some antioxidants are potentially beneficial analgesics in the clinic, but ROS-dependent pathways are completely inhibited only by scavenging ROS directly targeting cellular or subcellular sites. Unfortunately, current antioxidant treatments do not achieve this effect. Furthermore, some antioxidants interfere with physiological redox signaling pathways and fail to reverse oxidative damage. Therefore, the key upstream processes and mechanisms of ROS production that lead to chronic pain in vivo must be identified to discover potential therapeutic targets related to the pathways that control ROS production in vivo. In this review, we summarize the sites and pathways involved in analgesia based on the three main mechanisms by which ROS are generated in vivo, discuss the preclinical evidence for the therapeutic potential of targeting these pathways in chronic pain, note the shortcomings of current research and highlight possible future research directions to provide new targets and evidence for the development of clinical analgesics.
Collapse
Affiliation(s)
- Peng-Fei Cheng
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuan-He
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Meng-Meng Ge
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Ping Chen
- Department of Pain Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jin-Xi Wang
- Division of Colorectal Surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
10
|
Elkholy NS, Mohammed HS, Shafaa MW. Assessment of the therapeutic potential of lutein and beta-carotene nanodispersions in a rat model of fibromyalgia. Sci Rep 2023; 13:19712. [PMID: 37953299 PMCID: PMC10641082 DOI: 10.1038/s41598-023-46980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Fibromyalgia (FM) is a chronic disorder characterized by widespread musculoskeletal pain, fatigue, and cognitive impairment. Despite the availability of various treatment options, FM remains a challenging condition to manage. In the present study, we investigated the efficacy of formulated nanodispersions of lutein and beta-carotene in treating FM-related symptoms induced by reserpine in female Wistar rats. Several techniques have been implemented to assess this efficacy at various levels, including biochemical, bioelectrical, and behavioral. Namely, oxidative stress markers, monoamine levels, electrocorticography, pain threshold test, and open field test were conducted on control, FM-induced, and FM-treated groups of animals. Our results provided compelling evidence for the efficacy of carotenoid nanodispersions in treating FM-related symptoms. Specifically, we found that the dual action of the nanodispersion, as both antioxidant and antidepressant, accounted for their beneficial effects in treating FM. With further investigation, nano-carotenoids and particularly nano-lutein could potentially become an effective alternative treatment for patients with FM who do not respond to current treatment options.
Collapse
Affiliation(s)
- Nourhan S Elkholy
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
- Nawah Scientific Co., Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Medhat W Shafaa
- Medical Biophysics Division, Physics Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
11
|
Hassan SSU, Samanta S, Dash R, Karpiński TM, Habibi E, Sadiq A, Ahmadi A, Bungau S. The neuroprotective effects of fisetin, a natural flavonoid in neurodegenerative diseases: Focus on the role of oxidative stress. Front Pharmacol 2022; 13:1015835. [PMID: 36299900 PMCID: PMC9589363 DOI: 10.3389/fphar.2022.1015835] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) disrupts the chemical integrity of macromolecules and increases the risk of neurodegenerative diseases. Fisetin is a flavonoid that exhibits potent antioxidant properties and protects the cells against OS. We have viewed the NCBI database, PubMed, Science Direct (Elsevier), Springer-Nature, ResearchGate, and Google Scholar databases to search and collect relevant articles during the preparation of this review. The search keywords are OS, neurodegenerative diseases, fisetin, etc. High level of ROS in the brain tissue decreases ATP levels, and mitochondrial membrane potential and induces lipid peroxidation, chronic inflammation, DNA damage, and apoptosis. The subsequent results are various neuronal diseases. Fisetin is a polyphenolic compound, commonly present in dietary ingredients. The antioxidant properties of this flavonoid diminish oxidative stress, ROS production, neurotoxicity, neuro-inflammation, and neurological disorders. Moreover, it maintains the redox profiles, and mitochondrial functions and inhibits NO production. At the molecular level, fisetin regulates the activity of PI3K/Akt, Nrf2, NF-κB, protein kinase C, and MAPK pathways to prevent OS, inflammatory response, and cytotoxicity. The antioxidant properties of fisetin protect the neural cells from inflammation and apoptotic degeneration. Thus, it can be used in the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, South Korea
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
12
|
Asgharian P, Quispe C, Herrera-Bravo J, Sabernavaei M, Hosseini K, Forouhandeh H, Ebrahimi T, Sharafi-Badr P, Tarhriz V, Soofiyani SR, Helon P, Rajkovic J, Durna Daştan S, Docea AO, Sharifi-Rad J, Calina D, Koch W, Cho WC. Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update. Front Pharmacol 2022; 13:926607. [PMID: 36188551 PMCID: PMC9521271 DOI: 10.3389/fphar.2022.926607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Mahsa Sabernavaei
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ebrahimi
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Sharafi-Badr
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University of Kielce, Sandomierz, Poland
