1
|
Peng K, Xiao S, Xia S, Li C, Yu H, Yu Q. Butyrate Inhibits the HDAC8/NF-κB Pathway to Enhance Slc26a3 Expression and Improve the Intestinal Epithelial Barrier to Relieve Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24400-24416. [PMID: 39440960 DOI: 10.1021/acs.jafc.4c04456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dietary fiber is known to promote the production of short-chain fatty acids (SCFAs) by gut bacteria, which can enhance intestinal epithelial barrier function and ameliorate intestinal inflammation in patients with inflammatory bowel disease (IBD). Interestingly, some IBD patients show reduced expression of solute carrier family member 3 (Slc26a3) in intestinal epithelial cells. The objective of this research was to investigate the interaction between SCFAs and Slc26a3 during colitis and assess how this interaction affects intestinal epithelial barrier function. We showed that butyrate alleviated colonic inflammation in a dose-dependent manner in a dextran sulfate sodium salt (DSS)-induced colitis model. Consistent with this, butyrate increased Slc26a3 and tight junction protein levels. In addition, butyrate inhibited histone deacetylase (HDAC) levels and significantly increased the expression of Slc26a3 by the acetylation of histones in Caco-2BBe cells. The utilization of a pan-HDAC inhibitor or inhibitors specific to certain classes of HDACs revealed that butyrate primarily suppressed HDAC8 to blunt the NF-κB pathways and enhance the expression of Slc26a3. Notably, we demonstrated that HDAC8 activation counteracted the beneficial effect of butyrate in DSS-induced colitis. Therefore, we concluded that butyrate improves the expression of Slc26a3 via inhibition of the HDAC8/NF-κB pathway, leading to increased intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Congxin Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Hongbing Yu
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City 66160, Kansas, United States
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver V6H 3N1, British Columbia, Canada
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
2
|
Challa N, Enns CB, Keith BA, Harding JCS, Loewen ME. Decreased expression of DRA ( SLC26A3) by a p38-driven IL-1α response contributes to diarrheal disease following in vivo challenge with Brachyspira spp. Am J Physiol Gastrointest Liver Physiol 2024; 327:G655-G672. [PMID: 39104321 DOI: 10.1152/ajpgi.00049.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
In this study, we uncovered the novel mechanism of IL-1α-mediated downregulated in adenoma (DRA) (SLC26A3) downregulation in the context of Brachyspira spp.-induced malabsorptive diarrhea. Experimentally infected pigs with Brachyspira spp. had significantly reduced DRA expression in the colon accompanied by IL-1α upregulation. This response was recapitulated in vitro by exposing Caco-2 cells to either Brachyspira lysate or IL-1α. Both p38 and MAPK-activated protein kinase 2 (MAPKAPK-2 also referred as MK-2) showed an increased phosphorylation after exposure to either. SB203580 application, a p38 inhibitor blocked the MK-2 phosphorylation and attenuated the DRA and IL-1α response to both lysate and IL-1α. Exposure to IL-1 receptor antagonist (IL-1RA) produced a similar response. In addition, exposure of cells to either of these blockers without IL-1α or lysate results in increased DRA and decreased IL-1α expression, revealing that DRA needs IL-1α signaling for basal physiological expression. Dual inhibition with both blockers completely inhibited the effect from IL-1α while significantly attenuating the response from Brachyspira lysate, suggesting a minor contribution from another pathway. Together this demonstrates that Brachyspira activates p38 MAPK signaling driving IL-1α expression, which activates IL-1R1 causing DRA downregulation while also driving upregulation of IL-1α through p38 in a positive feedback mechanism. In conclusion, we elucidated a major pathway involved in DRA downregulation and its role in Brachyspira-induced diarrhea. In addition, these observations will aid in our understanding of other inflammatory and infectious diarrhea conditions.NEW & NOTEWORTHY The diarrheal disease caused by the two infectious spirochete spp. B. hyodysenteriae and B. hampsonii reduced the expression of DRA (SLC26A3), a major Cl-/HCO-3 exchanger involved in Cl- absorption. This is attributed to the upregulation of IL-1α driven by p38 MAPK. This work also describes a potential new mechanism in inflammatory diseases while showing the importance of IL-1α in maintaining DRA levels.
