1
|
Zhang N, Zhang Q, Zhang R, Zhang D. Exploring the mechanism of wendan decoction in the treatment of ischemic stroke using bioinformatics and network pharmacology. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
2
|
Effect of Electroacupuncture on Short-Chain Fatty Acids in Peripheral Blood after Middle Cerebral Artery Occlusion/Reperfusion in Rats Based on Gas Chromatography–Mass Spectrometry. Mediators Inflamm 2022; 2022:3997947. [PMID: 36052308 PMCID: PMC9427317 DOI: 10.1155/2022/3997947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Previous fundamental and clinical research has shown that electroacupuncture (EA) at the acupoints of Quchi (LI11) and Zusanli (ST36) can successfully alleviate motor dysfunction following stroke. Additionally, it has been discovered that gut microbiota and their metabolites play an essential role in stroke. However, the relationship between the metabolites of gut microbiota and the efficacy of EA is still unclear. Therefore, the aim of this study was to evaluate the mechanism of EA at LI11 and ST36 in the treatment of motor dysfunction after middle cerebral artery occlusion/reperfusion (MCAO/R) in model rats by comparing the differences and correlation between different short-chain fatty acids (SCFAs) and the recovery of motor function. The results indicated that EA at LI11 and ST36 acupoints enhanced the neurological function, motor function, and infarct volume of MCAO/R rats. The levels of acetic acid, propionic acid, and total SCFAs were considerably lower in the MCAO/R group than in the sham group (P < 0.05). Acetic acid, propionic acid, and total SCFA concentrations were substantially higher in the MCAO/R + EA group than in the MCAO/R group (P < 0.05). Finally, Pearson correlation analysis revealed that the propionic acid concentration was substantially favorably connected with the duration on the rotarod (r = 0.633 and P < 0.05) and highly negatively correlated with the modified neurological severity score (mNSS) (r = −0.698 and P < 0.05) and the percentage of cerebral infarct volume (r = −0.729 and P < 0.05). Taken together, these findings indicate that the increase in propionic acid may be one of the mechanisms and targets of EA at LI11 and ST36 acupoints to improve poststroke motor dysfunction in MCAO/R rats.
Collapse
|
3
|
Belskaya GN, Stepanova SB, Makarova LD, Sergienko DA, Krylova LG, Antimonova KV. [Acupuncture in the prevention and treatment of stroke: a review of foreign studies]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2020; 97:68-77. [PMID: 32356637 DOI: 10.17116/kurort20209702168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Acupuncture has been recommended by the World Health Organization (WHO) as an alternative and complementary method for treating stroke and a way to increase the effectiveness of rehabilitation. The data available in the literature suggest that acupuncture has a beneficial effect on the status of patients with stroke. The mechanism of action of acupuncture for stroke includes the following components: 1) stimulation of neurogenesis and cell proliferation in the CNS; 2) regulation of cerebral blood flow; 3) antiapoptosis; 4) regulation of neurotransmitters; 5) improvement of the neuronal synaptic function, stimulation of long-term potentiation; 6) stimulation of neuroplasticity; and 7) decrease in blood-brain barrier permeability. Acupuncture has been proven to have a positive impact on the restoration of stroke-related dysfunctions, such as motor disorders, spasticity, cognitive impairment, and dysphagia. The most commonly used acupuncture points for the treatment of motor disorders are GV20, GB20, LI4, ST36, SP6, LI11, GB39, and motor scalp area; those for the treatment of cognitive dysfunction are GV20 and EX-HN-1, and those for the treatment of dysphagia are GV20, GV16, and CV23. A review of the literature indicates that studies of the clinical potential of acupuncture in the treatment of complications and the prevention of stroke are insufficient. It is assumed that the international community's recent interest in acupuncture methods used in the treatment of stroke will lead to the emergence of new studies and publications.
Collapse
Affiliation(s)
- G N Belskaya
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - S B Stepanova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - L D Makarova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - D A Sergienko
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - L G Krylova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| | - K V Antimonova
- South Ural State Medical University, Ministry of Health of Russia, Chelyabinsk, Russia
| |
Collapse
|
4
|
Li Z, Yang M, Lin Y, Liang S, Liu W, Chen B, Huang S, Li J, Tao J, Chen L. Electroacupuncture promotes motor function and functional connectivity in rats with ischemic stroke: an animal resting-state functional magnetic resonance imaging study. Acupunct Med 2020; 39:146-155. [PMID: 32576025 DOI: 10.1177/0964528420920297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND To evaluate whether electroacupuncture (EA) treatment at LI11 and ST36 could reduce motor impairments and enhance brain functional recovery in a rat model of ischemic stroke. METHODS A rat model of middle cerebral artery occlusion (MCAO) was established. EA at LI11 and ST36 was started at 24 h (MCAO + EA group) after ischemic stroke modeling. Untreated model (MCAO) and sham-operated (Sham) groups were included as controls. The neurological deficits of all groups were assessed using modified neurologic severity scores (mNSS) at 24 h and 14 days after MCAO. To further investigate the effect of EA on infarct volume and brain function, functional magnetic resonance imaging was used to estimate the size of the brain lesions and neural activities of each group at 14 days after ischemic stroke. RESULTS EA treatment of MCAO rats led to a significant reduction in the infarct volumes accompanied by functional recovery, reflected in improved mNSS outcomes and motor functional performances. Furthermore, functional connectivity between the left motor cortex and left cerebellum posterior lobe, right motor cortex, left striatum and bilateral sensory cortex were decreased in MCAO group but increased after EA treatment. CONCLUSION EA at LI11 and ST36 could enhance the functional connectivity between the left motor cortex and the motor function-related brain regions, including the motor cortex, sensory cortex and striatum, in rats. EA exhibits potential as a treatment for ischemic stroke.
