1
|
Anandan A, Ak MU, Saika S, Shibu MA, Viswanadha VP. Shikonin Ameliorates Rotenone-Induced Neurotoxicity Through Inhibition of Apoptosis via IGF-1R/PI3K/AKT Pathway in a Parkinson's Disease-Associated SH-SY5Y Cell Model. Mol Neurobiol 2025:10.1007/s12035-025-04810-y. [PMID: 40056341 DOI: 10.1007/s12035-025-04810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Parkinson's disease (PD) is the second most common multifactorial neurodegenerative disorder caused by several genetics and environmental factors. Rotenone a pesticide with mitotoxicity causes cytosolic proteopathy resulting in PD-associated apoptosis and modulations in cell survival pathways. Shikonin, a naphthoquinone compound extracted from the Lithospermum erythrorhizon herb, was investigated in this study for its neuroprotective properties and underlying molecular mechanisms against rotenone-induced cellular apoptosis and survival in SH-SY5Y cells. The molecular docking analysis of apoptotic proteins against Shikonin revealed that they showed a binding affinity with BAD. Shikonin effectively countered the loss of cell viability induced by rotenone, rescued annexin-positive apoptotic cells, and dose-dependently suppressed the generation of reactive oxygen species. Pre-treatment with Shikonin prevented the morphological aberrations like shrining of neurites leading to decreased LDH leakage and NO release caused due to the rotenone treatment. The α-synucleinopathy is a prime hallmark of PD, Shikonin mitigated the rotenone-induced aggregation of α-synuclein as seen from confocal imaging. Furthermore, Shikonin treatment reversed the rotenone-induced excessive production of reactive oxygen species, activation of caspases (-8 and -3), and mitochondrial dysfunction, as evidenced by the restoration of mitochondrial membrane potential and cellular ATP levels. Western blot and qPCR analysis revealed that Shikonin heightened the IGF1R/PI3K/AKT signaling associated with cell survival while concurrently downregulating rotenone-induced intrinsic apoptotic pathways. These findings underscore Shikonin as a promising candidate to prevent the onset of pesticide-induced Parkinson's disease and potentially other oxidative stress-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Aparna Anandan
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Mohammed Unais Ak
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Surovi Saika
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Marthandam Asokan Shibu
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Vijaya Padma Viswanadha
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
2
|
Shilnikova K, Kang KA, Piao MJ, Herath HMUL, Fernando PDSM, Boo HJ, Yoon SP, Hyun JW. Shikonin protects skin cells against oxidative stress and cellular dysfunction induced by fine particulate matter. Cell Biol Int 2024; 48:1836-1848. [PMID: 39169545 DOI: 10.1002/cbin.12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/02/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Shikonin, an herbal naphthoquinone, demonstrates a broad spectrum of pharmacological properties. Owing to increasingly adverse environmental conditions, human skin is vulnerable to harmful influences from dust particles. This study explored the antioxidant capabilities of shikonin and its ability to protect human keratinocytes from oxidative stress induced by fine particulate matter (PM2.5). We found that shikonin at a concentration of 3 µM was nontoxic to human keratinocytes and effectively scavenged reactive oxygen species (ROS) while increasing the production of reduced glutathione (GSH). Furthermore, shikonin enhanced GSH level by upregulating glutamate-cysteine ligase catalytic subunit and glutathione synthetase mediated by nuclear factor-erythroid 2-related factor. Shikonin reduced ROS levels induced by PM2.5, leading to recovering PM2.5-impaired cellular biomolecules and cell viability. Shikonin restored the GSH level in PM2.5-exposed keratinocytes via enhancing the expression of GSH-synthesizing enzymes. Notably, buthionine sulphoximine, an inhibitor of GSH synthesis, diminished effect of shikonin against PM2.5-induced cell damage, confirming the role of GSH in shikonin-induced cytoprotection. Collectively, these findings indicated that shikonin could provide substantial cytoprotection against the adverse effects of PM2.5 through direct ROS scavenging and modulation of cellular antioxidant system.
Collapse
Affiliation(s)
- Kristina Shilnikova
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
| | - Kyoung Ah Kang
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Mei Jing Piao
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Herath Mudiyanselage Udari Lakmini Herath
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Pincha Devage Sameera Madushan Fernando
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Sang Pil Yoon
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, Jeju National University, Jeju, South Korea
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| |
Collapse
|
3
|
Upadhyaya B, Moreau R, Majumder K. Antioxidant and Anti-Inflammatory Capacities of Three Dry Bean Varieties after Cooking and In Vitro Gastrointestinal Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18445-18454. [PMID: 39110605 DOI: 10.1021/acs.jafc.4c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The present study delved into the chemical composition, antioxidant, and anti-inflammatory properties of three dry edible beans: Black (BL), Great Northern (GN), and Pinto (PN). The beans were soaked, cooked, and subjected to in vitro gastrointestinal (GI) digestion. BL bean exhibited significantly higher gastric (42%) and intestinal (8%) digestion rates. Comparative assessment of soluble GI-digested fractions (<3 kDa) revealed that the GN bean exhibited the highest abundance of dipeptides (P < 0.05). The BL bean fraction displayed a 4-fold increase in tripeptides (P < 0.05). Both BL and PN bean fractions are high in essential free amino acids, flavonols, and derivatives of hydroxybenzoic acid when compared to the GN bean. All the beans exhibited the ability to mitigate TNF-α-induced pro-inflammatory signaling; however, the BL bean fraction was the most effective at lowering AAPH-induced oxidative stress in HT-29 cells, followed by the GN bean (P < 0.05). In contrast, a low antioxidant effect was observed with PN beans.