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, Sivas, Turkey
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Hong M, Cheng L, Liu Y, Wu Z, Zhang P, Zhang X. Mechanisms Underlying the Interaction Between Chronic Neurological Disorders and Microbial Metabolites via Tea Polyphenols Therapeutics. Front Microbiol 2022; 13:823902. [PMID: 35401435 PMCID: PMC8991060 DOI: 10.3389/fmicb.2022.823902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
The number of hydroxyl groups and existence of characteristic structural groups in tea polyphenols (TP) make them have antioxidant activity, which gives TP anti-inflammatory effects, toward protecting the intestinal flora and brain neurons. Host-associated microbial metabolites are emerging as dominant modifiers of the central nervous system. As yet, the investigations on host-microbiota crosstalking remain challenging, studies focusing on metabolites such as serotonin, short-chain fatty acids, and others have pinpointed multiple actionable signaling pathways relevant to host health. However, there are still complexities and apparent limitations inherent in transforming complex human diseases to corresponding animal models. Here, we choose to discuss several intestinal metabolites with research value, as crucial areas for assessing TP-mediated chronic brain diseases interactions with microbial.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Effects of Fisetin on Allergic Contact Dermatitis via Regulating the Balance of Th17/Treg in Mice. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9222541. [PMID: 35437448 PMCID: PMC9013294 DOI: 10.1155/2022/9222541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
Background. Allergic contact dermatitis (ACD) is a form of chronic cutaneous inflammatory disease of immunological origin that has adverse impacts on patient quality of life, underscoring the need for the development of safe and effective therapeutic agents to treat affected individuals. Fisetin is a Chinese herbal preparation that reportedly exhibits antitumor, antioxidant, antimicrobial, anticoagulatory, and antimalarial activity. In the current report, the immunomodulatory activity of fisetin was appraised by assessing its impact on balance between regulatory T (Treg) and Th17 cells in an ACD model. Methods. BALB/c mice (
) were randomized into control, ACD model, CTX positive control (20 mg/kg), and fisetin treatment groups (three dose levels: 2, 4, or 8 mg/kg). ACD induction was achieved by sensitizing mice on the shaved ventral abdomen via the application of 5% DNFB (50 μL) on days 1 and 2, followed by rechallenge in the right ear with 5% DNFB (20 μL) on day 5. Beginning on day 1, immunized mice were intraperitoneally injected with the appropriate fisetin dose (in saline) once per day for 7 days. On day 7, ear swelling, transcription factor expression, Th17/Treg cell populations, and cytokine production were assessed in vivo. Results. Fisetin treatment significantly suppressed ear swelling and associated inflammatory cell infiltration, besides reducing the production of Th17 cytokines (IL-17, TNF-α, and IL-6) and the expression of the Th17 lineage transcription factor RORγt while simultaneously enhancing Treg-specific cytokine production (TGF-β and IL-10) and the expression of the Treg lineage transcription factor Foxp3, thereby restoring the Th17/Treg cell in ACD mice. Conclusions. These data indicate that fisetin exhibits immunomodulatory activity and can alter the Th17/Treg cell balance, highlighting its potential value as a treatment drug for ACD.
Collapse
|
15
|
Martins CP, Paes RS, Baldasso GM, Ferrarini EG, Scussel R, Zaccaron RP, Machado-de-Ávila RA, Lock Silveira PC, Dutra RC. Pramipexole, a dopamine D3/D2 receptor-preferring agonist, attenuates reserpine-induced fibromyalgia-like model in mice. Neural Regen Res 2022; 17:450-458. [PMID: 34269222 PMCID: PMC8463993 DOI: 10.4103/1673-5374.317984] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibromyalgia (FM) is a complex pathology described as persistent hyperalgesia including somatic and mood dysfunctions, depression and anxiety. Although the etiology of FM is still unknown, a significant decrease in biogenic amines is a common characteristic in its pathogenesis. Here, our main objective was to investigate the role of dopamine D3/D2 receptor during the reserpine-induced pain in mice. Our results showed that pramipexole (PPX) - a dopaminergic D3/D2 receptor agonist - inhibited mechanical allodynia and thermal sensitivity induced by reserpine. Relevantly, PPX treatment decreased immobility time and increased the number of grooming in the forced swimming test and splash test, respectively. Animals that received PPX remained longer in the open arms than the reserpine group using elevated plus-maze apparatus. The repeated PPX administration, given daily for 4 days, significantly blocked the mechanical and thermal allodynia during FM model, similarly to pregabalin, although it failed to affect the reserpine-induced thermal nociception. Reserpine administration induced significant downregulation of dopamine concentration in the central nervous system, and repeated treatment with PPX restored dopamine levels in the frontal cortex and spinal cord tissues. Moreover, PPX treatment inhibited oxidants production such as DCFH (2',7'-dichlorodihydrofluorescein) and nitrite, also decreased oxidative damage (carbonyl), and upregulated the activity of superoxide dismutase in the spinal cord. Together, our findings demonstrated the ability of dopamine D3/D2 receptor-preferring agonist in reducing pain and mood dysfunction allied to FM in mice. All experimental protocols were approved by the Universidade Federal de Santa Catarina (UFSC) Ethics Committee (approval No. 2572210218) on May 10, 2018.
