1
|
Haghighat ZA, Safekordi A, Ardjmand M, Akbarzadeh A. Exploring the Antitumor Efficacy of PEGylated Liposomes Loaded with Licorice Extract for Cancer Therapy. Curr Cancer Drug Targets 2025; 25:357-369. [PMID: 38685810 DOI: 10.2174/0115680096292153240416115744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Glycyrrhizic Acid (GA), a compound derived from licorice, has exhibited promising anticancer properties against several cancer types, including Prostate Cancer (PCa) and Gastric Cancer (GCa). OBJECTIVE This study has introduced a novel approach involving the encapsulation of GA and Licorice extract (Lic) into Polyethylene Glycol Liposomes (PEG-Lip) and assessed their efficacy against AGS (human gastric cancer) and PC-3 (human prostate cancer) cells, marking the first report of this endeavor. METHODS We synthesized GA-loaded PEG-Lip (GA PEG-Lip) and Lic-loaded PEG-Lip (Lic PEG-Lip) through the reverse-phase evaporation method. RESULTS Characterization of these liposomal formulations revealed their size, drug encapsulation, and loading efficiencies to be 110 ± 2.05 nm, 117 ± 1.24 nm; 61 ± 0.81%, 34 ± 0.47%; and 8 ± 0.41% and 4.6 ± 0.21%, respectively. Importantly, the process has retained the chemical structure of both GA and Lic. Furthermore, GA and Lic have been released from the PEG-Lip formulations in a controlled manner. In our experiments, both nanoformulations exhibited enhanced cytotoxic effects against AGS and PC-3 cells. Notably, GA PEG-Lip outperformed Lic PEG-Lip, reducing the viability of PC-3 and AGS cells by 12.5% and 15.9%, respectively. CONCLUSION These results have been corroborated by apoptosis assays, which have demonstrated GA PEG-Lip and Lic PEG-Lip to induce stronger apoptotic effects compared to free GA and Lic on both PC-3 and AGS cells. This study has underscored the potential of encapsulating GA and Lic in PEG-Lip as a promising strategy to augment their anticancer efficacy against prostate and gastric cancers.
Collapse
Affiliation(s)
- Zeinab Azizi Haghighat
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Safekordi
- Chemical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Zhou XR, Wang XY, Sun YM, Zhang C, Liu KJ, Zhang FY, Xiang B. Glycyrrhizin Protects Submandibular Gland Against Radiation Damage by Enhancing Antioxidant Defense and Preserving Mitochondrial Homeostasis. Antioxid Redox Signal 2024; 41:723-743. [PMID: 38069572 DOI: 10.1089/ars.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Aims: Radiotherapy inevitably causes radiation damage to the salivary glands (SGs) in patients with head and neck cancers (HNCs). Excessive reactive oxygen species (ROS) levels and imbalanced mitochondrial homeostasis are serious consequences of ionizing radiation in SGs; however, there are few mitochondria-targeting therapeutic approaches. Glycyrrhizin is the main extract of licorice root and exhibits antioxidant activity to relieve mitochondrial damage in certain oxidative stress conditions. Herein, the effects of glycyrrhizin on irradiated submandibular glands (SMGs) and the related mechanisms were investigated. Results: Glycyrrhizin reduced radiation damage in rat SMGs at both the cell and tissue levels, and promoted saliva secretion in irradiated SMGs. Glycyrrhizin significantly downregulated high-mobility group box-1 protein (HMGB1) and toll-like receptor 5 (TLR5). Moreover, glycyrrhizin significantly suppressed the increases in malondialdehyde and glutathione disulfide (GSSG) levels; elevated the activity of some critical antioxidants, including superoxide dismutase, catalase, glutathione peroxidase, and glutathione (GSH); and increased the GSH/GSSG ratio in irradiated cells. Importantly, glycyrrhizin effectively enhanced thioredoxin-2 levels and scavenged mitochondrial ROS, inhibited the decline in mitochondrial membrane potential, improved adenosine triphosphate synthesis, preserved the mitochondrial ultrastructure, activated the proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)/nuclear respiratory factor 1/2 (NRF1/2)/mitochondrial transcription factor A (TFAM) signaling pathway, and inhibited mitochondria-related apoptosis in irradiated SMG cells and tissues. Innovation: Radiotherapy causes radiation sialadenitis in HNC patients. Our data suggest that glycyrrhizin could be a mitochondria-targeted antioxidant for the prevention of radiation damage in SGs. Conclusion: These findings demonstrate that glycyrrhizin protects SMGs from radiation damage by downregulating HMGB1/TLR5 signaling, maintaining intracellular redox balance, eliminating mitochondrial ROS, preserving mitochondrial homeostasis, and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xin-Ru Zhou
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Xin-Yue Wang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Yue-Mei Sun
