1
|
Hao Z, Guan W, Wei W, Li M, Xiao Z, Sun Q, Pan Y, Xin W. Unlocking the therapeutic potential of tumor-derived EVs in ischemia-reperfusion: a breakthrough perspective from glioma and stroke. J Neuroinflammation 2025; 22:84. [PMID: 40089793 PMCID: PMC11909855 DOI: 10.1186/s12974-025-03405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Clinical studies have revealed a bidirectional relationship between glioma and ischemic stroke, with evidence of spatial overlap between the two conditions. This connection arises from significant similarities in their pathological processes, including the regulation of cellular metabolism, inflammation, coagulation, hypoxia, angiogenesis, and neural repair, all of which involve common biological factors. A significant shared feature of both diseases is the crucial role of extracellular vesicles (EVs) in mediating intercellular communication. Extracellular vesicles, with their characteristic bilayer structure, encapsulate proteins, lipids, and nucleic acids, shielding them from enzymatic degradation by ribonucleases, deoxyribonucleases, and proteases. This structural protection facilitates long-distance intercellular communication in multicellular organisms. In gliomas, EVs are pivotal in intracranial signaling and shaping the tumor microenvironment. Importantly, the cargos carried by glioma-derived EVs closely align with the biological factors involved in ischemic stroke, underscoring the substantial impact of glioma on stroke pathology, particularly through the crucial roles of EVs as key mediators in this interaction. This review explores the pathological interplay between glioma and ischemic stroke, addressing clinical manifestations and pathophysiological processes across the stages of hypoxia, stroke onset, progression, and recovery, with a particular focus on the crucial role of EVs and their cargos in these interactions.
Collapse
Affiliation(s)
- Zhongnan Hao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Department of Neurology, The Affiliated Hospital of Qingdao University, Medical School of Qingdao University, Qingdao, 266100, Shandong Province, China
| | - Wenxin Guan
- Queen Mary School, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi, China
| | - Wei Wei
- Department of Neurology, the Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu, 610031, Sichuan, PR China
| | - Meihua Li
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhipeng Xiao
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qinjian Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Yongli Pan
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China.
| | - Wenqiang Xin
- Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Hsu CY, Jamal A, Kamal MA, Ahmad F, Bokov DO, Mustafa YF, Saud A, Kulsum SN, Jawad MA, Gabble BC. Pathological roles of lncRNA HOTAIR in liver cancer: An updated review. Gene 2025; 940:149180. [PMID: 39708931 DOI: 10.1016/j.gene.2024.149180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Liver cancer ranks as the sixth most prevalent form of cancer and stands as the fourth leading cause of cancer-related fatalities on a global scale. The two primary types of liver cancer are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). While ICC originates from the bile ducts, HCC develops from hepatocytes, which are the primary functional cells of the liver. In cases where liver cancer is detected in its early stages, it can be effectively treated through locoregional interventions such as surgical resection, Radiofrequency Ablation, Transarterial chemoembolization, or liver transplantation. However, HCC is typically diagnosed at advanced stages, rendering these treatment options ineffective due to the unresectable nature of the tumor. LncRNAs, a novel class of RNA molecules and epigenetic regulators, have emerged as key players in the development and advancement of different types of tumors. They exert their influence by regulating the expression of downstream genes in cancer-related signaling pathways, thereby promoting the proliferation, migration, and invasion of tumor cells. Additionally, these transcripts have the ability to modify the activity and expression of tumor suppressors and oncogenes, further contributing to tumorigenesis. Recently, growing numbers of experiments have demonstrated the elevated expression of HOX antisense intergenic RNA (HOTAIR), a spliced and poly-adenylated lncRNA, in liver cancers and its association with cancer patient's prognosis and overall survival, as well as tumor cells' growth, metastasis, and resistance to therapies. This updated review will summarize molecular pathways by which lncRNA HOTAIR promotes liver cancer development, and highlight its diagnostic and therapeutic potential, though.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow 109240, Russian Federation
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | | | - Syeda Nazia Kulsum
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | | | - Baneen C Gabble
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Esmaeili A, Yazdanpanah N, Rezaei N. LncRNAs Orchestrating Neuroinflammation: A Comprehensive Review. Cell Mol Neurobiol 2025; 45:21. [PMID: 40056236 DOI: 10.1007/s10571-025-01538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 02/17/2025] [Indexed: 03/10/2025]
Abstract
CNS diseases account for a major part of the comorbidity and mortality of the human population; moreover, neuroinflammation has become an indication for different CNS diseases, for instance, Parkinson's and Alzheimer's disease. Microglia and astrocytes are the two main glial cells that can be found in the CNS. Each of these plays an important role in mediating immune responses like inflammation. There are many studies suggesting the role of LncRNAs in mediating neuroinflammation. Indeed, LncRNAs orchestrate neuroinflammation through various mechanisms, namely miRNA sponge, and transcriptional activation/inhibition. In addition, LncRNAs regulate different downstream pathways like NF-κB, and PI3K/AKT. In this study, we gathered the existing studies regarding the mechanisms of action of LncRNAs in the pathogenesis of different CNS diseases like neurodegenerative diseases and traumatic injuries through regulating neuroinflammation. We aim to elaborate on the regulatory roles of LncRNAs in neuroinflammation and bring a more profound understanding of the etiology of CNS diseases in terms of neuroinflammation.