Collapse
Affiliation(s)
- Carlos Pereira Martins
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rodrigo Sebben Paes
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Gabriela Mantovani Baldasso
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá, SC, Brazil
| | - Eduarda Gomes Ferrarini
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rubya Pereira Zaccaron
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Physiopathology, Program of Postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
16
|
Ghoneim FM, Abo-Elkhair SM, Elsamanoudy AZ, Shabaan DA. Evaluation of Endothelial Dysfunction and Autophagy in Fibromyalgia-Related Vascular and Cerebral Cortical Changes and the Ameliorative Effect of Fisetin. Cells 2021; 11:48. [PMID: 35011610 PMCID: PMC8750434 DOI: 10.3390/cells11010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Fibromyalgia (FM) is a common chronic pain syndrome that affects 1% to 5% of the population. We aimed to investigate the role of endothelial dysfunction and autophagy in fibromyalgia-related vascular and cerebral cortical changes in a reserpine-induced rat model of fibromyalgia at the histological and molecular levels and to study the ameliorative effect of fisetin. Forty adult female albino rats were divided into four groups (10 each): two control groups, the reserpine-induced fibromyalgia group, and the fisetin-treated group. The carotid arteries and brains of the animals were dissected. Frozen tissue samples were used for total RNA extraction and qPCR analysis of eNOS, caspase-3, Bcl-2, LC-3, BECN-1, CHOP, and TNF-α expression. Histological, immunohistochemical (eNOS), and ultrastructure studies were conducted. The carotid arteries revealed excessive autophagy and endothelial, vascular, and apoptotic changes. The cerebral cortex showed similar findings apart from endoplasmic reticulum stress. Additionally, there was decreased gene expression of eNOS and Bcl-2 and increased expression of caspase-3, LC-3, BECN-1, CHOP, and TNF-α. In the fisetin-treated rats, improvements in the histological and molecular results were detected. In conclusion, oxidative stress, enhanced apoptosis, and excessive autophagy are fundamental pathophysiologic mechanisms of reserpine-induced fibromyalgia. Moreover, fisetin has an ameliorative effect against fibromyalgia.
Collapse
Affiliation(s)
- Fatma Mohamed Ghoneim
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (F.M.G.); (D.A.S.)
| | - Salwa Mohamed Abo-Elkhair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Ayman Zaky Elsamanoudy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia
| | - Dalia A. Shabaan
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; (F.M.G.); (D.A.S.)
| |
Collapse
|
17
|
D’Amico R, Fusco R, Siracusa R, Impellizzeri D, Peritore AF, Gugliandolo E, Interdonato L, Sforza AM, Crupi R, Cuzzocrea S, Genovese T, Cordaro M, Di Paola R. Inhibition of P2X7 Purinergic Receptor Ameliorates Fibromyalgia Syndrome by Suppressing NLRP3 Pathway. Int J Mol Sci 2021; 22:ijms22126471. [PMID: 34208781 PMCID: PMC8234677 DOI: 10.3390/ijms22126471] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Fibromyalgia is a chronic condition characterized by persistent widespread pain that significantly reduces quality of life in patients. The purinergic P2X7 receptor (P2X7R) seems to be involved in different pain states and neuroinflammation. The purpose of this study is to investigate the positive effects of P2X7R inhibition by the antagonist Brilliant Blue G (BBG) in a rat model of reserpine-induced fibromyalgia. Sprague-Dawley male rats were injected with 1 mg/kg of reserpine for three consecutive days. Later, animals were administered BBG (50 mg/kg) intraperitoneally for seven days. Reserpine injections induced a significant increase in pain pro-inflammatory mediators as well as a significant increase in neuroinflammation. Chronic pain, in turn, led to depressive-like symptoms and reduced neurogenesis. Blockage of P2X7R by BBG administrations is able to attenuate the behavioral deficits, pain mediators and microglial activation induced by reserpine injection. Additionally, BBG prevents NLRP3 inflammasome activation and consequently the release of active interleukin (IL)-1 and IL-18, involved in the activation of nociceptors. In conclusion, these results suggest that inhibition of P2X7R should be further investigated to develop a potential approach for the management of fibromyalgia.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Andrea Maria Sforza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
- Correspondence: (S.C.); (T.G.); Tel.: +39-090-676-5208 (S.C. & T.G.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
- Correspondence: (S.C.); (T.G.); Tel.: +39-090-676-5208 (S.C. & T.G.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, via Consolare Valeria, 98125 Messina, Italy;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (R.S.); (D.I.); (A.F.P.); (L.I.); or (A.M.S.); (R.D.P.)