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Chong Zhang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| | - Ke Jian Liu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Fu-Yin Zhang
- Department of Oral Surgery, Second Hospital of Dalian Medical University, Dalian, China
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, Dalian, China
| |
Collapse
|
3
|
Song J, Li S, Zhang B, Wu J, Zhong A. Quercetin protects human coronary artery endothelial cells against hypoxia/reoxygenation-induced mitochondrial apoptosis via the Nrf2/HO-1 axis. Biomed Res 2024; 45:197-207. [PMID: 39370298 DOI: 10.2220/biomedres.45.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Our study explored the therapeutic effect and the mechanism of quercetin against hypoxia/reoxygenation (H/R)-induced injury in human coronary artery endothelial cells (CAECs). Quercetin was selected as a potential component for the BuShenKangShuaiPian formula (BSKSP) treatment via the Network pharmacology analysis. Cell viability and reactive oxygen species (ROS) production were measured by CCK8 assay and immunofluorescence, respectively. The expression of Bax, Bcl-2, Cle-caspase-3, cytochrome c (Cyt-C), NF-E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) protein was quantified by western blotting. The superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) activity, mtDNA copy number, and ATP production were measured via corresponding kits. Quercetin was selected from the BSKSP for its high degree value (Degree value: 22). Besides, quercetin protected CAECs against H/R-induced cytotoxicity and apoptosis. The H/R-induced increased ROS level, ATP production, Cyt-C release, and decreased mtDNA copy number were removed by the quercetin. Moreover, quercetin upregulated the Nrf2/ HO-1 axis, SOD, and CAT activity, and downregulated MDA levels in H/R treated CAECs, while knockdown Nrf2 reversed the protection of quercetin against H/R-induced oxidative stress, mitochondrial damage, and apoptosis. Quercetin protects CAECs against H/R-induced mitochondrial apoptosis via the Nrf2/HO-1 axis, which innovatively suggests the therapeutic potential of quercetin for coronary heart disease (CHD) treatment.
Collapse
Affiliation(s)
- Jiejin Song
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shuang Li
- National Health Commission's Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Tianjin, China
| | - Boyong Zhang
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jiao Wu
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Aiqin Zhong
- North Hospital Emergency Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxi- bustion, Tianjin, China
| |
Collapse
|
4
|
Zhao TQ, Li Y, Zhang M, Zhao MC, Cao X, Hou SZ. Glycyrrhizic Acid Protects Glomerular Podocytes Induced by High Glucose by Modulating SNARK/AMPK Signaling Pathway. Curr Med Sci 2023; 43:696-707. [PMID: 37450070 DOI: 10.1007/s11596-023-2765-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/19/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE Diabetic nephropathy is one of the most important microvascular complications of diabetes, which mainly refers to glomerular capillary sclerosis. Podocytes are an important part of glomerular capillaries. Previous clinical and basic studies have shown that fibrosis is the main factor of diabetic nephropathy. This study aimed to assess the protective mechanism of glycyrrhizic acid (GA) on glomerular podocytes induced by high glucose as we hypothesized that GA may have antifibrotic and anti-inflammatory effects on podocytes through regulation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)/sucrose nonfermenting AMPK-related kinase (SNARK) signaling pathway. METHODS SNARK siRNA was used to transfect podocytes. Real-time quantitative polymerase chain reaction and immunofluorescence staining assays were used for molecular and pathological analysis. The expression levels of key pathway proteins (including TGF-β1, α-SMA, SITR1, AMPKα, LKB1, PGC-1α, NF-κB, IL-6, and TNF-α) were verified by Western blotting. The expression of inflammatory factors in podocytes was detected by ELISA. RESULTS We demonstrated that GA decreased the expression of podocyte fibrosis signaling pathway-related factors by upregulating the AMPK pathway and its related factors. However, after transfection of podocytes with SNARK siRNA, there was an increased expression of fibrosis-related factors and inflammation-related factors. CONCLUSION GA can protect podocytes and alleviate fibrosis and inflammation induced by high glucose, which is related to the AMPK signaling pathway. Meanwhile, knockdown of SNARK protein can inhibit the AMPK signaling pathway, aggravate fibrosis, and increase inflammation.