Collapse
Affiliation(s)
- Arash Esmaeili
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Saadh MJ, Menon SV, Verma R, Siva Prasad GV, Allela OQB, Mahdi MS, Ahmad N, Husseen B. LncRNA CRNDE and HOTAIR: Molecules behind the scenes in the progression of gastrointestinal cancers through regulating microRNAs. Pathol Res Pract 2024; 266:155778. [PMID: 39721094 DOI: 10.1016/j.prp.2024.155778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Gastrointestinal (GI) cancers, such as gastric cancer, hepatocellular carcinoma, colorectal cancer, and esophageal cancer, pose a significant medical and economic burden globally, accounting for the majority of new cancer cases and deaths each year. A lack of knowledge about the molecular mechanisms of GI cancers is reflected in the low efficacy of treatment for individuals with late stage and recurring illness. Understanding the molecular pathways that promote the growth of GI cancers may open doors for their therapy. Numerous long non-coding RNAs (lncRNAs) that are produced differently in normal and malignant tissues have been discovered by genome-wide techniques. The role of lncRNAs in the diagnosis, proliferation, metastasis, and drug resistance of different GI cancers has been investigated in recent research. LncRNAs may affect transcription, epigenetic modifications, protein/RNA stability, translation, and post-translational modifications via their interactions with DNA, RNAs, and proteins. Also, by functioning as competing endogenous RNAs (ceRNAs), they control the synthesis of certain microRNAs (miRNAs), which in turn modify the downstream target molecules of these miRNAs. Based on recent studies, lncRNAs in particular, CRNDE and HOTAIR, sponge different miRNAs and their downstream genes, which in turn regulate GI cancers development, including cell proliferation, invasion, migration, and chemoresistance. In this comprehensive review, we present an overview of the biological roles of CRNDE and HOTAIR and their associated mechanisms, miRNAs/mRNA pathways, in various GI cancers, encompassing colorectal cancer, hepatocellular carcinoma, esophageal cancer, and gastric cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Sahibzada Ajit Singh Nagar, Jhanjeri, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | | | | | - Nabeel Ahmad
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India; Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand- 831001, India.
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
5
|
Mehrab Mohseni M, Zamani H, Momeni M, Shirvani-Farsani Z. An update on the molecular mechanisms of ZFAS1 as a prognostic, diagnostic, or therapeutic biomarker in cancers. Discov Oncol 2024; 15:219. [PMID: 38856786 PMCID: PMC11164845 DOI: 10.1007/s12672-024-01078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
Zinc finger antisense 1 (ZFAS1), a newly discovered long noncoding RNA, is expressed in various tissues and organs and has been introduced an oncogenic gene in human malignancies. In various cancers, ZFAS1 regulates apoptosis, cell proliferation, the cell cycle, migration, translation, rRNA processing, and spliceosomal snRNP assembly; targets signaling cascades; and interacts with transcription factors via binding to key proteins and miRNAs, with conflicting findings on its effect on these processes. ZFAS1 is elevated in different types of cancer, like colorectal, colon, osteosarcoma, and gastric cancer. Considering the ZFAS1 expression pattern, it also has the potential to be a diagnostic or prognostic marker in various cancers. The current review discusses the mode of action of ZFAS1 in various human cancers and its regulation function related to chemoresistance comprehensively, as well as the potential role of ZFAS1 as an effective and noninvasive cancer-specific biomarker in tumor diagnosis, prognosis, and treatment. We expected that the current review could fill the current scientific gaps in the ZFAS1-related cancer causative mechanisms and improve available biomarkers.
