1
|
Park G, Hwang DY, Kim DY, Han JY, Lee E, Hwang H, Park JS, Kim DW, Hong S, Yim SV, Hong HS, Son Y. Identification of CD141 +vasculogenic precursor cells from human bone marrow and their endothelial engagement in the arteriogenesis by co-transplantation with mesenchymal stem cells. Stem Cell Res Ther 2024; 15:388. [PMID: 39482744 PMCID: PMC11526567 DOI: 10.1186/s13287-024-03994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Critical limb ischemia (CLI) is a condition characterized by insufficient blood flow to the lower limbs, resulting in severe ischemia and potentially leading to amputation. This study aims to identify novel vasculogenic precursor cells (VPCs) in human bone marrow and evaluate their efficacy in combination with bone marrow-derived mesenchymal stem cells (BM-MSCs) for the treatment of CLI. METHODS Ex vivo cultured VPCs and BM-MSCs from bone marrow were characterized and their effects on neovascularization and long-term tissue regeneration were tested in a mouse CLI model. RESULTS VPCs, expressing high levels of hepatocyte growth factor and c-MET, were identified from human bone marrow aspirates. These cells exhibited strong vasculogenic capacity in vitro but possessed a cellular phenotype distinct from those of previously reported endothelial precursor cells in circulation or cord blood. They also expressed most surface markers of BM-MSCs and demonstrated multipotent differentiation ability. Screening of 376 surface markers revealed that VPCs uniquely display CD141 (thrombomodulin). CD141+VPCs are present in BM aspirates as a rare population and can be expanded ex vivo with a population doubling time of approximately 20 h, generating an elaborate vascular network even under angiogenic factor-deficient conditions and recruiting BM-MSCs to the network as pericyte-like cells. Intramuscular transplantation of a combination of human CD141+VPCs and BM-MSCs at a ratio of 2:1 resulted in limb salvage, blood flow recovery, and regeneration of large vessels in the femoral artery-removed CLI model, with an efficacy superior to that of singular transplantation. Importantly, large arteries and arterioles in dual cell transplantation expressed human CD31 in the intima and human α-smooth muscle actin in media layer at 4 and 12 weeks, likely indicating their lineage commitment to endothelial cells and vascular smooth muscle, respectively, in vivo. CONCLUSION Dual-cell therapy using BM-derived CD141+ VPCs and BM-MSCs holds potential for further development in clinical trials to treat peripheral artery disease and diabetic ulcers.
Collapse
Affiliation(s)
- Gabee Park
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Dae Yeon Hwang
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Do Young Kim
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
| | - Ji Young Han
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Euiseon Lee
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Hwakyung Hwang
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Jeong Seop Park
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
| | - Dae Wook Kim
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yong In, Korea
| | - Seonmin Hong
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
| | - Sung Vin Yim
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea.
- East-West Medical Research Institute, Kyung Hee University, Seoul, Korea.
| | - Youngsook Son
- R&D Center, Elphis Cell Therapeutics Inc, Yong In, 17095, Korea.
- Department of Genetic Engineering, Graduate School of Biotechnology, Kyung Hee University, Yong In, Korea.
| |
Collapse
|
2
|
Deng JY, Wu XQ, He WJ, Liao X, Tang M, Nie XQ. Targeting DNA methylation and demethylation in diabetic foot ulcers. J Adv Res 2023; 54:119-131. [PMID: 36706989 PMCID: PMC10703625 DOI: 10.1016/j.jare.2023.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Poor wound healing is a significant complication of diabetes, which is commonly caused by neuropathy, trauma, deformities, plantar hypertension and peripheral arterial disease. Diabetic foot ulcers (DFU) are difficult to heal, which makes patients susceptible to infections and can ultimately conduce to limb amputation or even death in severe cases. An increasing number of studies have found that epigenetic alterations are strongly associated with poor wound healing in diabetes. AIM OF REVIEW This work provides significant insights into the development of therapeutics for improving chronic diabetic wound healing, particularly by targeting and regulating DNA methylation and demethylation in DFU. Key scientific concepts of review: DNA methylation and demethylation play an important part in diabetic wound healing, via regulating corresponding signaling pathways in different breeds of cells, including macrophages, vascular endothelial cells and keratinocytes. In this review, we describe the four main phases of wound healing and their abnormality in diabetic patients. Furthermore, we provided an in-depth summary and discussion on how DNA methylation and demethylation regulate diabetic wound healing in different types of cells; and gave a brief summary on recent advances in applying cellular reprogramming techniques for improving diabetic wound healing.
Collapse
Affiliation(s)
- Jun-Yu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Xing-Qian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wen-Jie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Xin Liao
- Affiliated Hospital of Zunyi Medical University, Zunyi 563006, China
| | - Ming Tang
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalized Health at the Translational Research Institute (TRI), Brisbane, QLD 4102, Australia.
| | - Xu-Qiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi 563006, China; Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalized Health at the Translational Research Institute (TRI), Brisbane, QLD 4102, Australia.