Collapse
Affiliation(s)
- Tian-Qi Zhao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Yuan Li
- School of Nursing, Ningxia Medical University, Yinchuan, 750004, China
| | - Miao Zhang
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Meng-Chao Zhao
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Xue Cao
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Shao-Zhang Hou
- School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
5
|
Zhang Y, Weng J, Huan L, Sheng S, Xu F. Mitophagy in atherosclerosis: from mechanism to therapy. Front Immunol 2023; 14:1165507. [PMID: 37261351 PMCID: PMC10228545 DOI: 10.3389/fimmu.2023.1165507] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 06/02/2023] Open
Abstract
Mitophagy is a type of autophagy that can selectively eliminate damaged and depolarized mitochondria to maintain mitochondrial activity and cellular homeostasis. Several pathways have been found to participate in different steps of mitophagy. Mitophagy plays a significant role in the homeostasis and physiological function of vascular endothelial cells, vascular smooth muscle cells, and macrophages, and is involved in the development of atherosclerosis (AS). At present, many medications and natural chemicals have been shown to alter mitophagy and slow the progression of AS. This review serves as an introduction to the field of mitophagy for researchers interested in targeting this pathway as part of a potential AS management strategy.
Collapse
Affiliation(s)
- Yanhong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiajun Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| | - Luyao Huan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Song Sheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University, Beijing, China
- Department of Integrated Traditional and Western Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
Role of Mitophagy in Myocardial Ischemia/Reperfusion Injury and Chinese Medicine Treatment. Chin J Integr Med 2023; 29:81-88. [PMID: 34731432 DOI: 10.1007/s11655-021-3301-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/31/2022]
Abstract
Mitophagy is one of the important targets for the prevention and treatment of myocardial ischemia/reperfusion injury (MIRI). Moderate mitophagy can remove damaged mitochondria, inhibit excessive reactive oxygen species accumulation, and protect mitochondria from damage. However, excessive enhancement of mitophagy greatly reduces adenosine triphosphate production and energy supply for cell survival, and aggravates cell death. How dysfunctional mitochondria are selectively recognized and engulfed is related to the interaction of adaptors on the mitochondrial membrane, which mainly include phosphatase and tensin homolog deleted on chromosome ten (PTEN)-induced kinase 1/Parkin, hypoxia-inducible factor-1 α/Bcl-2 and adenovirus e1b19k Da interacting protein 3, FUN-14 domain containing protein 1 receptor-mediated mitophagy pathway and so on. In this review, the authors briefly summarize the main pathways currently studied on mitophagy and the relationship between mitophagy and MIRI, and incorporate and analyze research data on prevention and treatment of MIRI with Chinese medicine, thereby provide relevant theoretical basis and treatment ideas for clinical prevention of MIRI.
Collapse
|
7
|
Rieder AS, Deniz BF, Netto CA, Wyse ATS. A Review of In Silico Research, SARS-CoV-2, and Neurodegeneration: Focus on Papain-Like Protease. Neurotox Res 2022; 40:1553-1569. [PMID: 35917086 PMCID: PMC9343570 DOI: 10.1007/s12640-022-00542-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 01/18/2023]
Abstract
Since the appearance of SARS-CoV-2 and the COVID-19 pandemic, the search for new approaches to treat this disease took place in the scientific community. The in silico approach has gained importance at this moment, once the methodologies used in this kind of study allow for the identification of specific protein-ligand interactions, which may serve as a filter step for molecules that can act as specific inhibitors. In addition, it is a low-cost and high-speed technology. Molecular docking has been widely used to find potential viral protein inhibitors for structural and non-structural proteins of the SARS-CoV-2, aiming to block the infection and the virus multiplication. The papain-like protease (PLpro) participates in the proteolytic processing of SARS-CoV-2 and composes one of the main targets studied for pharmacological intervention by in silico methodologies. Based on that, we performed a systematic review about PLpro inhibitors from the perspective of in silico research, including possible therapeutic molecules in relation to this viral protein. The neurological problems triggered by COVID-19 were also briefly discussed, especially relative to the similarities of neuroinflammation present in Alzheimer's disease. In this context, we focused on two molecules, curcumin and glycyrrhizinic acid, given their PLpro inhibitory actions and neuroprotective properties and potential therapeutic effects on COVID-19.