Collapse
Affiliation(s)
- Mahdieh Mehrab Mohseni
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran
| | - Hedyeh Zamani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran
| | - Mina Momeni
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, IR, Iran.
| |
Collapse
|
6
|
Ahmad F, Sudesh R, Ahmed AT, Arumugam M, Mathkor DM, Haque S. The multifaceted functions of long non-coding RNA HOTAIR in neuropathologies and its potential as a prognostic marker and therapeutic biotarget. Expert Rev Mol Med 2024; 26:e11. [PMID: 38682637 PMCID: PMC11140545 DOI: 10.1017/erm.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) are progressively being perceived as prominent molecular agents controlling multiple aspects of neuronal (patho)physiology. Amongst these is the HOX transcript antisense intergenic RNA, often abbreviated as HOTAIR. HOTAIR epigenetically regulates its target genes via its interaction with two different chromatin-modifying agents; histone methyltransferase polycomb-repressive complex 2 and histone demethylase lysine-specific demethylase 1. Parenthetically, HOTAIR elicits trans-acting sponging function against multiple micro-RNA species. Oncological research studies have confirmed the pathogenic functions of HOTAIR in multiple cancer types, such as gliomas and proposed it as a pro-oncological lncRNA. In fact, its expression has been suggested to be a predictor of the severity/grade of gliomas, and as a prognostic biomarker. Moreover, a propound influence of HOTAIR in other aspects of brain heath and disease states is just beginning to be unravelled. The objective of this review is to recapitulate all the relevant data pertaining to the regulatory roles of HOTAIR in neuronal (patho)physiology. To this end, we discuss the pathogenic mechanisms of HOTAIR in multiple neuronal diseases, such as neurodegeneration, traumatic brain injury and neuropsychiatric disorders. Finally, we also summarize the results from the studies incriminating HOTAIR in the pathogeneses of gliomas and other brain cancers. Implications of HOTAIR serving as a suitable therapeutic target in neuropathologies are also discussed.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Atheeq Toufeeq Ahmed
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
7
|
Ahmad F, Sudesh R, Ahmed AT, Haque S. Roles of HOTAIR Long Non-coding RNA in Gliomas and Other CNS Disorders. Cell Mol Neurobiol 2024; 44:23. [PMID: 38366205 PMCID: PMC10873238 DOI: 10.1007/s10571-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
HOX transcript antisense intergenic RNA (HOTAIR) is a long non-coding RNA (lncRNA) which is increasingly being perceived as a tremendous molecular mediator of brain pathophysiology at multiple levels. Epigenetic regulation of target gene expression carried out by HOTAIR is thorough modulation of chromatin modifiers; histone methyltransferase polycomb repressive complex 2 (PRC2) and histone demethylase lysine-specific demethylase 1 (LSD1). Incidentally, HOTAIR was the first lncRNA shown to elicit sponging of specific microRNA (miRNA or miR) species in a trans-acting manner. It has been extensively studied in various cancers, including gliomas and is regarded as a prominent pro-tumorigenic and pro-oncogenic lncRNA. Indeed, the expression of HOTAIR may serve as glioma grade predictor and prognostic biomarker. The objective of this timely review is not only to outline the multifaceted pathogenic roles of HOTAIR in the development and pathophysiology of gliomas and brain cancers, but also to delineate the research findings implicating it as a critical regulator of overall brain pathophysiology. While the major focus is on neuro-oncology, wherein HOTAIR represents a particularly potent underlying pathogenic player and a suitable therapeutic target, mechanisms underlying the regulatory actions of HOTAIR in neurodegeneration, traumatic, hypoxic and ischemic brain injuries, and neuropsychiatric disorders are also presented.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - A Toufeeq Ahmed
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102 2801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, 13306, United Arab Emirates
| |
Collapse
|
8
|
Li Y, Shu Y, Yu K, Ni R, Chu L. Analysis and Regulatory Mechanisms of Platelet-Related Genes in Patients with Ischemic Stroke. Cell Mol Neurobiol 2024; 44:15. [PMID: 38175286 PMCID: PMC11397819 DOI: 10.1007/s10571-023-01433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
It was found that ischemic stroke (IS) was associated with abnormal platelet activity and thrombosis. However, the potential significance of platelet-related genes (PRGs) in IS still needs to be more thorough. This study extracted IS-related transcriptome datasets from the Gene Expression Omnibus (GEO) database. The target genes were obtained by intersecting the differentially expressed genes (DEGs), the module genes related to IS, and PRGs, where the key genes of IS were screened by two machine learning algorithms. The key genes-based diagnostic model was constructed. Gene set enrichment analysis (GSEA) and the immune microenvironment analyses were analyzed targeting key genes in IS. The co-expression, TF-mRNA, and competitive endogenous RNAs (ceRNA) regulatory networks were constructed to reveal the potential regulation of key genes. Potential drugs targeting key genes were predicted as well. Totals of eight target genes were obtained and were associated with immune-related functions. Four platelet-related key genes were acquired, which were related to immunity and energy metabolism. The abnormal expressions of DOCK8, GIMAP5, ICOS were determined by the quantitative real-time polymerase chain reaction (qRT-PCR), and the significant correlations among these key genes were identified. Notably, hsa-miR-17-3p, hsa-miR-3158-3p, hsa-miR-423-3p, and hsa-miR-193a-8p could regulate all key genes at the same time. In addition, Caffeine, Carboplatin, and Vopratelimab were the targeted drugs of these key genes. This study identified four platelet-related key genes of IS, which might help to deepen the understanding of the role of platelet-related genes in the molecular mechanism of IS.