| |
Collapse
|
3
|
Zhu Y, Yang H, Han L, Mervin LH, Hosseini-Gerami L, Li P, Wright P, Trapotsi MA, Liu K, Fan TP, Bender A. In silico prediction and biological assessment of novel angiogenesis modulators from traditional Chinese medicine. Front Pharmacol 2023; 14:1116081. [PMID: 36817116 PMCID: PMC9937659 DOI: 10.3389/fphar.2023.1116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Uncontrolled angiogenesis is a common denominator underlying many deadly and debilitating diseases such as myocardial infarction, chronic wounds, cancer, and age-related macular degeneration. As the current range of FDA-approved angiogenesis-based medicines are far from meeting clinical demands, the vast reserve of natural products from traditional Chinese medicine (TCM) offers an alternative source for developing pro-angiogenic or anti-angiogenic modulators. Here, we investigated 100 traditional Chinese medicine-derived individual metabolites which had reported gene expression in MCF7 cell lines in the Gene Expression Omnibus (GSE85871). We extracted literature angiogenic activities for 51 individual metabolites, and subsequently analysed their predicted targets and differentially expressed genes to understand their mechanisms of action. The angiogenesis phenotype was used to generate decision trees for rationalising the poly-pharmacology of known angiogenesis modulators such as ferulic acid and curculigoside and validated by an in vitro endothelial tube formation assay and a zebrafish model of angiogenesis. Moreover, using an in silico model we prospectively examined the angiogenesis-modulating activities of the remaining 49 individual metabolites. In vitro, tetrahydropalmatine and 1 beta-hydroxyalantolactone stimulated, while cinobufotalin and isoalantolactone inhibited endothelial tube formation. In vivo, ginsenosides Rb3 and Rc, 1 beta-hydroxyalantolactone and surprisingly cinobufotalin, restored angiogenesis against PTK787-induced impairment in zebrafish. In the absence of PTK787, deoxycholic acid and ursodeoxycholic acid did not affect angiogenesis. Despite some limitations, these results suggest further refinements of in silico prediction combined with biological assessment will be a valuable platform for accelerating the research and development of natural products from traditional Chinese medicine and understanding their mechanisms of action, and also for other traditional medicines for the prevention and treatment of angiogenic diseases.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Clinical Chinese Pharmacy, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China,Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom,Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Hongbin Yang
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Liwen Han
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China,School of Pharmacy and Pharmaceutical Science, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Lewis H. Mervin
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Layla Hosseini-Gerami
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Peihai Li
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Peter Wright
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Maria-Anna Trapotsi
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Kechun Liu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Tai-Ping Fan, ; Andreas Bender,
| | - Andreas Bender
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom,*Correspondence: Tai-Ping Fan, ; Andreas Bender,
| |
Collapse
|
4
|
Choi JY, Jin X, Kim H, Koh S, Cho HJ, Kim BG. High Mobility Group Box 1 as an Autocrine Chemoattractant for Oligodendrocyte Lineage Cells in White Matter Stroke. Stroke 2023; 54:575-586. [PMID: 36490365 DOI: 10.1161/strokeaha.122.041414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The migration of oligodendrocyte precursor cells (OPC) is a key process of remyelination, which is essential for the treatment of white matter stroke. This study aimed to investigate the role of HMGB1 (high mobility group box 1), a damage-associated molecular pattern released from dying oligodendrocytes, as an autocrine chemoattractant that promotes OPC migration. METHODS The migratory capacity of primary cultured OPCs was measured using the Boyden chamber assay. The downstream pathway of HMGB1-mediated OPC migration was specified by siRNA-induced knockdown or pharmacological blockade of TLR2 (toll-like receptor 2), RAGE (receptor for advanced glycation end product), Src, ERK1/2 (extracellular signal-regulated kinase1/2), and FAK (focal adhesion kinase). Conditioned media were collected from oxygen-glucose deprivation-treated oligodendrocytes, and the impact on OPC migration was assessed. Lesion size and number of intralesional Olig2(+) cells were analyzed in an in vivo model of white matter stroke with N5-(1-iminoethyl)-L-ornithine (L-NIO). RESULTS HMGB1 treatment promoted OPC migration. HMGB1 antagonism reversed such effects to untreated levels. Among the candidates for the downstream signal of HMGB1-mediated migration, the knockdown of TLR2 rather than that of RAGE attenuated the migration-promoting effect of HMGB1. Further specification of the HMGB1-TLR2 axis revealed that the phosphorylation of ERK1/2 and its downstream molecule FAK, rather than of Src, was decreased in TLR2-knockdown OPCs, and pharmacological inhibition of ERK1/2 and FAK led to decreased OPC migration. Oxygen-glucose deprivation-conditioned media promoted OPC migration, suggesting the autocrine chemoattractant function of HMGB1. In vivo, TLR2(-/-)-mice showed lesser intralesional Olig2(+) cells compared to wild-type controls in response to L-NIO induced ischemic injury regardless of HMGB1 administration. CONCLUSIONS HMGB1, through the TLR2-ERK1/2-FAK axis, functions as an autocrine chemoattractant to promote OPC migration, which is an initial and indispensable step in remyelination. Thus, a novel treatment strategy for white matter stroke based on the HMGB1-TLR2 axis in the oligodendrocyte lineage could be feasible.
Collapse
Affiliation(s)
- Jun Young Choi
- Department of Brain science, Ajou University School of Medicine, Republic of Korea (J.Y.C., X.J., H.K., S.K., H.J.C., B.G.K.).,Department of Neurology, Ajou University School of Medicine, Republic of Korea (J.Y.C., S.K., B.G.K.)
| | - Xuelian Jin
- Department of Brain science, Ajou University School of Medicine, Republic of Korea (J.Y.C., X.J., H.K., S.K., H.J.C., B.G.K.).,Neuroscience graduate program, Ajou University Graduate School of Medicine, Republic of Korea (X.J., H.K., S.K.).,Department of Nephrology, Suqian First Hospital, Jiangsu, China (X.J.)
| | - Hanki Kim
- Department of Brain science, Ajou University School of Medicine, Republic of Korea (J.Y.C., X.J., H.K., S.K., H.J.C., B.G.K.).,Neuroscience graduate program, Ajou University Graduate School of Medicine, Republic of Korea (X.J., H.K., S.K.)