Collapse
Affiliation(s)
- Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fuzhou, China.,Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fuzhou, China
| | - Minguang Yang
- Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fuzhou, China.,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China.,TCM Rehabilitation Research Center of SATCM, Fuzhou, China
| | - Yunjiao Lin
- TCM Rehabilitation Research Center of SATCM, Fuzhou, China.,Xiamen Humanity Rehabilitation Hospital, Xiamen, China
| | - Shengxiang Liang
- Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fuzhou, China.,Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China.,TCM Rehabilitation Research Center of SATCM, Fuzhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bin Chen
- Department of Rehabilitation, The Affiliated People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sheng Huang
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China.,TCM Rehabilitation Research Center of SATCM, Fuzhou, China
| | - Jianhong Li
- Fujian Collaborative Innovation Center for Rehabilitation Technology, Fuzhou, China.,TCM Rehabilitation Research Center of SATCM, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
5
|
Zhu Y, Li S, Liu J, Wen Q, Yu J, Yu L, Xie K. Role of JNK Signaling Pathway in Dexmedetomidine Post-Conditioning-Induced Reduction of the Inflammatory Response and Autophagy Effect of Focal Cerebral Ischemia Reperfusion Injury in Rats. Inflammation 2020; 42:2181-2191. [PMID: 31446520 DOI: 10.1007/s10753-019-01082-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To investigate the effect of dexmedetomidine post-conditioning on the inflammatory response and autophagy effect of focal cerebral ischemia reperfusion injury in rats, and further to study its potential mechanisms. Water maze was conducted to evaluate spatial learning and memory ability of middle cerebral artery occlusion (MCAO) rats. TTC staining was used to observe the area of cerebral infarction. The expressions of inflammatory factors in serum were detected by ELISA. TUNEL assay, HE staining, and transmission electron microscopy were used to detect the apoptosis of neurons, neuro-cytopathic changes, and the formation of auto-phagosome in hippocampus CA1 region, respectively. The mRNA and protein expression of Beclin-1, Caspase-3, and light chain 3 (LC3) were detected by qRT-PCR and Western blot. Moreover, the activity of C-Jun N-terminal kinase (JNK) pathway was detected by Western blot. The escape latency (EL); cerebral infarction area ratio; positive apoptosis; neuron pathological changes; auto-phagosome numbers; inflammatory factor contents; mRNA and protein expressions of Beclin-1, Caspase-3 and LC3II/I; and the phosphorylation level of JNK were decreased, while the times across platform and the times stayed in the quadrant of the original platform were increased after dexmedetomidine treatment. However, the protective effect of dexmedetomidine on brain injury in MCAO rats was reversed by JNK pathway activator. Dexmedetomidine post-conditioning could improve learning and memory dysfunction caused by MCAO in rats and reduce the inflammatory response and autophagy effect. The mechanism may be related to inhibition of JNK pathway activation.
Collapse
Affiliation(s)
- Yulin Zhu
- Department of Anesthesiology, Yantaishan Hospital, Yantai, 264000, China
| | - Shihong Li
- Department of Anesthesiology, Haiyang People's Hospital, Haiyang, 265100, China
| | - Jingying Liu
- Department of Obstetrics, Yantaishan Hospital, Yantai, 264000, China
| | - Qing Wen
- Blood Purification Center, The Second Hospital of Shandong University, Jinan, 250000, China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250000, China
| | - Lingzhi Yu
- Departments of Pain, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250000, China
| | - Kun Xie
- Department of Anesthesiology, The Second Hospital of Shandong University, No.247 Beiyuan Road, Tianqiao District, Jinan, 250000, China.