Collapse
Affiliation(s)
- Yuan Li
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yuanlu Shu
- Department of Neurology, Guizhou Medical University, Guiyang, 550004, China
| | - Kun Yu
- Department of Neurology, Guizhou Medical University, Guiyang, 550004, China
| | - Ruihan Ni
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Lan Chu
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
- Department of Neurology, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
9
|
Zhou Y, Wu Q. Spotlight on HOX cluster‑embedded antisense lncRNAs in cardiovascular diseases (Review). Int J Mol Med 2023; 52:114. [PMID: 37830159 PMCID: PMC10599348 DOI: 10.3892/ijmm.2023.5317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
Atherosclerosis is a complex and chronic inflammatory disease driven by multiple pathophysiological processes that are responsible for diverse cardiovascular events. Atherosclerotic cardiovascular disease, despite substantial triumphs in primary and secondary prevention, remains a dominant epidemic that impairs human health. Therefore, deciphering the pathogenesis of atherosclerosis will provide a real‑world translational understanding. Homeobox cluster‑embedded antisense long non‑coding RNAs (HOX‑lncRNAs), a nascent class of lncRNA molecules with versatile roles in cancer, can also orchestrate various cell functions in cardiovascular disorders and have thus captured the attention of many researchers. Subsequently, numerous studies have demonstrated the role of HOX‑lncRNAs as potential modulators of atherosclerosis. Nevertheless, given that the understanding of HOX‑lncRNAs in atherosclerosis is only just emerging, ongoing research must be initiated to thoroughly pinpoint such causal roles. The present review aimed to highlight the important contributions of HOX‑lncRNAs to atherosclerosis and other pivotal biological processes related to cardiovascular disease. The review concludes with a discussion of the limitations, outlook, challenges and possible solutions associated with HOX‑lncRNAs in atherosclerosis. Looking forward, this may lead to extraordinary breakthroughs in revealing the molecular underpinnings of HOX‑lncRNAs and may offer a promising yet challenging landscape for robust therapeutic strategies for atherosclerosis and/or associated cardiovascular disorders.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Cardiology, Guizhou Provincial People's Hospital
- Medical College, Guizhou University, Guiyang, Guizhou 550002, P.R. China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital
| |
Collapse
|
10
|
Lin Y, Su H, Zou B, Huang M. EZH2 Promotes Corneal Endothelial Cell Apoptosis by Mediating H3K27me3 and Inhibiting HO-1 Transcription. Curr Eye Res 2023; 48:1122-1132. [PMID: 37800319 DOI: 10.1080/02713683.2023.2257401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE This paper aims to explore the molecular mechanism of Enhancer of Zeste Homolog 2 (EZH2)-mediated H3K27me3 in human corneal endothelial cells (HCEC) apoptosis by inhibiting Heme oxygenase-1 (HO-1) transcription to provide a potential target for the treatment of corneal apoptosis. METHODS HCECs were cultured in vitro and transfected with si-EZH2, pcDNA3.1-EZH2, pcDNA3.1-HO-1, GSK-J4 (an effective H3K27me3 demethylase inhibitor), and corresponding controls. Western Blot assay was used to detect the levels of EZH2, HO-1, H3K27me3, and apoptosis-related proteins (Bcl-2, Bax, and Cleaved-caspase-3) in HCECs; CCK-8 assay was conducted to detect cell viability and flow cytometry to analyze the apoptosis. HO-1 mRNA levels were detected by RT-qPCR and changes in H3K27me3 levels on the HO-1 promoter were detected by chromatin immunoprecipitation. RESULTS HCECs transfected with si-EZH2 