| | - Seungyon Koh
- Department of Brain science, Ajou University School of Medicine, Republic of Korea (J.Y.C., X.J., H.K., S.K., H.J.C., B.G.K.).,Department of Neurology, Ajou University School of Medicine, Republic of Korea (J.Y.C., S.K., B.G.K.).,Neuroscience graduate program, Ajou University Graduate School of Medicine, Republic of Korea (X.J., H.K., S.K.)
| | - Hyo Jin Cho
- Department of Brain science, Ajou University School of Medicine, Republic of Korea (J.Y.C., X.J., H.K., S.K., H.J.C., B.G.K.)
| | - Byung Gon Kim
- Department of Brain science, Ajou University School of Medicine, Republic of Korea (J.Y.C., X.J., H.K., S.K., H.J.C., B.G.K.).,Department of Neurology, Ajou University School of Medicine, Republic of Korea (J.Y.C., S.K., B.G.K.)
| |
Collapse
|
5
|
Chen Z, Haus JM, DiPietro LA, Koh TJ, Minshall RD. Neutralization of excessive CCL28 improves wound healing in diabetic mice. Front Pharmacol 2023; 14:1087924. [PMID: 36713846 PMCID: PMC9880283 DOI: 10.3389/fphar.2023.1087924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Introduction: Chronic, non-healing skin wounds such as diabetic foot ulcers (DFUs) are common in patients with type 2 diabetes mellitus (T2DM) and often result in limb amputation and even death. However, mechanisms by which T2DM and inflammation negatively impact skin wound healing remains poorly understood. Here we investigate a mechanism by which an excessive level of chemokine CCL28, through its receptor CCR10, impairs wound healing in patients and mice with T2DM. Methods & Results: Firstly, a higher level of CCL28 was observed in skin and plasma in both patients with T2DM, and in obesity-induced type 2 diabetic db/db mice. Compared with WT mice, adipose tissue from db/db mice released 50% more CCL28, as well as 2- to 3-fold more IL-1β, IL-6, and TNF-α, and less VEGF, as determined by ELISA measurements. Secondly, overexpression of CCL28 with adenovirus (Adv-CCL28) caused elevation of proinflammatory cytokines as well as CCR10 expression and also reduced eNOS expression in the dorsal skin of WT mice as compared with control Adv. Thirdly, topical application of neutralizing anti-CCL28 Ab dose-dependently accelerated wound closure and eNOS expression, and decreased IL-6 level, with an optimal dose of 1 μg/wound. In addition, mRNA levels of eNOS and anti-inflammatory cytokine IL-4 were increased as shown by real-time RT-PCR. The interaction between eNOS and CCR10 was significantly reduced in diabetic mouse wounds following application of the optimal dose of anti-CCL28 Ab, and eNOS expression increased. Finally, enhanced VEGF production and increased subdermal vessel density as indicated by CD31 immunostaining were also observed with anti-CCL28 Ab. Discussion: Taken together, topical application of neutralizing anti-CCL28 Ab improved dorsal skin wound healing by reducing CCR10 activation and inflammation in part by preventing eNOS downregulation, increasing VEGF production, and restoring angiogenesis. These results indicate anti-CCL28 Ab has significant potential as a therapeutic strategy for treatment of chronic non-healing diabetic skin wounds such as DFUs.
Collapse
Affiliation(s)
- Zhenlong Chen
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jacob M. Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
| | - Timothy J. Koh
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
6
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
7
|
Marana MH, Poulsen R, Thormar EA, Clausen CG, Thit A, Mathiessen H, Jaafar R, Korbut R, Hansen AMB, Hansen M, Limborg MT, Syberg K, von Gersdorff Jørgensen L. Plastic nanoparticles cause mild inflammation, disrupt metabolic pathways, change the gut microbiota and affect reproduction in zebrafish: A full generation multi-omics study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127705. [PMID: 34802818 DOI: 10.1016/j.jhazmat.2021.127705] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution has become a major concern on a global scale. The plastic is broken down into minuscule particles, which have an impact on the biosystems, however long-term impacts through an entire generation is largely unknown. Here, we present the first whole generation study exposing fish to a 500 nm polystyrene plastic particle at environmentally relevant concentrations. Short- and long-term adverse effects were investigated in the zebrafish model organism using a holistic multi-omics approach. The particles accumulated in the yolk sac of young larvae and short-term biological impacts included immune-relevant gene regulation related to inflammation and tolerance as well as disruption of metabolic processes, such as the fatty acid and lipid pathways. The long-term effects comprised gene regulations pointing towards skin and/or gill inflammation, dysbiosis of the gut microbiota, a tendency towards decreased condition factor in adult males as well as a lowered reproductive capability. From this study, it can be concluded that exposures to plastic nanoparticles have an impact on population as well as ecosystem level in fish and likely also in other vertebrates.