| |
Collapse
|
6
|
Signal Transduction Pathways of Acupuncture for Treating Some Nervous System Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2909632. [PMID: 31379957 PMCID: PMC6657648 DOI: 10.1155/2019/2909632] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022]
Abstract
In this article, we review signal transduction pathways through which acupuncture treats nervous system diseases. We electronically searched the databases, including PubMed, MEDLINE, clinical Key, the Cochrane Library, and the China National Knowledge Infrastructure from their inception to December 2018 using the following MeSH headings and keywords alone or in varied combination: acupuncture, molecular, signal transduction, genetic, cerebral ischemic injury, cerebral hemorrhagic injury, stroke, epilepsy, seizure, depression, Alzheimer's disease, dementia, vascular dementia, and Parkinson's disease. Acupuncture treats nervous system diseases by increasing the brain-derived neurotrophic factor level and involves multiple signal pathways, including p38 MAPKs, Raf/MAPK/ERK 1/2, TLR4/ERK, PI3K/AKT, AC/cAMP/PKA, ASK1-JNK/p38, and downstream CREB, JNK, m-TOR, NF-κB, and Bcl-2/Bax balance. Acupuncture affects synaptic plasticity, causes an increase in neurotrophic factors, and results in neuroprotection, cell proliferation, antiapoptosis, antioxidant activity, anti-inflammation, and maintenance of the blood-brain barrier.
Collapse
|
7
|
Li M, Wang L, Xu N, Tang X, Xu M, Liu J, Huang J, Schlaeger JM. Effect of electro-acupuncture on lateralization of the human swallowing motor cortex excitability in healthy subjects: study protocol for a single-blind, randomized controlled trial. Trials 2019; 20:180. [PMID: 30898173 PMCID: PMC6429788 DOI: 10.1186/s13063-019-3267-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/28/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Numerous randomized controlled trials on the effects of electro-acupuncture have been conducted to treat dysphagia as a sequela of stroke. However, the normal physiological mechanisms of swallowing and the pathological mechanisms of dysphagia are not fully understood. The purpose of this study is to investigate whether lateralization of the human swallowing motor cortex excitability in healthy subjects will be influenced by electro-acupuncture to Lianquan (CV 23) and Fengfu (GV 16), which may provide insight into the pathological mechanisms of dysphagia after stroke. METHODS We designed a single-blind, randomized, sham-controlled trial in which 40 healthy subjects will be recruited. Subjects will be randomized 1:1 into two groups: the electro-acupuncture group and the sham-control electro-acupuncture group. The swallowing motor cortex will be located in both groups using a neuroimaging navigation system. Then left and right cortical stimulation will be measured by transcranial magnetic stimulation (TMS) before and after electro-acupuncture or sham electro-acupuncture. The electro-acupuncture or sham electro-acupuncture interventions will last for 15 min. The primary outcome measure will be percent change in the resting motor threshold (RMT) of the mylohyoid. The secondary outcome measures will be the amplitude (μV) and latency (ms) of the motor evoked potential (MEP) of the mylohyoid as a proxy for the TMS evoked potential. All outcomes will be measured at baseline and after the electro-acupuncture or sham electro-acupuncture treatment. DISCUSSION The aim of this trial is to explore whether lateralization of the human swallowing motor cortex excitability in healthy subjects is present, and to determine if electro-acupuncture to acupuncture points Lianquan (CV 23) and Fengfu (GV 16) will exert an effect on it under normal physiological conditions. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR-IOR-17011359 . Registered on 11 May 2017.
Collapse
Affiliation(s)
- Minying Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Lin Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Xiaorong Tang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Mindong Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Jianhua Liu
- Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, 510000 China
| | - Jianpeng Huang
- Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, 510000 China
| | - Judith M. Schlaeger
- Department of Women, Children and Family Health Science, University of Illinois at Chicago College of Nursing, 845 S. Damen Ave. (M/C 802), Chicago, IL 60612 USA
| |
Collapse
|
8
|
Xing Y, Zhang M, Li WB, Dong F, Zhang F. Mechanisms Involved in the Neuroprotection of Electroacupuncture Therapy for Ischemic Stroke. Front Neurosci 2018; 12:929. [PMID: 30618558 PMCID: PMC6297779 DOI: 10.3389/fnins.2018.00929] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the main causes of death all over the world. As the combination of acupuncture and electric stimulation, electroacupuncutre is a safe and effective therapy, which is commonly applied in ischemic stroke therapy in both experimental studies and clinical settings. The review was performed via searching for related articles in the databases of OVID, PUBMED, and ISI Web of Science from their respective inceptions to May 2018. In this review, we summarized the mechanism of EA for ischemic stroke via a series of factors, consisting of apoptosis related-factors, inflammatory factors, autophagy-related factors, growth factors, transcriptional factors, cannabinoid CB1 receptors, and other factors. In summary, EA stimulation may effectively alleviate ischemic brain injury via a series of signal pathways and various other factors.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Min Zhang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Wen-Bin Li