showed significantly lower EZH2 mRNA and protein levels, higher HCEC viability, lower apoptosis rates, higher antiapoptotic protein Bcl-2 expression, lower proapoptotic protein (Bax and Cleaved-caspase-3) levels, and significantly higher HO-1 expression. HCECs transfected with pcDNA3.1-EZH2 showed the opposite results. EZH2 repressed HO-1 transcription by mediating H3K27me3. H3K27me27 was enriched in the HO-1 promoter and overexpression of EZH2 increased H3K27me27 levels. Promotion of H3K27me3 partially reversed the mitigating effect of si-EZH2 on HCEC apoptosis. Overexpression of HO-1 partially reversed the apoptosis-promoting effects of EZH2 and H3K27me3 on HCECs. CONCLUSIONS EZH2 promotes HCE cell apoptosis by mediating H3K27me3 to inhibit HO-1 transcription.
Collapse
Affiliation(s)
- Ying Lin
- Department of Ophthalmology, Liuzhou Workers' Hospital, Liuzhou, Guangxi, China
| | - Huanjun Su
- Department of Ophthalmology, Liuzhou Workers' Hospital, Liuzhou, Guangxi, China
| | - Baoyi Zou
- Department of Optometry, Liuzhou Workers' Hospital, Liuzhou, Guangxi, China
| | - Minli Huang
- Department of Optometry, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
11
|
Anchesi I, Schepici G, Mazzon E. LncRNAs and CircRNAs as Strategies against Pathological Conditions Caused by a Hypoxic/Anoxic State. Biomolecules 2023; 13:1622. [PMID: 38002304 PMCID: PMC10669691 DOI: 10.3390/biom13111622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Brain damage can be induced by oxygen deprivation. It is known that hypoxic or anoxic conditions can lead to changes in the expression levels of non-coding RNAs (ncRNAs), which, in turn, can be related to Central Nervous System (CNS) injuries. Therefore, it could be useful to investigate the involvement of non-coding RNAs (ncRNAs), as well as the underlying mechanisms which are able to modulate them in brain damage induced by hypoxic or anoxic conditions. In this review, we focused on recent research that associates these conditions with long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). The results of this review demonstrate that the expression of both lncRNAs and circRNAs can be influenced by oxygen deprivation conditions and so they can contribute to inducing damage or providing neuroprotection by affecting specific molecular pathways. Furthermore, several experimental studies have shown that ncRNA activity can be regulated by compounds, thus also modifying their transcriptomic profile and their effects on CNS damages induced by hypoxic/anoxic events.
Collapse
Affiliation(s)
| | | | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Strada Statale 113, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
12
|
Sun L, Li X, Luo H, Guo H, Zhang J, Chen Z, Lin F, Zhao G. EZH2 can be used as a therapeutic agent for inhibiting endothelial dysfunction. Biochem Pharmacol 2023; 213:115594. [PMID: 37207700 DOI: 10.1016/j.bcp.2023.115594] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/21/2023]
Abstract
Enhancer of zeste homolog 2 (EZH2) is a catalytic subunit of polycomb repressor complex 2 and plays important roles in endothelial cell homeostasis. EZH2 functionally methylates lysine 27 of histone H3 and represses gene expression through chromatin compaction. EZH2 mediates the effects of environmental stimuli by regulating endothelial functions, such as angiogenesis, endothelial barrier integrity, inflammatory signaling, and endothelial mesenchymal transition. Numerous studies have been conducted to determine the significance of EZH2 in endothelial function. The aim of this review is to provide a concise summary of the roles EZH2 plays in endothelial function and elucidate its therapeutic potential in cardiovascular diseases.
