1
|
Zhang H, Dong M, Xu H, Li H, Zheng A, Sun G, Jin W. Recombinant Lactococcus lactis Expressing Human LL-37 Prevents Deaths from Viral Infections in Piglets and Chicken. Probiotics Antimicrob Proteins 2024; 16:2150-2160. [PMID: 37743432 DOI: 10.1007/s12602-023-10155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Novel antibiotic substitutes are increasingly in demand in the animal husbandry industry. An oral recombinant Lactococcus lactis (L. lactis) expressing human LL-37 (oral LL-37) was developed and its safety and antiviral effectiveness in vivo was tested. In addition to impairing liposome integrity, LL-37 polypeptide from recombinant L. lactis could prevent the host cell infection by a variety of viruses, including recombinant SARS, SARS-CoV-2, Ebola virus, and vesicular stomatitis virus G. Subchronic toxicity studies performed on Sprague-Dawley rats showed that no cumulative toxicity was found during short-term intervention. Oral LL-37 treatment after the onset of fever could reduce mortality in piglets infected with porcine reproductive and respiratory syndrome virus. Moreover, body weight gain of piglets receiving treatment was progressively restored, and nucleic acid positive rebound was not undetected after discontinuation. Oral LL-37 consistently increased the lifespan of chickens infected with Newcastle viruses. These findings suggested a potential use of recombinantly modified microorganisms in veterinary medicine.
Collapse
Affiliation(s)
- Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huihui Xu
- Jilin Yuanheyuan Bioengineering Co., Ltd. Changchun, Jilin Province, 130000, China
| | - Hongyue Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Barbhuiya PA, Sen S, Pathak MP. Ameliorative role of bioactive phytoconstituents targeting obesity associated NAFLD by modulation of inflammation and lipogenesis pathways: a comprehensive review. PHYTOCHEMISTRY REVIEWS 2024; 23:969-996. [DOI: 10.1007/s11101-023-09912-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2025]
|
3
|
Genchi VA, Palma G, Sorice GP, D'Oria R, Caccioppoli C, Marrano N, Biondi G, Caruso I, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Pharmacological modulation of adaptive thermogenesis: new clues for obesity management? J Endocrinol Invest 2023; 46:2213-2236. [PMID: 37378828 PMCID: PMC10558388 DOI: 10.1007/s40618-023-02125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Adaptive thermogenesis represents the main mechanism through which the body generates heat in response to external stimuli, a phenomenon that includes shivering and non-shivering thermogenesis. The non-shivering thermogenesis is mainly exploited by adipose tissue characterized by a brown aspect, which specializes in energy dissipation. A decreased amount of brown adipose tissue has been observed in ageing and chronic illnesses such as obesity, a worldwide health problem characterized by dysfunctional adipose tissue expansion and associated cardiometabolic complications. In the last decades, the discovery of a trans-differentiation mechanism ("browning") within white adipose tissue depots, leading to the generation of brown-like cells, allowed to explore new natural and synthetic compounds able to favour this process and thus enhance thermogenesis with the aim of counteracting obesity. Based on recent findings, brown adipose tissue-activating agents could represent another option in addition to appetite inhibitors and inhibitors of nutrient absorption for obesity treatment. PURPOSE This review investigates the main molecules involved in the physiological (e.g. incretin hormones) and pharmacological (e.g. β3-adrenergic receptors agonists, thyroid receptor agonists, farnesoid X receptor agonists, glucagon-like peptide-1, and glucagon receptor agonists) modulation of adaptive thermogenesis and the signalling mechanisms involved.