Collapse
Affiliation(s)
- Moonika Haahr Marana
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rikke Poulsen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Eiríkur Andri Thormar
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Cecilie Grønlund Clausen
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Amalie Thit
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Heidi Mathiessen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rzgar Jaafar
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Rozalia Korbut
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark
| | - Anna Magdalene Brun Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Martin Hansen
- Environmental Metabolomics Lab, Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Morten Tønsberg Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C., Denmark.
| |
Collapse
|
8
|
Hu W, van Steijn L, Li C, Verbeek FJ, Cao L, Merks RMH, Spaink HP. A Novel Function of TLR2 and MyD88 in the Regulation of Leukocyte Cell Migration Behavior During Wounding in Zebrafish Larvae. Front Cell Dev Biol 2021; 9:624571. [PMID: 33659250 PMCID: PMC7917198 DOI: 10.3389/fcell.2021.624571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/22/2021] [Indexed: 01/04/2023] Open
Abstract
Toll-like receptor (TLR) signaling via myeloid differentiation factor 88 protein (MyD88) has been indicated to be involved in the response to wounding. It remains unknown whether the putative role of MyD88 in wounding responses is due to a control of leukocyte cell migration. The aim of this study was to explore in vivo whether TLR2 and MyD88 are involved in modulating neutrophil and macrophage cell migration behavior upon zebrafish larval tail wounding. Live cell imaging of tail-wounded larvae was performed in tlr2 and myd88 mutants and their corresponding wild type siblings. In order to visualize cell migration following tissue damage, we constructed double transgenic lines with fluorescent markers for macrophages and neutrophils in all mutant and sibling zebrafish lines. Three days post fertilization (dpf), tail-wounded larvae were studied using confocal laser scanning microscopy (CLSM) to quantify the number of recruited cells at the wounding area. We found that in both tlr2-/- and myd88-/- groups the recruited neutrophil and macrophage numbers are decreased compared to their wild type sibling controls. Through analyses of neutrophil and macrophage migration patterns, we demonstrated that both tlr2 and myd88 control the migration direction of distant neutrophils upon wounding. Furthermore, in both the tlr2 and the myd88 mutants, macrophages migrated more slowly toward the wound edge. Taken together, our findings show that tlr2 and myd88 are involved in responses to tail wounding by regulating the behavior and speed of leukocyte migration in vivo.
Collapse
Affiliation(s)
- Wanbin Hu
- Institute of Biology, Leiden University, Leiden, Netherlands
| | | | - Chen Li
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Fons J Verbeek
- Institute of Biology, Leiden University, Leiden, Netherlands.,Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Lu Cao
- Leiden Institute of Advanced Computer Science, Leiden University, Leiden, Netherlands
| | - Roeland M H Merks
- Institute of Biology, Leiden University, Leiden, Netherlands.,Mathematical Institute, Leiden University, Leiden, Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
9
|
Słowińska M, Paukszto Ł, Paweł Jastrzębski J, Bukowska J, Kozłowski K, Jankowski J, Ciereszko A. Transcriptome analysis of turkey (Meleagris gallopavo) reproductive tract revealed key pathways regulating spermatogenesis and post-testicular sperm maturation. Poult Sci 2020; 99:6094-6118. [PMID: 33142529 PMCID: PMC7647744 DOI: 10.1016/j.psj.2020.07.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 01/11/2023] Open
Abstract
The application of transcriptomics to the study of the reproductive tract in male turkeys can significantly increase our current knowledge regarding the specifics of bird reproduction. To characterize the complex transcriptomic changes that occur in the testis, epididymis, and ductus deferens, deep sequencing of male turkey RNA samples (n = 6) was performed, using Illumina RNA-Seq. The obtained sequence reads were mapped to the turkey genome, and relative expression values were calculated to analyze differentially expressed genes (DEGs). Statistical analysis revealed 1,682; 2,150; and 340 DEGs in testis/epididymis, testis/ductus deferens, and epididymis/ductus deferens comparisons, respectively. The expression of selected genes was validated using quantitative real-time reverse transcriptase-polymerase chain reaction. Bioinformatics analysis revealed several potential candidate genes involved in spermatogenesis, spermiogenesis and flagellum formation in the testis, and in post-testicular sperm maturation in the epididymis and ductus deferens. In the testis, genes were linked with the mitotic proliferation of spermatogonia and the meiotic division of spermatocytes. Histone ubiquitination and protamine phosphorylation were shown to be regulatory mechanisms for nuclear condensation during spermiogenesis. The characterization of testicular transcripts allowed a better understanding of acrosome formation and development and flagellum formation, including axoneme structures and functions. Spermatozoa motility during post-testicular maturation was linked to the development of flagellar actin filaments and biochemical processes, including Ca2+ influx and protein phosphorylation/dephosphorylation. Spermatozoa quality appeared to be controlled by apoptosis and antioxidant systems in the epididymis and ductus deferens. Finally, genes associated with reproductive system development and morphogenesis were identified. To the best of our knowledge, this is the first genome-wide functional investigation of genes associated with tissue-specific processes in turkey reproductive tract. A catalog of genes worthy of further studies to understand the avian reproductive physiology and regulation was provided.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland.
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Joanna Bukowska
- In Vitro and Cell Biotechnology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland
| |
Collapse
|
10
|
Inhibition of nuclear factor kappa B as a mechanism of Danshensu during Toll-like receptor 2-triggered inflammation in macrophages. Int Immunopharmacol 2020; 83:106419. [PMID: 32200153 DOI: 10.1016/j.intimp.2020.106419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/08/2023]
Abstract
Danshensu (DSS) is a water-soluble phenolic compound in Danshen (Salvia Miltiorrhiza Radix et Rhizoma). Although various pharmacological activities have been recognized, little is known regarding its anti-inflammatory effect and related molecular mode of action. In the current study, bone marrow-derived macrophages (BMMs) were activated by a Toll-like receptor 2 (TLR2) agonist Pam3CSK4 with or without DSS intervention. Production of pro-inflammatory cytokines interleukin-6 (IL-6) and interleukin-12 (IL-12) was detected by both enzyme-linked immunosorbent assay (ELISA) and real-time quantitative PCR (RT-qPCR). Activation of signaling pathways involving nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) was assessed by Western blot. Additionally, RNA sequencing (RNA-seq) combined with bioinformatics analyses was applied to investigate the molecular mechanisms of DSS. Emphasis was placed on the construction of the protein-protein interaction (PPI) network and transcription factor (TF) enrichment analysis of data including co-regulated differentially expressed genes (DEGs) in the Pam3CSK4 vs. control and DSS vs. Pam3CSK4 groups. The RT-qPCR and ELISA results showed that DSS effectively inhibited the expressions of IL-6 and IL-12, indicating a significant anti-inflammatory effect. Western blot verified that DSS suppressed the phosphorylation of p65, which was in accordance with the results of the TF enrichment analysis. Additionally, the PPI network analysis showed several key molecules, including lactoferrin (Ltf), CC-chemokine receptor 7 (Ccr7), interferon-gamma (IFN-γ) and C-X-C motif chemokine ligand 9 (Cxcl9), to be regulatory genes that responded to DSS treatment. Overall, our study revealed that DSS has a pronounced anti-inflammatory effect involving TLR2 and macrophages through the NF-κB signaling pathway, which supports the novel application of DSS in the treatment of relevant diseases including atherosclerosis and ischemic or ischemic/perfusion injury of the heart and brain.