Collapse
Affiliation(s)
- Li Sun
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Xuefang Li
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Hui Luo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Huige Guo
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Jie Zhang
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Zhigang Chen
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China
| | - Fei Lin
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| | - Guoan Zhao
- Cardiovascular Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453100, China; Key Laboratory of Cardiovascular Injury and Repair Medicine of Henan, Weihui, China.
| |
Collapse
|
13
|
Ren ZL, Kang XD, Zheng YX, Shi HF, Chen CA, Shi YY, Wang QG, Cheng FF, Wang XQ, Li CX. Emerging effects of non-coding RNA in vascular endothelial cells during strokes. Vascul Pharmacol 2023; 150:107169. [PMID: 37059212 DOI: 10.1016/j.vph.2023.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 03/24/2023] [Indexed: 04/16/2023]
Abstract
Vascular and neurological damage are the typical outcomes of ischemic strokes. Vascular endothelial cells (VECs), a substantial component of the blood-brain barrier (BBB), are necessary for normal cerebrovascular physiology. During an ischemic stroke (IS), changes in the brain endothelium can lead to a BBB rupture, inflammation, and vasogenic brain edema, and VECs are essential for neurotrophic effects and angiogenesis. Non-coding RNAs (nc-RNAs) are endogenous molecules, and brain ischemia quickly changes the expression patterns of several non-coding RNA types, such as microRNA (miRNA/miR), long non-coding RNA (lncRNA), and circular RNA (circRNA). Furthermore, vascular endothelium-associated nc-RNAs are important mediators in the maintenance of healthy cerebrovascular function. In order to better understand how VECs are regulated epigenetically during an IS, in this review, we attempted to assemble the molecular functions of nc-RNAs that are linked with VECs during an IS.
Collapse
Affiliation(s)
- Zi-Lin Ren
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang-Dong Kang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu-Xiao Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han-Fen Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Cong-Ai Chen
- Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China
| | - Yu-Yu Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qing-Guo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xue-Qian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chang-Xiang Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
14
|
Wang J, Hua M, Li H, Xu D, Li F, Xu F. Circ_0007706 downregulation ameliorates neonatal hypoxic ischemic encephalopathy via regulating the miR-579-3p/TRAF6 axis. Brain Res Bull 2023; 194:90-99. [PMID: 36720318 DOI: 10.1016/j.brainresbull.2023.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/14/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Neonatal hypoxic ischemic encephalopathy (HIE) is a main factor of neonatal death and permanent neurologic deficit. This study sought to investigate the functional role of hsa_circ_0007706 (circ_0007706) in modulating neonatal HIE. METHODS In vitro HIE cell model was established in hBMVECs under the condition of oxygen‑glucose deprivation/reperfusion (OGD/R) treatment. qRT-PCR analysis was utilized for detecting the level of circ_0007706, microRNA-579-3p (miR-579-3p) and TNF receptor-associated factor 6 (TRAF6). RNase R treatment and Oligo (dT) 18 primers were employed to verify the features of circ_0007706, and nucleocytoplasmic separation was conducted for determining the location of circ_0007706. CCK-8 assay, EdU assay, and flow cytometry were carried out to measure cell proliferation and apoptosis, respectively. The protein expression of Bax, Bcl-2 and TRAF6 was detected using western blot. Meanwhile, the levels of the pro-inflammatory factors were determined via ELISA. SOD activity and MDA level were assessed via the respective kits. Besides, dual-luciferase reporter assay and RNA pull-down were used to identify the association between miR-579-3p and circ_0007706 or TRAF6. RESULTS Circ_0007706 was elevated in HIE newborns and OGD/R cell model. Knockdown of circ_0007706 greatly alleviated OGD/R-induced injury, inflammatory response and oxidative stress. We found that miR-579-3p was a direct target of circ_0007706, and miR-579-3p inhibitor could reverse the impact of circ_0007706 knockdown on OGD/R-caused cell damage in hBMVECs. In addition, miR-579-3p directly interacted with TRAF6, and the protective effects of miR-579-3p on OGD/R-induced injury in hBMVECs were harbored by TRAF6 overexpression. Our data indicated that circ_0007706 knockdown could downregulate the expression of TRAF6 by sponging miR-579-3p in OGD/R-treated hBMVECs. CONCLUSION This study demonstrated that circ_0007706 knockdown assuaged HIE-induced injury by decreasing TRAF6 expression via targeting miR-579-3p.