Collapse
Affiliation(s)
- V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Palma
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G P Sorice
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - R D'Oria
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - C Caccioppoli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - N Marrano
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - G Biondi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - I Caruso
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
4
|
Schmid A, Karrasch T, Schäffler A. The emerging role of bile acids in white adipose tissue. Trends Endocrinol Metab 2023; 34:718-734. [PMID: 37648561 DOI: 10.1016/j.tem.2023.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
The effects of bile acids (BAs) on liver, enteroendocrine function, small intestine, and brown adipose tissue have been described extensively. Outside the liver, BAs in the peripheral circulation system represent a specific but underappreciated physiological compartment. We discuss how systemic BAs can be regarded as specific steroidal hormones that act on white adipocytes, and suggest the name 'bilokines' ('bile hormones') for the specific FXR/TGR5 receptor interaction in adipocytes. Some BAs and their agonists regulate adipocyte differentiation, lipid accumulation, hypoxia, autophagy, adipokine and cytokine secretion, insulin signaling, and glucose uptake. BA signaling could provide a new therapeutic avenue for adipoflammation and metaflammation in visceral obesity, the causal mechanisms underlying insulin resistance and type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Andreas Schmid
- Basic Research Laboratory for Molecular Endocrinology, Adipocyte Biology, and Biochemistry, University of Giessen, D 35392 Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III - Endocrinology, Diabetology, and Metabolism, University of Giessen, D 35392 Giessen, Germany.
| |
Collapse
|
5
|
Tehrani SS, Goodarzi G, Panahi G, Zamani-Garmsiri F, Meshkani R. The combination of metformin with morin alleviates hepatic steatosis via modulating hepatic lipid metabolism, hepatic inflammation, brown adipose tissue thermogenesis, and white adipose tissue browning in high-fat diet-fed mice. Life Sci 2023; 323:121706. [PMID: 37075944 DOI: 10.1016/j.lfs.2023.121706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
AIM The valuable effects of metformin (MET) and morin (MOR) in the improvement of NAFLD have been proposed, nevertheless, their combination impacts were not investigated so far. We determined the therapeutic effects of combined MET and MOR treatment in high-fat diet (HFD)-induced Non-alcoholic fatty liver disease (NAFLD) mice. METHODS C57BL/6 mice were fed on an HFD for 15 weeks. Animals were allotted into various groups and supplemented with MET (230 mg/kg), MOR (100 mg/kg), and MET + MOR (230 mg/kg + 100 mg/kg). KEY FINDINGS MET in combination with MOR reduced body and liver weight in HFD-fed mice. A significant decrease in fasting blood glucose and improvement in glucose tolerance was observed in HFD mice treated with MET + MOR. Supplementation with MET + MOR led to a decline in hepatic triglyceride levels and this impact was associated with diminished expression of fatty-acid synthase (FAS) and elevated expression of carnitine palmitoyl transferase 1 (CPT1) and phospho-Acetyl-CoA Carboxylase (p-ACC). Moreover, MET combined with MOR alleviates hepatic inflammation through the polarization of macrophages to the M2 phenotype, decreasing the infiltration of macrophages and lowering the protein level of NF-kB. MET and MOR in combination reduce the size and weight of epididymal white adipose tissue (eWAT), and subcutaneous WAT (sWAT), whereas improves cold tolerance, BAT activity, and mitochondrial biogenesis. Combination therapy results in stimulating brown-like adipocyte (beige) formation in the sWAT of HFD mice. SIGNIFICANCE These results suggest that the combination of MET and MOR has a protective effect on hepatic steatosis, which may use as a candidate therapeutic for the improvement of NAFLD.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Kong M, Peng Y, Qiu L. Oligochitosan-based nanovesicles for nonalcoholic fatty liver disease treatment via the FXR/miR-34a/SIRT1 regulatory loop. Acta Biomater 2023; 164:435-446. [PMID: 37040811 DOI: 10.1016/j.actbio.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently a common chronic liver disease worldwide. By now, however, there isn't any FDA-approved specific drug for NAFLD treatment. It has been noticed that farnesoid X receptor (FXR), miR-34a and Sirtuin1 (SIRT1) is related to the occurrence and development of NAFLD. A oligochitosan-derivated nanovesicle (UBC) with esterase responsive degradability was designed to co-encapsulate FXR agonist (obeticholic acid, OCA) and miR-34a antagomir (anta-miR-34a) into the hydrophobic membrane and the center aqueous lumen of nanovesicles, respectively, by dialysis method. The action of UBC/OCA/anta-miR-34a loop on the regulation of lipid deposition via nanovesicles was evaluated on high-fat HepG2 cells and HFD-induced mice. The obtained dual drug-loaded nanovesicles UBC/OCA/anta-miR-34a could