| |
Collapse
|
18
|
Singh L, Kaur A, Singh AP, Bhatti R. Daphnetin, a natural coumarin averts reserpine-induced fibromyalgia in mice: modulation of MAO-A. Exp Brain Res 2021; 239:1451-1463. [PMID: 33677656 DOI: 10.1007/s00221-021-06064-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
Fibromyalgia is a common, chronic, and generalized pain syndrome that is often associated with comorbid depression. The etiology of fibromyalgia is complex; most researchers have documented that the hallmark symptoms are due to the central nervous system's abnormal functioning. Neurotransmitters such as serotonin, norepinephrine, and glutamate, have been reported to be key regulators of fibromyalgia syndrome. Daphnetin is a 7, 8 dihydroxy coumarin widely distributed in Thymelaeaceae family plants, possessing various activities such as anti-arthritic, anti-tumor, anti-malarial, and anti-parasitic. The present study was designed to explore the potential of daphnetin against reserpine-induced fibromyalgia in mice. In mice, a fibromyalgia-like state was achieved by injecting reserpine (0.5 mg/kg, s.c) continuously for 3 days. All behavioral tests were conducted on the 4th and 6th day of experimentation. Reserpine administration significantly increased the mechanical hypersensitivity in electronic von Frey (eVF) and pressure application measurement (PAM) tests. It also increased the immobility period and time to reach the platform in force swim test (FST) and Morris water maze (MWM) test, respectively. In the biochemical analysis, reserpine treatment upregulated the monoamine oxidase-A (MAO-A) activity and level of glutamate, tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and thiobarbituric acid reactive substances (TBARS). Whereas, it decreased the level of glutathione (GSH), dopamine, serotonin, and norepinephrine. Daphnetin pretreatment attenuated the behavioral and biochemical changes induced by reserpine. Thus, the current investigation results delineate that daphnetin might exert its protective effect by inhibiting inflammatory stress and MAO-A-mediated neurotransmitter depletion and oxidative stress.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anudeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rajbir Bhatti
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
19
|
Mahmoud Moustafa E, Rashed ER, Rashed RR, Omar NN. Piceatannol promotes hepatic and renal AMPK/SIRT1/PGC-1α mitochondrial pathway in rats exposed to reserpine or gamma-radiation. Int J Immunopathol Pharmacol 2021; 35:20587384211016194. [PMID: 33985371 PMCID: PMC8127740 DOI: 10.1177/20587384211016194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/18/2021] [Indexed: 01/20/2023] Open
Abstract
Human exposure to radio-therapeutic doses of gamma rays can produce late effects, which negatively affect cancer patients' quality of life, work prospects, and general health. This study was performed to explore the role of Piceatannol (PIC) in the process of "mitochondrial biogenesis" signaling pathway as possible management of disturbances induced in stressed animal model(s) either by gamma-irradiation (IR) or administration of reserpine (RES); as a mitochondrial complex-I inhibitor. PIC (10 mg/kg BW/day; orally) were given to rats for 7 days, after exposure to an acute dose of γ-radiation (6 Gy), or after a single reserpine injection (1 g/kg BW; sc). Compared to reserpine or γ-radiation, PIC has attenuated hepatic and renal mitochondrial oxidative stress denoted by the significant reduction in the content of lipid peroxides and NO with significant induction of SOD, CAT, GSH-PX, and GR activities. PIC has also significantly alleviated the increase of the inflammatory markers, TNF-α and IL-6 and apoptotic markers, cytochrome c, and caspase-3. The decrease of oxidative stress, inflammation, and apoptotic responses were linked to a significant amelioration in mitochondrial biogenesis demonstrated by the increased expression and proteins' tissue contents of SIRT1/p38-AMPK, PGC-1α signaling pathway. The results are substantiated by the significant amelioration in mitochondrial function verified by the higher levels of ATP content, and complex I activity, besides the improvement of hepatic and renal functions. Additionally, histopathological examinations of hepatic and renal tissues showed that PIC has modulated tissue architecture after reserpine or gamma-radiation-induced tissue damage. Piceatannol improves mitochondrial functions by regulating the oxidant/antioxidant disequilibrium, the inflammatory and apoptotic responses, suggesting its possible use as adjuvant therapy in radio-therapeutic protocols to attenuate hepatic and renal injuries.