Collapse
Affiliation(s)
- Jinguang Wang
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Minmin Hua
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Huixin Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Dan Xu
- Department of Neurology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Fangfang Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Falin Xu
- Department of Neonatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
15
|
Morris-Blanco KC, Chokkalla AK, Arruri V, Jeong S, Probelsky SM, Vemuganti R. Epigenetic mechanisms and potential therapeutic targets in stroke. J Cereb Blood Flow Metab 2022; 42:2000-2016. [PMID: 35854641 PMCID: PMC9580166 DOI: 10.1177/0271678x221116192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Accumulating evidence indicates a central role for epigenetic modifications in the progression of stroke pathology. These epigenetic mechanisms are involved in complex and dynamic processes that modulate post-stroke gene expression, cellular injury response, motor function, and cognitive ability. Despite decades of research, stroke continues to be classified as a leading cause of death and disability worldwide with limited clinical interventions. Thus, technological advances in the field of epigenetics may provide innovative targets to develop new stroke therapies. This review presents the evidence on the impact of epigenomic readers, writers, and erasers in both ischemic and hemorrhagic stroke pathophysiology. We specifically explore the role of DNA methylation, DNA hydroxymethylation, histone modifications, and epigenomic regulation by long non-coding RNAs in modulating gene expression and functional outcome after stroke. Furthermore, we highlight promising pharmacological approaches and biomarkers in relation to epigenetics for translational therapeutic applications.
Collapse
Affiliation(s)
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Soomin Jeong
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Samantha M Probelsky
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| |
Collapse
|
16
|
Xiao R, Wang Q, Peng J, Yu Z, Zhang J, Xia Y. BMSC-Derived Exosomal Egr2 Ameliorates Ischemic Stroke by Directly Upregulating SIRT6 to Suppress Notch Signaling. Mol Neurobiol 2022; 60:1-17. [PMID: 36208355 DOI: 10.1007/s12035-022-03037-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Exosomes generated by BMSCs contribute to functional recovery in ischemic stroke. However, the regulatory mechanism is largely unknown. Exosomes were isolated from BMSCs. Tube formation, MTT, TUNEL, and flow cytometry assays were applied to examine cell angiogenesis, viability, and apoptosis. Protein and DNA interaction was evaluated by ChIP and luciferase assays. LDH release into the culture medium was examined. Infarction area was evaluated by TTC staining. Immunofluorescence staining was applied to examine CD31 expression. A mouse model of MCAO/R was established. BMSC-derived exosomes attenuated neuronal cell damage and facilitated angiogenesis of brain endothelial cells in response to OGD/R, but these effects were abolished by the knockdown of Egr2. Egr2 directly bound to the promoter of SIRT6 to promote its expression. The incompetency of Egr2-silencing exosomes was reversed by overexpression of SIRT6. Furthermore, SIRT6 inhibited Notch signaling via suppressing Notch1. Overexpression of SIRT6 and inhibition of Notch signaling improved cell injury and angiogenesis in OGD/R-treated cells. BMSC-derived exosomal Egr2 ameliorated MCAO/R-induced brain damage via upregulating SIRT6 to suppress Notch signaling in mice. BMSC-derived exosomes ameliorate OGD/R-induced injury and MCAO/R-caused cerebral damage in mice by delivering Egr2 to promote SIRT6 expression and subsequently suppress Notch signaling. Our study provides a potential exosome-based therapy for ischemic stroke.
Collapse
Affiliation(s)
- Rongjun Xiao
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Qingsong Wang
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Jun Peng
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Zhengtao Yu
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Jikun Zhang
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China
| | - Ying Xia
- Department of Neurosurgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, Hainan Province, People's Republic of China.