Collapse
|
11
|
Yehualashet AS. Toll-like Receptors as a Potential Drug Target for Diabetes Mellitus and Diabetes-associated Complications. Diabetes Metab Syndr Obes 2020; 13:4763-4777. [PMID: 33311992 PMCID: PMC7724365 DOI: 10.2147/dmso.s274844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disease distinguished by hyperglycemia due to disturbance in carbohydrate or lipid metabolism or insulin function. To date, diabetes, and its complications, is established as a global cause of morbidity and mortality. The intended aim during the management of diabetes is to maintain blood glucose close to normal because the majority of patients have poor control of their elevated blood glucose and are highly prone to severe macrovascular and microvascular complications. To decrease the burden of the disease and its complications, scientists from various disciplines are working intensively to identify novel and promising drug targets for diabetes and its complications. Increased and ongoing investigations on mechanisms relating to diabetes and associated complications could potentially consider inflammatory cascades as a promising component of the strategy in the prevention and control of diabetes and its complications. The potential of targeting mediators of inflammation like toll-like receptors (TLRs) are part of current investigation by the scientific community. Hence, the aim of the present review is to discuss the role of TLRs as a potential drug target for diabetes and diabetes associated complications.
Collapse
Affiliation(s)
- Awgichew Shewasinad Yehualashet
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
- Correspondence: Awgichew Shewasinad Yehualashet Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Berhan University, Debre Berhan, EthiopiaTel +251935450290 Email
| |
Collapse
|
12
|
Malek Mohammadi M, Abouissa A, Azizah I, Xie Y, Cordero J, Shirvani A, Gigina A, Engelhardt M, Trogisch FA, Geffers R, Dobreva G, Bauersachs J, Heineke J. Induction of cardiomyocyte proliferation and angiogenesis protects neonatal mice from pressure overload-associated maladaptation. JCI Insight 2019; 5:128336. [PMID: 31335322 DOI: 10.1172/jci.insight.128336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cardiac pressure overload (for example due to aortic stenosis) induces irreversible myocardial dysfunction, cardiomyocyte hypertrophy and interstitial fibrosis in patients. In contrast to adult, neonatal mice can efficiently regenerate the heart after injury in the first week after birth. To decipher whether insufficient cardiac regeneration contributes to the progression of pressure overload dependent disease, we established a transverse aortic constriction protocol in neonatal mice (nTAC). nTAC in the non-regenerative stage (at postnatal day P7) induced cardiac dysfunction, myocardial fibrosis and cardiomyocyte hypertrophy. In contrast, nTAC in the regenerative stage (at P1) largely prevented these maladaptive responses and was in particular associated with enhanced myocardial angiogenesis and increased cardiomyocyte proliferation, which both supported adaptation during nTAC. A comparative transcriptomic analysis between hearts after regenerative versus non-regenerative nTAC suggested the transcription factor GATA4 as master regulator of the regenerative gene-program. Indeed, cardiomyocyte specific deletion of GATA4 converted the regenerative nTAC into a non-regenerative, maladaptive response. Our new nTAC model can be used to identify mediators of adaptation during pressure overload and to discover novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Mona Malek Mohammadi
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Aya Abouissa
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isyatul Azizah
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yinuo Xie
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Julio Cordero
- Department of Anatomy and Developmental Biology, Center for Biomedicine and Medical Technology Mannheim, European Center for Angioscience, and
| | - Amir Shirvani
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Anna Gigina
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Maren Engelhardt
- Institute for Neuroanatomy, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Felix A Trogisch
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Robert Geffers
- Department Genome Analytics, Helmholtz-Center for Infection Research GmbH, Braunschweig, Germany
| | - Gergana Dobreva
- German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Anatomy and Developmental Biology, Center for Biomedicine and Medical Technology Mannheim, European Center for Angioscience, and
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Joerg Heineke
- Department of Cardiovascular Research, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,German Center for Cardiovascular Research (DZHK) partner site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
13
|
Zhang R, Wang Q, Yang L. Chemerin induced by
Treponema pallidum
predicted membrane protein Tp0965 mediates the activation of endothelial cell via MAPK signaling pathway. J Cell Biochem 2019; 120:19621-19634. [PMID: 31322756 DOI: 10.1002/jcb.29269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Rui‐Li Zhang
- Department of Dermatology Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University Wuxi China
| | - Qian‐Qiu Wang
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, & National Center for STD Control China Centers for Disease Control and Prevention Nanjing China
| | - Li‐Jia Yang
- Department of Dermatology Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University Wuxi China
| |
Collapse
|
14
|
Wifi MNA, Assem M, Elsherif RH, El-Azab HAF, Saif A. Toll-like receptors-2 and -9 (TLR2 and TLR9) gene polymorphism in patients with type 2 diabetes and diabetic foot. Medicine (Baltimore) 2017; 96:e6760. [PMID: 28445304 PMCID: PMC5413269 DOI: 10.1097/md.0000000000006760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) are innate immune receptors that mediate the inflammatory response in diabetes mellitus (DM). The aim of this study is to evaluate the association of TLR2 and TLR9 gene polymorphism in patients with type 2 DM (T2DM) and diabetic foot (DF).The study included 90 subjects divided into group I (30 patients with T2DM and DF), group II (30 patients with T2DM and no evidence of DF), and group III (normal control subjects). TLR2 (1350 T/C, rs3804100) and TLR9 (1237 T/C, rs5743836) genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique for all subjects.There was a statistically significant difference in the distribution of TLR9-1237 T/C genotypes between groups I and II (P < .029) as well as between groups I and III (P < .001). Calculated risk estimation revealed that TLR9-1237 polymorphism conferred almost 20 times increased risk of DF disorders in T2DM (OR = 20, 95% CI = 5.38-74.30). There was no statistical difference in the distribution of TLR2-1350T/C genotypes between the 3 groups.TLR9-1237 T/C gene polymorphism may be considered as a molecular risk for DF among patients with T2DM.