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Orthopedic Biomechanics Key Laboratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Tan F, Wang J, Liu JX, Wang C, Li M, Gu Y. Electroacupuncture stimulates the proliferation and differentiation of endogenous neural stem cells in a rat model of ischemic stroke. Exp Ther Med 2018; 16:4943-4950. [PMID: 30542450 PMCID: PMC6257304 DOI: 10.3892/etm.2018.6848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
Abstract
Electroacupuncture (EA) may stimulate neurogenesis in animal models of ischemic stroke; however, the associated mechanisms are not clear. The present study aimed to evaluate the neurogenesis efficacy of EA on ischemic stroke and the underlying associated mechanisms. A model of middle cerebral artery occlusion (MCAO) was employed as the rat model of brain ischemia and reperfusion. EA treatment at the GV20 (Baihui) and GV14 (Dazhui) acupoints was conducted for 30 min daily following MCAO. Immunofluorescence was performed to measure the number of bromodeoxyuridine (BrdU)/nestin- or BrdU/doublecortin (DCX)-positive cells in the sham, MCAO and MCAO + EA groups. Results indicated that EA stimulation significantly decreased the neurological score and neuronal loss in rats in the MCAO group (both P<0.05). Furthermore, immunostaining assays indicated that BrdU/nestin- and BrdU/DCX-positive cells in EA-treated rats were significantly increased (P<0.05) when compared with the rats in the MCAO group, indicating EA may induce the proliferation and differentiation of endogenous neural stem cells (eNSCs) during cerebral ischemia-reperfusion. In addition, EA treatment significantly enhanced the protein expression levels of plasticity-related gene 5 (PRG5), a critical neurogenesis factor, and significantly decreased the protein expression levels of three neurogenesis inhibiting molecules, NogoA, lysophosphatidic acid and RhoA (all P<0.05). These results suggested that EA promotes the proliferation and differentiation of eNSCs, likely through modulating PRG5/RhoA signaling.
Collapse
Affiliation(s)
- Feng Tan
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - Jian Wang
- Department of Neurology, Yunnan Provincial Hospital of Traditional Chinese Medical, Kunming, Yunnan 650000, P.R. China
| | - Jing Xian Liu
- Department of Neurology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chen Wang
- Department of Neurology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Miaodan Li
- Department of Neurology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Gu
- Department of Neurology, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
10
|
Xue WS, Wang N, Wang NY, Ying YF, Xu GH. miR-145 protects the function of neuronal stem cells through targeting MAPK pathway in the treatment of cerebral ischemic stroke rat. Brain Res Bull 2018; 144:28-38. [PMID: 30179678 DOI: 10.1016/j.brainresbull.2018.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/29/2018] [Indexed: 12/14/2022]
Abstract
This study is designed to investigate the function of the miR-145 in the protection of neural stem cells (NSCs) through targeting mitogen-activated protein kinase (MAPK) pathway in the treatment of cerebral ischemic stroke rat. In our study, rat NSCs were selected and cultured in complete medium. The light microscopy was used to observe the morphology of NSCs at different times. The quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR) was used to detect the miR-145 and other related mRNAs of the MARK pathway. The Western blotting was used to detect the activation of MAPK pathway and neuronal specific markers. The Immunofluorescence was used to detect the expression of the neuron-specific enolase. And the cell viability was detected by Cell Counting Kit (CCK)-8 assay. The flow cytometry was used to test the cell cycle and apoptosis. The ischemic stroke rat models were established and neural stem cell transplantation was performed. The neurological function score, balance beam experiment, and cortical Nissl staining were used to evaluate the postoperative neurological function in rats. The expression of miR-145, extracellular signal-regulated kinase (ERK), and p38 mRNA in rat NSCs increased in a time-dependent manner. Compared with the Blank group, the over-expression of miR-145 promoted the expression of related mRNA and protein of the MAPK pathway in NSCs, while the decreased expression of miR-145 suppressed the MAPK Pathways. Compared with the Blank group, over-expression of miR-145 in NSCs promoted the up-regulation of Cyclin D1, Nestin, neuron-specific enolase (NSE), and Glial fibrillary acidic protein (GFAP) proteins, enhanced the activity of NSCs, and promoted cell proliferation and differentiation, while inhibited the cell apoptosis and the Cleaved-caspase 3 expression. After treatment of NSCs in the SB203580 group, the Nestin, NSE, and GFAP were decreased; cell viability, proliferation and differentiation were inhibited, while Cleaved-caspase 3 protein and cell apoptosis rate increased. The results of animal experiments showed that compared with the Blank group, the walking ability and neurological impairment recovered rapidly in the rats after transplantation of NSCs with over-expression of miR-145, and more neurons were generated in the cortex. After the transplantation of SB203580-treated NSCs, the walking ability and neurological impairment of the rats were slower and the cortical neurons were less. We conclude that miR-145 protects the function of neuronal stem cells through targeting MAPK pathway in the treatment of cerebral ischemic stroke rat.