Collapse
Affiliation(s)
- Alessandra S Rieder
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Bruna F Deniz
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos Alexandre Netto
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Neurometabolic Diseases, Wyse's Lab, Department of Biochemistry, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
8
|
Zhao F, Satyanarayana G, Zhang Z, Zhao J, Ma XL, Wang Y. Endothelial Autophagy in Coronary Microvascular Dysfunction and Cardiovascular Disease. Cells 2022; 11:2081. [PMID: 35805165 PMCID: PMC9265562 DOI: 10.3390/cells11132081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Coronary microvascular dysfunction (CMD) refers to a subset of structural and/or functional disorders of coronary microcirculation that lead to impaired coronary blood flow and eventually myocardial ischemia. Amid the growing knowledge of the pathophysiological mechanisms and the development of advanced tools for assessment, CMD has emerged as a prevalent cause of a broad spectrum of cardiovascular diseases (CVDs), including obstructive and nonobstructive coronary artery disease, diabetic cardiomyopathy, and heart failure with preserved ejection fraction. Of note, the endothelium exerts vital functions in regulating coronary microvascular and cardiac function. Importantly, insufficient or uncontrolled activation of endothelial autophagy facilitates the pathogenesis of CMD in diverse CVDs. Here, we review the progress in understanding the pathophysiological mechanisms of autophagy in coronary endothelial cells and discuss their potential role in CMD and CVDs.
Collapse
Affiliation(s)
- Fujie Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | | | - Zheng Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; (F.Z.); (Z.Z.); (J.Z.); (X.-L.M.)
| |
Collapse
|
9
|
Glycyrrhizin Attenuates Hypoxic-Ischemic Brain Damage by Inhibiting Ferroptosis and Neuroinflammation in Neonatal Rats via the HMGB1/GPX4 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8438528. [PMID: 35432719 PMCID: PMC9010207 DOI: 10.1155/2022/8438528] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/20/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
With unknown etiology and limited treatment options, neonatal hypoxic-ischemic brain damage (HIBD) remains a major cause of mortality in newborns. Ferroptosis, a recently discovered type of cell death triggered by lipid peroxidation, is closely associated with HIBD. High-mobility group box 1 (HMGB1), a molecule associated with inflammation damage, can induce neuronal death in HIBD. However, it remains unknown whether HMGB1 contributes to neuronal ferroptosis in patients with HIBD. Herein, glycyrrhizin (GL), an HMGB1 inhibitor, was used to investigate the relationship between ferroptosis and HMGB1. RAS-selective lethal 3(RSL3), a ferroptosis agonist, was administered to further confirm the changes in the signaling pathway between HMGB1 and ferroptosis. Western blot analysis revealed that GL markedly suppressed the expression of HMGB1 and increased the level of GPX4 in the context of HIBD. We observed changes in neuronal ultrastructure via transmission electron microscopy to further confirm the occurrence of ferroptosis. Real-time PCR indicated that GL inhibited the expression of ferroptosis-related genes and inflammatory factors. Immunofluorescence and immunohistochemistry staining confirmed GL inhibition of neuronal damage and ferroptosis in HIBD associated with GPX4 and ROS. GL not only inhibited ferroptosis induced by RSL3 and oxygen-glucose deprivation in vitro but also inhibited ferroptosis induced by HIBD in vivo. More importantly, GL may improve oxidative stress imbalance and mitochondrial damage, alleviate the downstream production of inflammatory factors, and ultimately reduce ferroptosis and damage to cortical neurons following HIBD via the HMGB1/GPX4 pathway. In conclusion, we showed for the first time that GL could suppress the occurrence of neuronal ferroptosis and reduce neuronal loss in HIBD via the HMGB1/GPX4 pathway. These findings highlight the potential of HMGB1 signaling antagonists to treat neuronal damage by suppressing ferroptosis, provide new and unique insights into GL as a neuroprotective agent, and suggest new prevention and treatment strategies for HIBD.