Collapse
Affiliation(s)
- Enas Mahmoud Moustafa
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Engy Refaat Rashed
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rasha Refaat Rashed
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nesreen Nabil Omar
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
20
|
Maffei ME. Fibromyalgia: Recent Advances in Diagnosis, Classification, Pharmacotherapy and Alternative Remedies. Int J Mol Sci 2020; 21:E7877. [PMID: 33114203 PMCID: PMC7660651 DOI: 10.3390/ijms21217877] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fibromyalgia (FM) is a syndrome that does not present a well-defined underlying organic disease. FM is a condition which has been associated with diseases such as infections, diabetes, psychiatric or neurological disorders, rheumatic pathologies, and is a disorder that rather than diagnosis of exclusion requires positive diagnosis. A multidimensional approach is required for the management of FM, including pain management, pharmacological therapies, behavioral therapy, patient education, and exercise. The purpose of this review is to summarize the recent advances in classification criteria and diagnostic criteria for FM as well as to explore pharmacotherapy and the use of alternative therapies including the use of plant bioactive molecules.
Collapse
Affiliation(s)
- Massimo E Maffei
- Department of Life Sciences and Systems Biology, University of Turin, 10135 Turin, Italy
| |
Collapse
|
21
|
Brum EDS, Fialho MFP, Fischer SPM, Hartmann DD, Gonçalves DF, Scussel R, Machado-de-Ávila RA, Dalla Corte CL, Soares FAA, Oliveira SM. Relevance of Mitochondrial Dysfunction in the Reserpine-Induced Experimental Fibromyalgia Model. Mol Neurobiol 2020; 57:4202-4217. [PMID: 32685997 DOI: 10.1007/s12035-020-01996-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
Abstract
Fibromyalgia (FM) is one of the most common musculoskeletal pain conditions. Although the aetiology of FM is still unknown, mitochondrial dysfunction and the overproduction of reactive oxygen intermediates (ROI) are common characteristics in its pathogenesis. The reserpine experimental model can induce FM-related symptoms in rodents by depleting biogenic amines. However, it is unclear whether reserpine causes other pathophysiologic characteristics of FM. So far, no one has investigated the relevance of mitochondrial dysfunction in the reserpine-induced experimental FM model using protection- and insult-based mitochondrial modulators. Reserpine (1 mg/kg) was subcutaneously injected once daily for three consecutive days in male Swiss mice. We carried out analyses of reserpine-induced FM-related symptoms, and their modulation by using mitochondrial insult on ATP synthesis (oligomycin; 1 mg/kg, intraperitoneally) or mitochondrial protection (coenzyme Q10; 150 mg/kg/5 days, orally). We also evaluated the effect of reserpine on mitochondrial function using high-resolution respirometry and oxidative status. Reserpine caused nociception, loss in muscle strength, and anxiety- and depressive-like behaviours in mice that were consistent with clinical symptoms of FM, without inducing body weight and temperature alterations or motor impairment. Reserpine-induced FM-related symptoms were increased by oligomycin and reduced by coenzyme Q10 treatment. Reserpine caused mitochondrial dysfunction by negatively modulating the electron transport system and mitochondrial respiration (ATP synthesis) mainly in oxidative muscles and the spinal cord. These results support the role of mitochondria in mediating oxidative stress and FM symptoms in this model. In this way, reserpine-inducing mitochondrial dysfunction and increased production of ROI contribute to the development and maintenance of nociceptive, fatigue, and depressive-like behaviours.
Collapse
Affiliation(s)
- Evelyne da Silva Brum
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Susana Paula Moreira Fischer
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Diane Duarte Hartmann
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Débora Farina Gonçalves
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Rahisa Scussel
- Graduate Program in Health Sciences, University of Extreme South Catarinense, Criciúma, SC, Brazil
| | | | - Cristiane Lenz Dalla Corte
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.,Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Félix Alexandre Antunes Soares
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.,Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences, Biochemical Toxicology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil. .,Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|