Collapse
Affiliation(s)
- Wei-Shu Xue
- The Second Neurology Department, the Fourth Hospital of Harbin, Harbin, Heilongjiang 150026, PR China.
| | - Nan Wang
- The Second Neurology Department, the Fourth Hospital of Harbin, Harbin, Heilongjiang 150026, PR China
| | - Ning-Yao Wang
- The Second Neurology Department, the Fourth Hospital of Harbin, Harbin, Heilongjiang 150026, PR China
| | - Yue-Fen Ying
- The Second Neurology Department, the Fourth Hospital of Harbin, Harbin, Heilongjiang 150026, PR China
| | - Guo-Hui Xu
- The Second Neurology Department, the Fourth Hospital of Harbin, Harbin, Heilongjiang 150026, PR China
| |
Collapse
|
11
|
Lv H, Li J, Che YQ. MicroRNA-150 contributes to ischemic stroke through its effect on cerebral cortical neuron survival and function by inhibiting ERK1/2 axis via Mal. J Cell Physiol 2018; 234:1477-1490. [PMID: 30144062 DOI: 10.1002/jcp.26960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Ischemic stroke, caused by the blockage of blood supply, is a major cause of death worldwide. For identifying potential candidates, we explored the effects microRNA-150 (miR-150) has on ischemic stroke and its underlying mechanism by developing a stable middle cerebral artery occlusion (MCAO) rat model. Gene expression microarray analysis was performed to screen differentially expressed genes associated with MCAO. We evaluated the expression of miR-150 and Mal and the status of ERK1/2 axis in the brain tissues of MCAO rats. Then the cerebral cortical neurons (CCNs) were obtained and introduced with elevated or suppressed miR-150 or silenced Mal to validate regulatory mechanisms for miR-150 governing Mal in vitro. The relationship between miR-150 and Mal was verified by dual luciferase reporter gene assay. Besides, cell growth and apoptosis of CCNs were detected by means of MTT assay and flow cytometry analyses. We identified Mal as a downregulated gene in MCAO, based on the microarray data of GSE16561. MiR-150 was over-expressed and negatively targeted Mal in the brain tissues obtained from MCAO rats and their CCNs. Increasing miR-150 blocked the ERK1/2 axis, resulting in an inhibited cell growth of CNNs but an enhanced apoptosis. Furthermore, MiR-150 inhibition was observed to have effects on CNNs as opposed to those inhibited by miR-150 promotion. The key findings of this study support the notion that miR-150 under-expression-mediated direct promotion of Mal protects CNN functions through the activation of the ERK1/2 axis, and underscore the concept that miR-150 may represent a novel pharmacological target for ischemic stroke intervention.
Collapse
Affiliation(s)
- Hui Lv
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jie Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu-Qin Che
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Lee RHC, Lee MHH, Wu CYC, Couto e Silva A, Possoit HE, Hsieh TH, Minagar A, Lin HW. Cerebral ischemia and neuroregeneration. Neural Regen Res 2018; 13:373-385. [PMID: 29623912 PMCID: PMC5900490 DOI: 10.4103/1673-5374.228711] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of morbidity and mortality worldwide. Although stroke (a form of cerebral ischemia)-related costs are expected to reach 240.67 billion dollars by 2030, options for treatment against cerebral ischemia/stroke are limited. All therapies except anti-thrombolytics (i.e., tissue plasminogen activator) and hypothermia have failed to reduce neuronal injury, neurological deficits, and mortality rates following cerebral ischemia, which suggests that development of novel therapies against stroke/cerebral ischemia are urgently needed. Here, we discuss the possible mechanism(s) underlying cerebral ischemia-induced brain injury, as well as current and future novel therapies (i.e., growth factors, nicotinamide adenine dinucleotide, melatonin, resveratrol, protein kinase C isozymes, pifithrin, hypothermia, fatty acids, sympathoplegic drugs, and stem cells) as it relates to cerebral ischemia.