enhance the cellular uptake and intracellular release of OCA and anta-miR-34a, leading to the reduced lipid deposition in high-fat HepG2 cells. In NAFLD mice models, UBC/OCA/anta-miR-34a achieved the best curative effect on the recovery of body weight and hepatic function. Meanwhile, in vitro and vivo experiments validated that UBC/OCA/anta-miR-34a effectively activated the expression level of SIRT1 by enhancing the FXR/miR-34a/SIRT1 regulatory loop. This study provides a promising strategy for constructing oligochitosan-derivated nanovesicles to co-deliver OCA and anta-miR-34a for NAFLD treatment. STATEMENT OF SIGNIFICANCE: This study proposed a strategy to construct oligochitosan-derivated nanovesicles to co-deliver obeticholic acid and miR-34a antagomir for NAFLD treatment. Based on the FXR/miR-34a/SIRT1 action loop, this nanovesicle effectively exerted a synergetic effect of OCA and anta-miR-34a to significantly regulate lipid deposition and recover liver function in NAFLD mice.
Collapse
Affiliation(s)
- Mengjie Kong
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yan Peng
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liyan Qiu
- Ministry of Educational (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
7
|
Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol 2023; 21:236-247. [PMID: 36253479 DOI: 10.1038/s41579-022-00805-x] [Citation(s) in RCA: 356] [Impact Index Per Article: 178.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/08/2022]
Abstract
Despite decades of bile acid research, diverse biological roles for bile acids have been discovered recently due to developments in understanding the human microbiota. As additional bacterial enzymes are characterized, and the tools used for identifying new bile acids become increasingly more sensitive, the repertoire of bile acids metabolized and/or synthesized by bacteria continues to grow. Additionally, bile acids impact microbiome community structure and function. In this Review, we highlight how the bile acid pool is manipulated by the gut microbiota, how it is dependent on the metabolic capacity of the bacterial community and how external factors, such as antibiotics and diet, shape bile acid composition. It is increasingly important to understand how bile acid signalling networks are affected in distinct organs where the bile acid composition differs, and how these networks impact infectious, metabolic and neoplastic diseases. These advances have enabled the development of therapeutics that target imbalances in microbiota-associated bile acid profiles.
Collapse
Affiliation(s)
- Stephanie L Collins
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Public Health Sciences, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Penn State Health Liver Center, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Andrew D Patterson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
- Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, USA.
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
8
|
Harb E, Kheder O, Poopalasingam G, Rashid R, Srinivasan A, Izzi-Engbeaya C. Brown adipose tissue and regulation of human body weight. Diabetes Metab Res Rev 2023; 39:e3594. [PMID: 36398906 PMCID: PMC10077912 DOI: 10.1002/dmrr.3594] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/07/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Approximately 30% of the global population is affected by obesity. Traditional non-surgical measures for weight loss have limited efficacy and tolerability. Therefore, there is a need for novel, effective therapies. Brown adipose tissue (BAT) has been implicated in physiological energy expenditure, indicating that it could be targeted to achieve weight loss in humans. The use of 18 F-fluorodeoxyglucose (18 F-FDG) positron emission tomography-computed tomography-(PET-CT) imaging has enabled the discovery of functionally active BAT in the supraclavicular, subclavian, and thoracic spine regions of human adults. This review aims to discuss the reasons behind the renewed interest in BAT, assess whether it is metabolically important in humans, and evaluate its feasibility as a therapeutic target for treating obesity. SOURCES OF MATERIAL PubMed Central, Europe PMC, Medline. FINDINGS In vivo studies have shown that BAT activity is regulated by thyroid hormones and the sympathetic nervous system. Furthermore, BAT uniquely contains uncoupling protein 1 (UCP1) that is largely responsible for non-shivering thermogenesis. Cold exposure can increase BAT recruitment through the browning of white adipose tissue (WAT); however, this technique has practical limitations that may preclude its use. Currently available medicines for humans, such as the β3-adrenergic receptor agonist mirabegron or the farnesoid X receptor agonist obeticholic acid, have generated excitement, although adverse effects are a concern. Capsinoids represent a tolerable alternative, which require further investigation. CONCLUSIONS The use of currently available BAT-activating agents alone is unlikely to achieve significant weight loss in humans. A combination of BAT activation with physical exercise and modern, successful dietary strategies represents a more realistic option.