Collapse
Affiliation(s)
- Bikram Upadhyaya
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68588-6205, United States
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
| | - Regis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska, Lincoln, Nebraska 68588-6205, United States
| |
Collapse
|
4
|
Xiong C, Li B, Song R, Ma Z, Huber SA, Liu W. IFITM3 mediates inflammation induced myocardial injury through JAK2/STAT3 signaling pathway. Mol Immunol 2024; 167:1-15. [PMID: 38306778 DOI: 10.1016/j.molimm.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/11/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Myocarditis is an inflammation of the heart muscle often associated with viral infections and can lead to dilated cardiomyopathy. Interferon-induced transmembrane protein 3 (IFITM3) is a small endosomal membrane protein with anti-viral activity against multiple viruses and is also implicated in non-infectious diseases such as cancer and Alzheimer's Disease. Since the IFITM3 proteins are expressed both in T cells and in cardiomyocytes, it is reasonable to hypothesize that these molecules could affect myocarditis either through their effect on the autoimmune response or through direct modulation of cardiomyocyte damage. The aim of this study was to investigate the role of IFITM3 in experimental autoimmune myocarditis (EAM)-mediated myocardial injury. Immunization of rats with cardiac myosin results in substantial cardiac inflammation and is associated with increased expression of IFITM3 after 21 days. In vivo IFITM3 shRNA knockdown using the lentivirus transfection method reduced cardiac injury while restoring IFITM3 expression reversed the protective effect of IFITM3 RNA interference. To determine the direct impact of IFITM3, the rat ventricular cell line, H9c2, was treated with palmitic acid which causes apoptosis in these cells. Suppressing IFITM3 expression protects H9c2 cells while overexpressing IFITM3 enhances cell injury. JAK inhibitors reduced IFITM3-mediated myocardial cell injury. In conclusion, IFITM3 may mediate myocardial injury in EAM rats and palmitic acid-induced damage to H9c2 cells through the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Chunming Xiong
- Department of Cardiology, the fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang 150001 China
| | - Bohan Li
- Harbin Medical University, Harbin, Heilongjiang 150001 China
| | - Renxing Song
- Department of Cardiology, the fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang 150001 China
| | - Zizhe Ma
- Department of Cardiology, the fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang 150001 China
| | - Sally A Huber
- Department of Pathology and Laboratory Medicine, University of Vermont, Colchester, VT 05446 United States
| | - Wei Liu
- Department of Cardiology, the fourth affiliated hospital of Harbin Medical University, Harbin, Heilongjiang 150001 China; Harbin Medical University, Harbin, Heilongjiang 150001 China; Department of Geriatric Cardiovascular Division, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080 China.
| |
Collapse
|
5
|
Zhu F, Song Z, Zhang S, Zhang X, Zhu D. The Renoprotective Effect of Shikonin in a Rat Model of Diabetic Kidney Disease. Transplant Proc 2023; 55:1731-1738. [PMID: 37391330 DOI: 10.1016/j.transproceed.2023.04.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND In diabetes mellitus, diabetic nephropathy (DN) is a typical complication and pivotal cause of chronic kidney disease. The DN disease burden is among the highest in the world and is associated with high morbidity, mortality, and disease burden. Safe and effective medications are urgently needed for the treatment of DN. Interest has been increasing in Shikonin, extracted from the naphthoquinone plant, particularly in determining its renal protective effect. METHODS In this study, we explored Shikonin's effects and potential mechanisms on a streptozotocin (STZ)-induced DN experimental model. An STZ-induced rat diabetic model was established, and the rats were treated with different doses of Shikonin (10/50 mg/kg) for 4 weeks. Blood, urine, and renal tissue samples were collected after the last administration. Renal tissues were examined to detect each group's physiologic, biochemical, histopathologic, and molecular changes. RESULTS The results showed that Shikonin administration could significantly alleviate the STZ-induced elevation of blood urea nitrogen, serum creatinine, urinary protein content, and renal pathologic injury. Furthermore, Shikonin significantly decreased oxidative stress, inflammation, and Toll-like receptor 4/myeloid differentiation primary response 88/nuclear factor-κB expression levels in DN kidney tissues. Shikonin showed a dose-dependent effect, with the best outcome at 50 mg/kg. CONCLUSION Shikonin could effectively alleviate DN-related nephropathy damage and reveal the underlying pharmacologic mechanism. Based on the results, a Shikonin combination can be used in clinical treatment.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Endocrinology, Affiliated Hospital of Jinggangshan University, Ji'an City, China
| | - Zhengyi Song
- Department of General Surgery, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Shuang Zhang
- Department of Neurology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Xueqin Zhang
- Department of Endocrinology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Dan Zhu
- Department of Endocrinology, Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China.