| |
Collapse
|
17
|
Wang J, Zhao J, Hu P, Gao L, Tian S, He Z. Long Non-coding RNA HOTAIR in Central Nervous System Disorders: New Insights in Pathogenesis, Diagnosis, and Therapeutic Potential. Front Mol Neurosci 2022; 15:949095. [PMID: 35813070 PMCID: PMC9259972 DOI: 10.3389/fnmol.2022.949095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
Central nervous system (CNS) disorders, such as ischemic stroke, neurodegenerative diseases, multiple sclerosis, traumatic brain injury, and corresponding neuropathological changes, often lead to death or long-term disability. Long non-coding RNA (lncRNA) is a class of non-coding RNA with a transcription length over 200 nt and transcriptional regulation. lncRNA is extensively involved in physiological and pathological processes through epigenetic, transcription, and post-transcriptional regulation. Further, dysregulated lncRNA is closely related to the occurrence and development of human diseases, including CNS disorders. HOX Transcript antisense RNA (HOTAIR) is the first discovered lncRNA with trans-transcriptional regulation. Recent studies have shown that HOTAIR may participate in the regulation of the occurrence and development of CNS disorders. In addition, HOTAIR has the potential to become a new biomarker for the diagnosis and prognosis assessment of CNS disorders and even provide a new therapeutic target for CNS disorders. Here, we reviewed the research results of HOTAIR in CNS disorders to provide new insights into the pathogenesis, diagnostic value, and therapeutic target potential of HOTAIR in human CNS disorders.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiuhan Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pan Hu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shen Tian
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenwei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhenwei He,
| |
Collapse
|
18
|
Ma W, Zhu K, Yin L, Yang J, Zhang J, Wu H, Liu K, Li C, Liu W, Guo J, Li L. Effects of ischemic postconditioning and long non-coding RNAs in ischemic stroke. Bioengineered 2022; 13:14799-14814. [PMID: 36420646 PMCID: PMC9704383 DOI: 10.1080/21655979.2022.2108266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stroke is a main cause of disability and death among adults in China, and acute ischemic stroke accounts for 80% of cases. The key to ischemic stroke treatment is to recanalize the blocked blood vessels. However, more than 90% of patients cannot receive effective treatment within an appropriate time, and delayed recanalization of blood vessels causes reperfusion injury. Recent research has revealed that ischemic postconditioning has a neuroprotective effect on the brain, but the mechanism has not been fully clarified. Long non-coding RNAs (lncRNAs) have previously been associated with ischemic reperfusion injury in ischemic stroke. LncRNAs regulate important cellular and molecular events through a variety of mechanisms, but a comprehensive analysis of potential lncRNAs involved in the brain protection produced by ischemic postconditioning has not been conducted. In this review, we summarize the common mechanisms of cerebral injury in ischemic stroke and the effect of ischemic postconditioning, and we describe the potential mechanisms of some lncRNAs associated with ischemic stroke.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kewei Zhu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Luwei Yin
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jinwei Yang
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China
| | - Jinfen Zhang
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Hongjie Wu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Kuangpin Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Chunyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Wei Liu
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jianhui Guo
- Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming, China,Jianhui Guo Second Department of General Surgery, First People’s Hospital of Yunnan Province, Kunming 650034, Yunnan, China
| | - Liyan Li
- Institute of Neuroscience, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China,CONTACT Liyan Li Institute of Neurosicence, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China
| |
Collapse
|
19
|
Landucci E, Pellegrini-Giampietro DE, Facchinetti F. Experimental Models for Testing the Efficacy of Pharmacological Treatments for Neonatal Hypoxic-Ischemic Encephalopathy. Biomedicines 2022; 10:937. [PMID: 35625674 PMCID: PMC9138693 DOI: 10.3390/biomedicines10050937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Representing an important cause of long-term disability, term neonatal hypoxic-ischemic encephalopathy (HIE) urgently needs further research aimed at repurposing existing drug as well as developing new therapeutics. Since various experimental in vitro and in vivo models of HIE have been developed with distinct characteristics, it becomes important to select the appropriate preclinical screening cascade for testing the efficacy of novel pharmacological treatments. As therapeutic hypothermia is already a routine therapy for neonatal encephalopathy, it is essential that hypothermia be administered to the experimental model selected to allow translational testing of novel or repurposed drugs on top of the standard of care. Moreover, a translational approach requires that therapeutic interventions must be initiated after the induction of the insult, and the time window for intervention should be evaluated to translate to real world clinical practice. Hippocampal organotypic slice cultures, in particular, are an invaluable intermediate between simpler cell lines and in vivo models, as they largely maintain structural complexity of the original tissue and can be subjected to transient oxygen-glucose deprivation (OGD) and subsequent reoxygenation to simulate ischemic neuronal injury and reperfusion. Progressing to in vivo models, generally, rodent (mouse and rat) models could offer more flexibility and be more cost-effective for testing the efficacy of pharmacological agents with a dose-response approach. Large animal models, including piglets, sheep, and non-human primates, may be utilized as a third step for more focused and accurate translational studies, including also pharmacokinetic and safety pharmacology assessments. Thus, a preclinical proof of concept of efficacy of an emerging pharmacological treatment should be obtained firstly in vitro, including organotypic models, and, subsequently, in at least two different animal models, also in combination with hypothermia, before initiating clinical trials.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy;
| | | | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy;
| |
Collapse
|