Collapse
|
10
|
Gaikwad S, Puangmalai N, Bittar A, Montalbano M, Garcia S, McAllen S, Bhatt N, Sonawane M, Sengupta U, Kayed R. Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer's disease and frontotemporal dementia. Cell Rep 2021; 36:109419. [PMID: 34289368 PMCID: PMC8341760 DOI: 10.1016/j.celrep.2021.109419] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Aging, pathological tau oligomers (TauO), and chronic inflammation in the brain play a central role in tauopathies, including Alzheimer's disease (AD) and frontotemporal dementia (FTD). However, the underlying mechanism of TauO-induced aging-related neuroinflammation remains unclear. Here, we show that TauO-associated astrocytes display a senescence-like phenotype in the brains of patients with AD and FTD. TauO exposure triggers astrocyte senescence through high mobility group box 1 (HMGB1) release and inflammatory senescence-associated secretory phenotype (SASP), which mediates paracrine senescence in adjacent cells. HMGB1 release inhibition using ethyl pyruvate (EP) and glycyrrhizic acid (GA) prevents TauO-induced senescence through inhibition of p38-mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB)-the essential signaling pathways for SASP development. Despite the developed tauopathy in 12-month-old hTau mice, EP+GA treatment significantly decreases TauO and senescent cell loads in the brain, reduces neuroinflammation, and thus ameliorates cognitive functions. Collectively, TauO-induced HMGB1 release promotes cellular senescence and neuropathology, which could represent an important common pathomechanism in tauopathies including AD and FTD.
Collapse
Affiliation(s)
- Sagar Gaikwad
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nicha Puangmalai
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alice Bittar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephanie Garcia
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Salome McAllen
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nemil Bhatt
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Minal Sonawane
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Urmi Sengupta
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Departments of Neurology, Neuroscience, and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
11
|
Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Ahmadian E, Ardalan M, Eftekhari A. Targeting Mitochondrial Biogenesis with Polyphenol Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4946711. [PMID: 34336094 PMCID: PMC8289611 DOI: 10.1155/2021/4946711] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Appropriate mitochondrial physiology is an essential for health and survival. Cells have developed unique mechanisms to adapt to stress circumstances and changes in metabolic demands, by meditating mitochondrial function and number. In this context, sufficient mitochondrial biogenesis is necessary for efficient cell function and haemostasis, which is dependent on the regulation of ATP generation and maintenance of mitochondrial DNA (mtDNA). These procedures play a primary role in the processes of inflammation, aging, cancer, metabolic diseases, and neurodegeneration. Polyphenols have been considered as the main components of plants, fruits, and natural extracts with proven therapeutic effects during the time. These components regulate the intracellular pathways of mitochondrial biogenesis. Therefore, the current review is aimed at representing an updated review which determines the effects of different natural polyphenol compounds from various plant kingdoms on modulating signaling pathways of mitochondrial biogenesis that could be a promising alternative for the treatment of several disorders.
Collapse
Affiliation(s)
- Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Mutlu Dilsiz Aytemir
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Sıhhiye, Ankara, Turkey
- İzmir Katip Çelebi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 35620, Çiğli, İzmir, Turkey
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
12
|
Wang Z, Yang L. Chinese herbal medicine: Fighting SARS-CoV-2 infection on all fronts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113869. [PMID: 33485973 PMCID: PMC7825841 DOI: 10.1016/j.jep.2021.113869] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 05/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), a highly pathogenic virus that has spread rapidly across the entire world. There is a critical need to develop safe and effective drugs, especially broad-spectrum antiviral and organ protection agents in order to treat and prevent this dangerous disease. It is possible that Chinese herbal medicine may play an essential role in the treatment of patients with SARS-CoV-2 infection. AIM OF THE REVIEW We aim to review the use of Chinese herbal medicine in the treatment of COVID-19 both in vitro and in clinical practice. Our goal was to provide a better understanding of the potential therapeutic effects of Chinese herbal medicine and to establish a "Chinese protocol" for the treatment of COVID-19. MATERIALS AND METHODS We systematically reviewed published research relating to traditional Chinese herbal medicines and the treatment of SARS-CoV-2 from inception to the 6th January 2021 by screening a range of digital databases (Web of Science, bioRxiv, medRxiv, China National Knowledge Infrastructure, X-MOL, Wanfang Data, Google Scholar, PubMed, Elsevier, and other resources) and public platforms relating to the management of clinical trials. We included the active ingredients of Chinese herbal medicines, monomer preparations, crude extracts, and formulas for the treatment of COVID-19. RESULTS In mainland China, a range of Chinese herbal medicines have been recognized as very promising anti-SARS-CoV-2 agents, including active ingredients (quercetagetin, osajin, tetrandrine, proscillaridin A, and dihydromyricetin), monomer preparations (xiyanping injection, matrine-sodium chloride injection, diammonium glycyrrhizinate enteric-coated capsules, and sodium aescinate injection), crude extracts (Scutellariae Radix extract and garlic essential oil), and formulas (Qingfei Paidu decoction, Lianhuaqingwen capsules, and Pudilan Xiaoyan oral liquid). All these agents have potential activity against SARS-CoV-2 and have attracted significant attention due to their activities both in vitro and in clinical practice. CONCLUSIONS As a key component of the COVID-19 treatment regimen, Chinese herbal medicines have played an irreplaceable role in the treatment of SARS-CoV-2 infection. The "Chinese protocol" has already demonstrated clear clinical importance. The use of Chinese herbal medicines that are capable of inhibiting SARS-Cov-2 infection may help to address this immediate unmet clinical need and may be attractive to other countries that are also seeking new options for effective COVID-19 treatment. Our analyses suggest that countries outside of China should also consider protocols involving Chinese herbal medicines combat this fast-spreading viral infection.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China.