Collapse
Affiliation(s)
| | | | - Rasha Hamed Elsherif
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo Univeristy, Cairo, Egypt
| | | | | |
Collapse
|
15
|
Jhamb S, Vangaveti VN, Malabu UH. Genetic and molecular basis of diabetic foot ulcers: Clinical review. J Tissue Viability 2016; 25:229-236. [DOI: 10.1016/j.jtv.2016.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/10/2016] [Accepted: 06/21/2016] [Indexed: 12/19/2022]
|
16
|
Yakubenko VP, Byzova TV. Biological and pathophysiological roles of end-products of DHA oxidation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:407-415. [PMID: 27713004 DOI: 10.1016/j.bbalip.2016.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Polyunsaturated fatty acids (PUFA) are known to be present and/or enriched in vegetable and fish oils. Among fatty acids, n-3 PUFA are generally considered to be protective in inflammation-related diseases. The guidelines for substituting saturated fatty acids for PUFAs have been highly publicized for decades by numerous health organizations. Recently, however, the beneficial properties of n-3 PUFA are questioned by detailed analyses of multiple randomized controlled clinical trials. The reported heterogeneity of results is likely due not only to differential effects of PUFAs on various pathological processes in humans, but also to the wide spectrum of PUFA's derived products generated in vivo. SCOPE OF REVIEW The goal of this review is to discuss the studies focused on well-defined end-products of PUFAs oxidation, their generation, presence in various pathological and physiological conditions, their biological activities and known receptors. Carboxyethylpyrrole (CEP), a DHA-derived oxidized product, is especially emphasized due to recent data demonstrating its pathophysiological significance in many inflammation-associated diseases, including atherosclerosis, hyperlipidemia, thrombosis, macular degeneration, and tumor progression. MAJOR CONCLUSIONS CEP is a product of radical-based oxidation of PUFA that forms adducts with proteins and lipids in blood and tissues, generating new powerful ligands for TLRs and scavenger receptors. The interaction of CEP with these receptors affects inflammatory response, angiogenesis, and wound healing. GENERAL SIGNIFICANCE The detailed understanding of CEP-mediated cellular responses may provide a basis for the development of novel therapeutic strategies and dietary recommendations.
Collapse
Affiliation(s)
- Valentin P Yakubenko
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tatiana V Byzova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
17
|
Moreira V, Teixeira C, Borges da Silva H, D'Império Lima MR, Dos-Santos MC. The role of TLR2 in the acute inflammatory response induced by Bothrops atrox snake venom. Toxicon 2016; 118:121-8. [PMID: 27109323 DOI: 10.1016/j.toxicon.2016.04.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/16/2016] [Accepted: 04/20/2016] [Indexed: 01/04/2023]
Abstract
Envenomation by snakes of the species Bothrops atrox induces local and systemic effects. Local effects include drastic tissue damage and a marked inflammatory response as a result of the synthesis and release of a variety of protein and lipid mediators. Toll-like receptor (TLR) signaling pathways can play an important role in this response, leading to synthesis of these inflammatory mediators. This study investigated the influence of TLR2 on the acute inflammatory response induced by Bothrops atrox venom. Wild-type C57BL/6 mice (WT) and TLR2 gene knockout mice (TLR2(-/-)) were injected with Bothrops atrox venom (BaV), and the following responses to the venom were assessed in peritoneal exudate: leukocyte accumulation; release of mediators, including CCL-2, IL-10, IL-1β, IL-6 and LTB4; protein expression of COX-1 and COX-2; and quantification of their products PGE2 and TXA2. After injection with BaV, the TLR2(-/-) mice (TLR2(-/-)BaV) had higher levels of IL-6 and CCL-2 than WT animals kept under the same conditions (WTBaV), together with an accumulation of polymorphonuclear leukocytes (PMNs), inhibition of IL-1β and LTB4 and reduced mononuclear leukocyte influx. However, no significant differences in COX-2 protein expression or PGE2, TXA2 and IL-10 production between the TLR2(-/-)BaV and WTBav animals were observed. Together, these results indicate that the signaling pathway activated by TLR2 acts by modulating the induced inflammatory response to BaV through the direct action of venom-associated molecular patterns (VAMPs) or indirectly by forming damage-associated molecular patterns (DAMPs) and that this may have important therapeutic implications.