Collapse
Affiliation(s)
- Reggie H. C. Lee
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Michelle H. H. Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, China
| | - Celeste Y. C. Wu
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Alexandre Couto e Silva
- Department of Cellular Biology and Anatomy, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Harlee E. Possoit
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Tsung-Han Hsieh
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Science Center, Shreveport, LA, USA
- Cardiovascular and Metabolomics Research Center, Hualien Tzu Chi Hospital, Hualien, Taiwan, China
| |
Collapse
|
13
|
Mechanisms of Acupuncture Therapy in Ischemic Stroke Rehabilitation: A Literature Review of Basic Studies. Int J Mol Sci 2017; 18:ijms18112270. [PMID: 29143805 PMCID: PMC5713240 DOI: 10.3390/ijms18112270] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/08/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Acupuncture is recommended by the World Health Organization (WHO) as an alternative and complementary strategy for stroke treatment and for improving stroke care. Clinical trial and meta-analysis findings have demonstrated the efficacy of acupuncture in improving balance function, reducing spasticity, and increasing muscle strength and general well-being post-stroke. The mechanisms underlying the beneficial effects of acupuncture in stroke rehabilitation remain unclear. The aim of this study was to conduct a literature review, summarize the current known mechanisms in ischemic stroke rehabilitation through acupuncture and electroacupuncture (EA) therapy, and to detail the frequently used acupoints implicated in these effects. The evidence in this review indicates that five major different mechanisms are involved in the beneficial effects of acupuncture/EA on ischemic stroke rehabilitation: (1) Promotion of neurogenesis and cell proliferation in the central nervous system (CNS); (2) Regulation of cerebral blood flow in the ischemic area; (3) Anti-apoptosis in the ischemic area; (4) Regulation of neurochemicals; and, (5) Improvement of impaired long-term potentiation (LTP) and memory after stroke. The most frequently used acupoints in basic studies include Baihui (GV20), Zusanli (ST36), Quchi (LI11), Shuigou (GV26), Dazhui (GV14), and Hegu (LI4). Our findings show that acupuncture exerts a beneficial effect on ischemic stroke through modulation of different mechanisms originating in the CNS.
Collapse
|
14
|
Shin HK, Lee SW, Choi BT. Modulation of neurogenesis via neurotrophic factors in acupuncture treatments for neurological diseases. Biochem Pharmacol 2017; 141:132-142. [DOI: 10.1016/j.bcp.2017.04.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
|
15
|
Wu J, Lin B, Liu W, Huang J, Shang G, Lin Y, Wang L, Chen L, Tao J. Roles of electro-acupuncture in glucose metabolism as assessed by 18F-FDG/PET imaging and AMPKα phosphorylation in rats with ischemic stroke. Int J Mol Med 2017; 40:875-882. [PMID: 28713979 DOI: 10.3892/ijmm.2017.3057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/27/2017] [Indexed: 11/06/2022] Open
Abstract
Targeted energy metabolism balance contributes to neural survival during ischemic stroke. Herein, we tested the hypothesis that electro‑acupuncture (EA) can enhance cerebral glucose metabolism assessed by 18F‑fluorodeoxyglucose/positron emission tomography (18F‑FDG/PET) imaging to prevent propagation of tissue damage and improve neurological outcome in rats subjected to ischemia and reperfusion injury. Rats underwent middle cerebral artery occlusion (MCAO) and received EA treatment at the LI11 and ST36 acupoints or non‑acupoint treatment once a day for 7 days. After EA treatment, a significant reduction in the infarct volume was determined by T2‑weighted imaging, accompanied by the functional recovery in CatWalk and Rota-rod performance. Moreover, EA promoted higher glucose metabolism in the caudate putamen (CPu), motor cortex (MCTX), somatosensory cortex (SCTX) regions as assessed by animal 18F‑FDG/PET imaging, suggesting that three‑brain regional neural activity was enhanced by EA. In addition, the AMP‑activated protein kinase α (AMPKα) in the CPu, MCTX and SCTX regions was phosphorylated at threonine 172 (Thr172) after ischemic injury; however, phosphorylation of AMPK was further increased by EA. These results indicate that EA could promote AMPKα phosphorylation of the CPu, MCTX and SCTX regions to enhance neural activity and motor functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Bingbing Lin
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guanhao Shang
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Yunjiao Lin
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Lulu Wang
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
16
|
Liang S, Lin Y, Lin B, Li J, Liu W, Chen L, Zhao S, Tao J. Resting-state Functional Magnetic Resonance Imaging Analysis of Brain Functional Activity in Rats with Ischemic Stroke Treated by Electro-acupuncture. J Stroke Cerebrovasc Dis 2017; 26:1953-1959. [PMID: 28687422 DOI: 10.1016/j.jstrokecerebrovasdis.2017.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/10/2017] [Accepted: 06/07/2017] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To evaluate whether electro-acupuncture (EA) treatment at acupoints of Zusanli (ST 36) and Quchi (LI 11) could reduce motor impairments and enhance brain functional recovery in rats with ischemic stroke. MATERIALS AND METHODS A rat model of middle cerebral artery occlusion (MCAO) was established. EA at ST 36 and LI 11was started at 24 hours (MCAO + EA group) after ischemic stroke. The nontreatment (MCAO) and sham-operated control (SC) groups were included as controls. The neurologic deficits of all groups were assessed by Zea Longa scores and the modified neurologic severity scores on 24 hours and 8 days after MCAO. To further investigate the effect of EA on infract volume and brain function, magnetic resonance imaging was used to estimate the brain lesion and brain neural activities of each group at 8 days after ischemic stroke. RESULTS Within 1 week after EA treatment, the neurologic deficits were significantly alleviated, and the cerebral infarctions were improved, including visual cortex, motor cortex, striatum, dorsal thalamus, and hippocampus. Furthermore, whole brain neural activities of auditory cortex, lateral nucleus group of dorsal thalamus, hippocampus, motor cortex, orbital cortex, sensory cortex, and striatum were decreased in MCAO group, whereas that of brain neural activities were increased after EA treatment, suggesting these brain regions are in accordance with the brain structure analysis. CONCLUSION EA at ST 36 and LI 11 could enhance the neural activity of motor function-related brain regions, including motor cortex, dorsal thalamus, and striatum in rats, which is a potential treatment for ischemia stroke.