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, 273165, PR China.
| |
Collapse
|
13
|
Effectiveness of Hepatoprotectors in the Practice of a Family Doctor. Fam Med 2021. [DOI: 10.30841/2307-5112.1.2021.231939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hepatoprotectors – drugs that form the basis of pathogenetic treatment of various liver diseases. They help restore impaired hepatocyte function, increase the resistance of liver cells to the effects of pathological factors, enhance the detoxification function of hepatocytes, have antioxidant properties. There is no generally accepted classification of hepatoprotectors today, they are divided into several groups depending on the origin: plant, animal, synthetic origin, products containing essential phospholipids, amino acids, vitamins, and other groups.
One of the well-known hepatoprotectors of plant origin is glycyrrhizin – the main active ingredient of licorice root. Licorice root (Glycyrrhiza glabra) is a drug used in medicine since ancient times, as evidenced by historical data from China, Japan, India, Greece, and Europe. Licorice root is widely used today in medicine and the food industry. Glycyrrhizin – potassium and calcium salt of glycyrrhizinic acid, has a wide range of properties. It is used mainly for the treatment of chronic liver disease. In non-alcoholic fatty liver disease, the use of glycyrrhizin helps reduce steatosis, inflammation in the liver has an antifibrotic effect. Studies on the use of glycyrrhizinic acid in hepatocellular carcinoma are actively conducted, as its antitumor properties are known. It is included in the treatment of chronic viral hepatitis. In vitro studies have shown the antiviral activity of glycyrrhizin against HIV-1, SARS-associated virus, respiratory syncytial virus, arboviruses, and its potential for coronavirus control is being discussed. Possibilities of application of glycyrrhizin and cardiovascular diseases are studied. In this article, we present a review of current literature data on glycerol, its properties, and applications in liver disease, other diseases, and our own clinical observations.
Collapse
|
14
|
Okovity SV, Raikhelson KL, Volnukhin AV, Kudlai DA. Hepatoprotective properties of glycyrrhizic acid. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2020:96-108. [DOI: 10.31146/1682-8658-ecg-184-12-96-108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The review is devoted to the problem of treatment of non-alcoholic fatty liver disease, which is the most common pathology of the hepato-biliary system worldwide and is characterized by an increasing frequency, including of more severe forms. A wide range of pathogenetic relationships of non-alcoholic fatty liver disease with diseases of other organ systems, primarily with diseases of the cardiovascular system, type 2 diabetes mellitus, chronic kidney disease and diseases of the biliary tract, is presented. The main mechanisms of comorbidity are insulin resistance, oxidative stress, inflammation, disorders of carbohydrate and fat metabolism. An approach to the therapy of this disease based on the concept of comorbidity has been substantiated. As a rational therapeutic choice, a molecule of glycyrrhizic acid is presented, which has pleiotropic effects, including anti-inflammatory, antioxidant, antifibrotic and immunomodulatory effects. The evidence base for glycyrrhizic acid is formed by a large array of clinical trials, including randomized placebo-controlled trials conducted both in Russia and abroad, in infectious and non-infectious liver diseases, including non-alcoholic fatty liver disease. Attention is focused on non-alcoholic fatty liver disease with intrahepatic cholestasis associated with a more severe course and high rates of disease progression. A theoretical justification for the use of a combination of glycyrrhizic acid and ursodeoxycholic acid in such patients is presented. The reason for this is the potential synergy of the two molecules, based on the induction of CYP3A4, and associated with the effect on inflammation, as a factor in the development of intrahepatic cholestasis and cholestasis itself.
Collapse
Affiliation(s)
- S. V. Okovity
- Saint Petersburg State Chemical Pharmaceutical University
| | | | | | - D. A. Kudlai
- I. M. Sechenov First Moscow state medical University
| |
Collapse
|