Collapse
Affiliation(s)
- Vanessa Moreira
- Pharmacology Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | | | - Henrique Borges da Silva
- Immunology Department, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Maria Cristina Dos-Santos
- Immunochemistry Laboratory, Parasitology Department, Institute of Biological Sciences, Federal University of Amazonas, Manaus, AM, Brazil.
| |
Collapse
|
18
|
Salvador B, Arranz A, Francisco S, Córdoba L, Punzón C, Llamas MÁ, Fresno M. Modulation of endothelial function by Toll like receptors. Pharmacol Res 2016; 108:46-56. [PMID: 27073018 DOI: 10.1016/j.phrs.2016.03.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 12/23/2022]
Abstract
Endothelial cells (EC) are able to actively control vascular permeability, coagulation, blood pressure and angiogenesis. Most recently, a role for endothelial cells in the immune response has been described. Therefore, the endothelium has a dual role controlling homeostasis but also being the first line for host defence and tissue damage repair thanks to its ability to mount an inflammatory response. Endothelial cells have been shown to express pattern-recognition receptors (PRR) including Toll-like receptors (TLR) that are activated in response to stimuli within the bloodstream including pathogens and damage signals. TLRs are strategic mediators of the immune response in endothelial cells but they also regulate the angiogenic process critical for tissue repair. Nevertheless, endothelial activation and angiogenesis can contribute to some pathologies. Thus, inappropriate endothelial activation, also known as endothelial dysfunction, through TLRs contributes to tissue damage during autoimmune and inflammatory diseases such as atherosclerosis, hypertension, ischemia and diabetes associated cardiovascular diseases. Also TLR induced angiogenesis is required for the growth of some tumors, atherosclerosis and rheumatoid arthritis, among others. In this review we discuss the importance of various TLRs in modulating the activation of endothelial cells and their importance in immunity to infection and vascular disease as well as their potential as therapeutic targets.
Collapse
Affiliation(s)
| | - Alicia Arranz
- Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| | - Sara Francisco
- Diomune SL, Parque Científico de Madrid, Madrid, Spain; Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| | - Laura Córdoba
- Diomune SL, Parque Científico de Madrid, Madrid, Spain.
| | - Carmen Punzón
- Diomune SL, Parque Científico de Madrid, Madrid, Spain.
| | | | - Manuel Fresno
- Diomune SL, Parque Científico de Madrid, Madrid, Spain; Centro de Biología Molecular "Severo Ochoa", Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
19
|
Singh K, Agrawal NK, Gupta SK, Mohan G, Chaturvedi S, Singh K. Genetic and epigenetic alterations in Toll like receptor 2 and wound healing impairment in type 2 diabetes patients. J Diabetes Complications 2015; 29:222-9. [PMID: 25541252 DOI: 10.1016/j.jdiacomp.2014.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 11/26/2022]
Abstract
AIM Persistent hyperglycemic microenvironment in type 2 diabetes mellitus (T2DM) leads to the development of secondary complications like wound healing impairment. Proper co-ordination of innate immune system plays an integral role in wound healing. Toll like receptors (TLRs) are prominent contributors for the induction of the innate immune and inflammation response. TLR2 is an important extracellular member in mammalian TLR family and has been shown to be a potent player in the wound healing mechanism. METHODS Expressional status of TLR2 was seen in wounds of T2DM cases with respect to the severity of wounds in 110 human lower extremity wounds. The methylation status of TLR2 promoter was also examined. RESULTS Although TLR2 transcripts were downregulated in T2DM wounds compared to control, their levels tend to increase with the severity of T2DM wounds. The methylation status of TLR2 gene promoter was not significantly different among different grades of wounds in T2DM subjects. The CpG sites investigated were totally or partially methylated in majority of DFU cases. CONCLUSION TLR2 down regulation in wounds of T2DM patients compared to non diabetic patients may lead to development of non healing chronic ulcers in them.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi-221005, India
| | - Neeraj K Agrawal
- Department of Endocrinology and Metabolism, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Sanjeev K Gupta
- Department of Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Gyanendra Mohan
- Indian Railway Cancer Hospital and Research Centre, N.E.R., Varanasi- 221002, India
| | - Sunanda Chaturvedi
- Indian Railway Cancer Hospital and Research Centre, N.E.R., Varanasi- 221002, India
| | - Kiran Singh
- Department of Molecular & Human Genetics, Banaras Hindu University, Varanasi-221005, India.
| |
Collapse
|
20
|
Fanelli R, Schembri L, Piarulli U, Pinoli M, Rasini E, Paolillo M, Galiazzo MC, Cosentino M, Marino F. Effects of a novel cyclic RGD peptidomimetic on cell proliferation, migration and angiogenic activity in human endothelial cells. Vasc Cell 2014; 6:11. [PMID: 25053992 PMCID: PMC4105520 DOI: 10.1186/2045-824x-6-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/17/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cyclic RGD peptidomimetics containing a bifunctional diketopiperazine scaffold are a novel class of high-affinity ligands for the integrins αVβ3 and αVβ5. Since integrins are a promising target for the modulation of normal and pathological angiogenesis, the present study aimed at characterizing the ability of the RGD peptidomimetic cyclo[DKP-RGD] 1 proliferation, migration and network formation in human umbilical vein endothelial cells (HUVEC). METHODS Cell viability was assessed by flow cytometry and annexin V (ANX)/propidium iodide (PI) staining. Cell proliferation was evaluated by the ELISA measurement of bromodeoxyuridine (BrdU) incorporation. Network formation by HUVEC cultured in Matrigel-coated plates was evaluated by optical microscopy and image analysis. Integrin subunit mRNA expression was assessed by real time-PCR and Akt phosphorylation by western blot analysis. RESULTS Cyclo[DKP-RGD] 1 does not affect cell viability and proliferation either in resting conditions or in the presence of the pro-angiogenic growth factors VEGF, EGF, FGF, and IGF-I. Addition of cyclo[DKP-RGD] 1 however significantly decreased network formation induced by pro-angiogenic growth factors or by IL-8. Cyclo[DKP-RGD] 1 did not affect mRNA levels of αV, β3 or β5 integrin subunits, however it significantly reduced the phosphorylation of Akt. CONCLUSIONS Cyclo[DKP-RGD] 1 can be a potential modulator of angiogenesis induced by different growth factors, possibly devoid of the adverse effects of cytotoxic RGD peptidomimetic analogues.