Collapse
Affiliation(s)
- Shengxiang Liang
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou, China; College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, China
| | - Yunjiao Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bingbing Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianhong Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shujun Zhao
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou, China.
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| |
Collapse
|
17
|
Huang S, Huang D, Zhao J, Chen L. Electroacupuncture promotes axonal regeneration in rats with focal cerebral ischemia through the downregulation of Nogo-A/NgR/RhoA/ROCK signaling. Exp Ther Med 2017; 14:905-912. [PMID: 28810542 PMCID: PMC5526169 DOI: 10.3892/etm.2017.4621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/06/2017] [Indexed: 12/30/2022] Open
Abstract
The purpose of the present study was to evaluate the effect of electroacupuncture (EA) on the axonal regeneration environment following cerebral ischemia injury and to investigate whether it was associated with Nogo-A/Nogo receptor (NgR)/RhoA/Rho-associated protein kinase (ROCK) signaling. Using a rat model of focal cerebral ischemia, the effects of EA at the Quchi (LI11) and Zusanli (ST36) acupoints on axonal growth inhibitory protein and axonal growth factors were assessed and the underlying molecular mechanisms were investigated. It was found that EA at the Quchi and Zusanli acupoints significantly improved neurological deficit scores following ischemia (P<0.05), and reduced the cerebral infarct volume. Moreover, it was demonstrated that crucial signaling molecules in the Nogo-A signaling pathway were regulated by EA. These results suggest that EA provides a less inhibitory environment for axonal regeneration following cerebral ischemia through inhibition of Nogo-A/NgR/RhoA/ROCK signaling.
Collapse
Affiliation(s)
- Saie Huang
- Department of Neurological Rehabilitation, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, Fujian 350003, P.R. China
| | - Danxia Huang
- Department of Clinical Medicine, Quanzhou Medical College, Quzhou, Fujian 362000, P.R. China
| | - Jiapei Zhao
- Fujian Provincial Rehabilitation Industrial Institution, Department of Rehabilitation Medicine, College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- Department of Neurological Rehabilitation, Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, Fuzhou, Fujian 350003, P.R. China
| |
Collapse
|
18
|
Mechanisms of Acupuncture Therapy for Cerebral Ischemia: an Evidence-Based Review of Clinical and Animal Studies on Cerebral Ischemia. J Neuroimmune Pharmacol 2017; 12:575-592. [DOI: 10.1007/s11481-017-9747-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
|
19
|
Jin XL, Li PF, Zhang CB, Wu JP, Feng XL, Zhang Y, Shen MH. Electroacupuncture alleviates cerebral ischemia and reperfusion injury via modulation of the ERK1/2 signaling pathway. Neural Regen Res 2016; 11:1090-8. [PMID: 27630691 PMCID: PMC4994450 DOI: 10.4103/1673-5374.187041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Electroacupuncture (EA) has anti-oxidative and anti-inflammatory actions, but whether the neuroprotective effect of EA against cerebral ischemia-reperfusion (I/R) injury involves modulation of the extracellular regulated kinase 1/2 (ERK1/2) signaling pathway is unclear. Middle cerebral artery occlusion (MCAO) was performed in Sprague-Dawley rats for 2 hours followed by reperfusion for 24 hours. A 30-minute period of EA stimulation was applied to both Baihui (DU20) and Dazhui (DU14) acupoints in each rat (10 mm EA penetration depth, continuous wave with a frequency of 3 Hz, and a current intensity of 1-3 mA) when reperfusion was initiated. EA significantly reduced infarct volume, alleviated neuronal injury, and improved neurological function in rats with MCAO. Furthermore, high mRNA expression of Bax and low mRNA expression of Bcl-2 induced by MCAO was prevented by EA. EA substantially restored total glutathione reductase (GR), glutathione (GSH) and glutathione peroxidase (GSH-Px) levels. Additionally, Nrf2 and glutamylcysteine synthetase (GCS) expression levels were markedly increased by EA. Interestingly, the neuroprotective effects of EA were attenuated when ERK1/2 activity was blocked by PD98059 (a specific MEK inhibitor). Collectively, our findings indicate that activation of the ERK1/2 signaling pathway contributes to the neuroprotective effects of EA. Our study provides a better understanding of the regulatory mechanisms underlying the therapeutic effectiveness of EA.