Collapse
Affiliation(s)
- Elissa Harb
- Imperial College School of Medicine, Imperial College London, London, UK
| | - Omar Kheder
- Imperial College School of Medicine, Imperial College London, London, UK
| | | | - Razi Rashid
- Imperial College School of Medicine, Imperial College London, London, UK
| | - Akash Srinivasan
- Imperial College School of Medicine, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Imperial College School of Medicine, Imperial College London, London, UK
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| |
Collapse
|
9
|
Zhang H, Dong M, Yuan S, Jin W. Oral glucagon-like peptide 1 analogue ameliorates glucose intolerance in db/db mice. Biotechnol Lett 2022; 44:1149-1162. [PMID: 36006576 DOI: 10.1007/s10529-022-03288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES We constructed a recombinant oral GLP-1 analogue in Lactococcus lactis (L. lactis) and evaluated its physiological functions. RESULTS In silico docking suggested the alanine at position 8 substituted with serine (A8SGLP-1) reduced binding of DPP4, which translated to reduced cleavage by DPP4 with minimal changes in stability. This was further confirmed by an in vitro enzymatic assay which showed that A8SGLP-1 significantly increased half-life upon DPP4 treatment. In addition, recombinant L. lactis (LL-A8SGLP-1) demonstrated reduced fat mass with no changes in body weight, significant improvement of random glycemic control and reduced systemic inflammation compared with WT GLP-1 in db/db mice. CONCLUSION LL-A8SGLP-1 adopted in live biotherapeutic products reduce blood glucose in db/db mice without affecting its function.
Collapse
Affiliation(s)
- Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Rd. No. 5, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Rd. No. 5, Beijing, 100101, China
| | - Shouli Yuan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Rd. No. 5, Beijing, 100101, China
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 West Beichen Rd. No. 5, Beijing, 100101, China.
| |
Collapse
|
10
|
Chenodeoxycholic Acid Has Non-Thermogenic, Mitodynamic Anti-Obesity Effects in an In Vitro CRISPR/Cas9 Model of Bile Acid Receptor TGR5 Knockdown. Int J Mol Sci 2021; 22:ijms222111738. [PMID: 34769169 PMCID: PMC8584144 DOI: 10.3390/ijms222111738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 01/14/2023] Open
Abstract
Bile acids (BA) have shown promising effects in animal models of obesity. However, the said effects are thought to rely on a thermogenic effect, which is questionably present in humans. A previous work has shown that the BA chenodeoxycholic acid (CDCA) can revert obesity and accelerate metabolism in animal and cell culture models. Thus, the aim of this study was to understand if this obesity reduction is indeed thermogenically-dependent. A CRISPR/Cas9 model of TGR5 (BA receptor) knockdown in 3T3-L1 adipocytes was developed to diminish thermogenic effects. Various parameters were assessed, including mitochondrial bioenergetics by Seahorse flux analysis, oxidative stress and membrane potential by fluorometry, intermediary metabolism by NMR, protein content assessment by Western Blot, gene expression by qPCR, and confocal microscopy evaluation of mitophagy. CDCA was still capable, for the most part, of reversing the harmful effects of cellular obesity, elevating mitophagy and leading to the reduction of harmed mitochondria within the cells, boosting mitochondrial activity, and thus energy consumption. In summary, CDCA has a non-thermogenic, obesity reducing capacity that hinges on a healthy mitochondrial population, explaining at least some of these effects and opening avenues of human treatment for metabolic diseases.
Collapse
|