Collapse
Affiliation(s)
- Roberto Fanelli
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Laura Schembri
- Center for Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9 21100, Varese, VA, Italy
| | - Umberto Piarulli
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Monica Pinoli
- Center for Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9 21100, Varese, VA, Italy
| | - Emanuela Rasini
- Center for Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9 21100, Varese, VA, Italy
| | - Mayra Paolillo
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9 21100, Varese, VA, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Via Ottorino Rossi n. 9 21100, Varese, VA, Italy
| |
Collapse
|
21
|
Wu J, Cui H, Dick AD, Liu L. TLR9 agonist regulates angiogenesis and inhibits corneal neovascularization. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1900-10. [PMID: 24726642 DOI: 10.1016/j.ajpath.2014.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 12/29/2022]
Abstract
Myeloid cells are highly adaptable and may positively or negatively regulate angiogenesis dependent on the cognate and soluble signals they receive. Toll-like receptors (TLRs) initiate immune responses, orchestrate adaptive immune responses, and regulate vascular endothelial growth factor (VEGF)-mediated angiogenesis during wound healing. We investigated the possible role of TLR ligands in attenuation of new vessel growth via regulation of expression of VEGF or soluble fms-like tyrosine kinase-1 (sFlt-1) in both an aortic ring assay and a model of suture-induced corneal angiogenesis. The TLR3 ligand [poly(I:C)] markedly suppressed VEGF secretion and stimulated sFlt-1 release from macrophages. The aortic ring assay demonstrated that new vessels were promoted by the TLR2 ligand (heat killed Listeria monocytogenes) and the TLR4 ligand (lipopolysaccharide), concomitant with increased VEGF and matrix metalloproteinase 9 secretion. In contrast, the TLR9 ligand [oligodeoxynucleotide (ODN)1826] stimulated sFlt-1 secretion from macrophages and reduced the number of aortic ring vessel sprouts. ODN1826 also significantly reduced the length and volume of both hemangiogenesis and lymphangiogenesis in the suture-induced corneal angiogenesis model. Furthermore, 53 angiogenic factors were examined via protein array and compared between ODN1826- and water-treated corneas to interrogate the pathway of ODN1826 inhibition, demonstrating an up-regulation of Serpin E1 signal. Further clinical and IHC analyses of the aortic ring assay indicated that TLR9 suppressed tip cell migration and recruitment of mural cells and adventitial macrophages.
Collapse
Affiliation(s)
- Jiahui Wu
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Hongping Cui
- Department of Ophthalmology, Tongji University Affiliated Shanghai East Hospital, Shanghai, China
| | - Andrew D Dick
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Lei Liu
- Academic Unit of Ophthalmology, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
22
|
Wagner NM, Bierhansl L, Nöldge-Schomburg G, Vollmar B, Roesner JP. Toll-like receptor 2-blocking antibodies promote angiogenesis and induce ERK1/2 and AKT signaling via CXCR4 in endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33:1943-51. [PMID: 23723373 DOI: 10.1161/atvbaha.113.301783] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Toll-like receptor 2 (TLR2) inhibition by function blocking antibodies (ABs) is associated with enhanced preservation of endothelial cell function during vascular disease. In the present study, we investigated the capacity of TLR2-blocking ABs to modulate the angiogenic response of endothelial cells in vitro and in vivo. APPROACH AND RESULTS Incubation of endothelial cells with mono- or polyclonal anti-TLR2 ABs resulted in increased tube formation, sprouting, and migration of endothelial cells compared with controls. In a mouse model of hindlimb ischemia, using TLR2-deficient or anti-TLR2 AB-treated wild-type mice resulted in increased new capillary formation and enhanced reperfusion. The effects of anti-TLR2 ABs were similar to those exerted by stromal cell-derived factor-1, and we show that anti-TLR2 ABs yet not TLR2 ligands lead to comparable activation of extracellular signal-regulated kinase1/2 and AKT but not p38 mitogen-activated protein kinase as activation of the CXCR4 canonical signal transduction pathways by stromal cell-derived factor-1. Immunoprecipitation of TLR2 revealed that anti-TLR2 ABs initiate an association of TLR2 with CXCR4 and mitogen-activated protein kinase activation. The proangiogenic properties of anti-TLR2 ABs were abolished by both G-protein inhibition and CXCR4 knockdown in endothelial cells. CONCLUSIONS Our results provide evidence for a proangiogenic effect of TLR2-blocking ABs on endothelial cells in vitro and in vivo. They identify a novel molecular mechanism linking TLR2 to angiogenic processes that is independent from the activation of inflammatory cascades and further support the concept of a beneficial effect of TLR2 inhibition for endothelial cell function in vascular disease.
Collapse
Affiliation(s)
- Nana-Maria Wagner
- Clinic for Anesthesiology and Critical Care Medicine, University Hospital Rostock, Rostock, Germany.
| | | | | | | | | |
Collapse
|