| |
Collapse
|
6
|
Antioxidant, Anti-Inflammatory and Attenuating Intracellular Reactive Oxygen Species Activities of Nicotiana tabacum var. Virginia Leaf Extract Phytosomes and Shape Memory Gel Formulation. Gels 2023; 9:gels9020078. [PMID: 36826248 PMCID: PMC9956251 DOI: 10.3390/gels9020078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Oxidative stress is one of the major causes of skin aging. In this study, the shape memory gels containing phytosomes were developed as a delivery system for Nicotiana tabacum var. Virginia fresh (VFL) and dry (VDL) leaf extracts. The extracts were loaded in the phytosomes by a solvent displacement method. The physical and chemical characteristics and stability of phytosomes were evaluated by dynamic light scattering and phytochemistry, respectively. The in vitro antioxidant activity and intracellular reactive oxygen species reduction of phytosomes and/or extracts were investigated by the DPPH and ABTS radical scavenging assays, FRAP assay, and DCFH-DA fluorescent probe. The cytotoxicity and anti-inflammatory activity of VDL and VFL phytosomes were studied by an MTT and a nitric oxide assay, respectively. Here, we first reported the total phenolic content in the dry leaf extract of N. tabacum var. Virginia was significantly greater than that of the fresh leaf extract. The HPLC analysis results revealed that VDL and VFL extracts contained 4.94 ± 0.04 and 3.13 ± 0.01 µg/mL of chlorogenic acid and 0.89 ± 0.00 and 0.24 ± 0.00 µg/mL of rutin, respectively. The phytosomes of the VDL and VFL extracts displayed stable size, polydispersity index, zeta potential values, and good chemical stability. VDL and VDL phytosomes showed higher phenolic and flavonoid contents which showed stronger DPPH and ABTS radical scavenging effects and reduced the intracellular ROS. The results suggested that the phenolic compounds are the main factor in their antioxidant activity. Both VDL and VFL phytosomes inhibited nitric oxide production induced by LPS, suggesting the anti-inflammatory activity of the phytosomes. The shape memory gel containing VDL and VFL phytosomes had good physical stability in terms of pH and viscosity. The VDL and VFL phytosomes dispersed in the shape memory gels can be considered as a promising therapeutic delivery system for protecting the skin from oxidation and reactive oxygen species.
Collapse
|
7
|
Wang J, Chen M, Wang S, Chu X, Ji H. Identification of Phytogenic Compounds with Antioxidant Action That Protect Porcine Intestinal Epithelial Cells from Hydrogen Peroxide Induced Oxidative Damage. Antioxidants (Basel) 2022; 11:2134. [PMID: 36358507 PMCID: PMC9687067 DOI: 10.3390/antiox11112134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2024] Open
Abstract
Oxidative stress contributes to intestinal dysfunction. Plant extracts can have antioxidant action; however, the specific phytogenic active ingredients and their potential mechanisms are not well known. We screened 845 phytogenic compounds using a porcine epithelial cell (IPEC-J2) oxidative stress model to identify oxidative-stress-alleviating compounds. Calycosin and deoxyshikonin were evaluated for their ability to alleviate H2O2-induced oxidative stress by measuring their effects on malondialdehyde (MDA) accumulation, reactive oxygen species (ROS) generation, apoptosis, mitochondrial membrane potential (MMP), and antioxidant defense. Nrf2 pathway activation and the effect of Nrf2 knockdown on the antioxidative effects of hit compounds were investigated. Calycosin protected IPEC-J2 cells against H2O2-induced oxidative damage, likely by improving the cellular redox state and upregulating antioxidant defense via the Nrf2-Keap1 pathway. Deoxyshikonin alleviated the H2O2-induced decrease in cell viability, ROS production, and MMP reduction, but had no significant effect on MDA accumulation and apoptosis. Nrf2 knockdown did not weaken the effect of deoxyshikonin in improving cell viability, but it weakened its effect in suppressing ROS production. These results indicate that the mechanisms of action of natural compounds differ. The newly identified phytogenic compounds can be developed as novel antioxidant agents to alleviate intestinal oxidative stress in animals.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Sixin Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xu Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Haifeng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|