Collapse
Affiliation(s)
- Xiao-Lu Jin
- Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Peng-Fei Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Chun-Bing Zhang
- Department of Clinical Laboratory, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China; College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jin-Ping Wu
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xi-Lian Feng
- Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Ying Zhang
- Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Mei-Hong Shen
- Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
20
|
Liu W, Shang G, Yang S, Huang J, Xue X, Lin Y, Zheng Y, Wang X, Wang L, Lin R, Tao J, Chen L. Electroacupuncture protects against ischemic stroke by reducing autophagosome formation and inhibiting autophagy through the mTORC1-ULK1 complex-Beclin1 pathway. Int J Mol Med 2015; 37:309-18. [PMID: 26647915 PMCID: PMC4716798 DOI: 10.3892/ijmm.2015.2425] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/12/2015] [Indexed: 11/06/2022] Open
Abstract
In a previous study by our group, we demonstrated that electroacupuncture (EA) activates the class I phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. There is considerable evidence that the downstream mammalian target of rapamycin complex 1 (mTORC1) plays an important role in autophagy following ischemic stroke. The aim of the present study was to determine whether EA exerts a neuroprotective effect through mTORC1-mediated autophagy following ischemia/reperfusion injury. Our results revealed that EA at the LI11 and ST36 acupoints attenuated motor dysfunction, improved neurological deficit outcomes and decreased the infarct volumes. The number of autophagosomes, autolysosomes and lysosomes was decreased following treatment with EA. Simultaneously, the levels of the autophagosome membrane maker, microtubule-associated protein 1 light chain 3 beta (LC3B)II/I, Unc-51-like kinase 1 (ULK1), autophagy related gene 13 Atg13) and Beclin1 (ser14) were decreased, whereas mTORC1 expression was increased in the peri-infarct cortex. These results suggest that EA protects against ischemic stroke through the inhibition of autophagosome formation and autophagy, which is mediated through the mTORC1-ULK complex-Beclin1 pathway.
Collapse
Affiliation(s)
- Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guanhao Shang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Shanli Yang
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiehua Xue
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Yunjiao Lin
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Yi Zheng
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Xian Wang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Lulu Wang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Ruhui Lin
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
21
|
Cheng CY, Lin JG, Tang NY, Kao ST, Hsieh CL. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. Altern Ther Health Med 2015; 15:241. [PMID: 26187498 PMCID: PMC4506591 DOI: 10.1186/s12906-015-0752-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 06/29/2015] [Indexed: 11/10/2022]
Abstract
Background This study aimed to determine the effects of electroacupuncture stimulation at the Baihui (GV20) and Fengfu (GV16) acupoints, at frequencies of 5Hz (EA-5Hz) and 25Hz (EA-25Hz), 7 days after cerebral ischemia-reperfusion (I/R) injury, and to evaluate the possible signaling mechanisms involved in mitogen-activated protein kinase (MAPK) pathways. Methods Rats were subjected to 30 min of middle cerebral artery occlusion (MCAo) followed by 7 days of reperfusion. EA-5Hz or EA-25Hz was applied immediately after MCAo and then once daily for 7 consecutive days. Results Results indicated that EA-5Hz and EA-25Hz both markedly attenuated cerebral infarction and neurological deficits. EA-5Hz and EA-25Hz both markedly downregulated cytosolic glial fibrillary acidic protein (GFAP), mitochondrial Bax, mitochondrial and cytosolic second mitochondrial-derived activator of caspase/direct inhibitor of apoptosis protein-binding protein with low isoelectric point (Smac/DIABLO), and cytosolic cleaved caspase-3 expression, and effectively restored cytosolic phospho-p38 MAPK (p-p38 MAPK), cytosolic cAMP response element-binding protein (CREB), mitochondrial Bcl-xL, and cytosolic X-linked inhibitor of apoptosis protein (XIAP) expression, in the ischemic cortical penumbra 7 days after reperfusion. Both EA-5Hz and EA-25Hz also significantly increased the ratios of mitochondrial Bcl-xL/Bax and Bcl-2/Bax, respectively. Conclusions Both EA-5Hz and EA-25Hz effectively downregulate reactive astrocytosis to provide neuroprotection against cerebral infarction, most likely by activating the p38 MAPK/CREB signaling pathway. The modulating effects of EA-5Hz and EA-25Hz on Bax-mediated apoptosis are possibly due to the activation of p38 MAPK/CREB/Bcl-xL and p38 MAPK/CREB/Bcl-2 signaling pathways, respectively, and eventually contribute to the prevention of Smac/DIABLO translocation and subsequent restoration of XIAP-mediated suppression of caspase-3 in the cortical periinfarct area 7 days after reperfusion.
Collapse
|