Collapse
Affiliation(s)
- Nitin Challa
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cole B Enns
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brandon A Keith
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Becker HM, Seidler UE. Bicarbonate secretion and acid/base sensing by the intestine. Pflugers Arch 2024; 476:593-610. [PMID: 38374228 PMCID: PMC11006743 DOI: 10.1007/s00424-024-02914-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
The transport of bicarbonate across the enterocyte cell membrane regulates the intracellular as well as the luminal pH and is an essential part of directional fluid movement in the gut. Since the first description of "active" transport of HCO3- ions against a concentration gradient in the 1970s, the fundamental role of HCO3- transport for multiple intestinal functions has been recognized. The ion transport proteins have been identified and molecularly characterized, and knockout mouse models have given insight into their individual role in a variety of functions. This review describes the progress made in the last decade regarding novel techniques and new findings in the molecular regulation of intestinal HCO3- transport in the different segments of the gut. We discuss human diseases with defects in intestinal HCO3- secretion and potential treatment strategies to increase luminal alkalinity. In the last part of the review, the cellular and organismal mechanisms for acid/base sensing in the intestinal tract are highlighted.
Collapse
Affiliation(s)
- Holger M Becker
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
4
|
Serigado JM, Foulke-Abel J, Hines WC, Hanson JA, In J, Kovbasnjuk O. Ulcerative Colitis: Novel Epithelial Insights Provided by Single Cell RNA Sequencing. Front Med (Lausanne) 2022; 9:868508. [PMID: 35530046 PMCID: PMC9068527 DOI: 10.3389/fmed.2022.868508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory disease of the intestinal tract for which a definitive etiology is yet unknown. Both genetic and environmental factors have been implicated in the development of UC. Recently, single cell RNA sequencing (scRNA-seq) technology revealed cell subpopulations contributing to the pathogenesis of UC and brought new insight into the pathways that connect genome to pathology. This review describes key scRNA-seq findings in two major studies by Broad Institute and University of Oxford, investigating the transcriptomic landscape of epithelial cells in UC. We focus on five major findings: (1) the identification of BEST4 + cells, (2) colonic microfold (M) cells, (3) detailed comparison of the transcriptomes of goblet cells, and (4) colonocytes and (5) stem cells in health and disease. In analyzing the two studies, we identify the commonalities and differences in methodologies, results, and conclusions, offering possible explanations, and validated several cell cluster markers. In systematizing the results, we hope to offer a framework that the broad scientific GI community and GI clinicians can use to replicate or corroborate the extensive new findings that RNA-seq offers.
Collapse
Affiliation(s)
- Joao M. Serigado
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Jennifer Foulke-Abel
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William C. Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Joshua A Hanson
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Julie In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Olga Kovbasnjuk
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- *Correspondence: Olga Kovbasnjuk,
| |
Collapse
|
5
|
Deng Z, Zhao Y, Ma Z, Zhang M, Wang H, Yi Z, Tuo B, Li T, Liu X. Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci 2021; 78:8109-8125. [PMID: 34778915 PMCID: PMC8629801 DOI: 10.1007/s00018-021-04011-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022]
Abstract
The incidence of gastrointestinal (GI) mucosal diseases, including various types of gastritis, ulcers, inflammatory bowel disease and GI cancer, is increasing. Therefore, it is necessary to identify new therapeutic targets. Ion channels/transporters are located on cell membranes, and tight junctions (TJs) affect acid-base balance, the mucus layer, permeability, the microbiota and mucosal blood flow, which are essential for maintaining GI mucosal integrity. As ion channel/transporter dysfunction results in various GI mucosal diseases, this review focuses on understanding the contribution of ion channels/transporters to protecting the GI mucosal barrier and the relationship between GI mucosal disease and ion channels/transporters, including Cl-/HCO3- exchangers, Cl- channels, aquaporins, Na+/H+ exchangers, and K+ channels. Here, we provide novel prospects for the treatment of GI mucosal diseases.
Collapse
Affiliation(s)
- Zilin Deng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Yingying Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
6
|
Kim ES, Song JS, Ki CS, Choe YH, Kang B. Development of Crohn's Disease in a Child With SLC26A3-related Congenital Chloride Diarrhea: Report of the First Case in East Asia and a Novel Missense Variant. Ann Lab Med 2021; 41:255-257. [PMID: 33063691 PMCID: PMC7591294 DOI: 10.3343/alm.2021.41.2.255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 09/11/2020] [Indexed: 11/19/2022] Open
Affiliation(s)
- Eun Sil Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju Sun Song
- GC Genome, Yongin, Korea.,Department of Laboratory Medicine, Green Cross Laboratories, Yongin, Korea
| | | | - Yon Ho Choe
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ben Kang
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
7
|
Di Meglio L, Castaldo G, Mosca C, Paonessa A, Gelzo M, Esposito MV, Berni Canani R. Congenital chloride diarrhea clinical features and management: a systematic review. Pediatr Res 2021; 90:23-29. [PMID: 33173177 DOI: 10.1038/s41390-020-01251-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Congenital chloride diarrhea (CLD) is a rare autosomal recessive disorder characterized by watery diarrhea with a high level of fecal Cl-, metabolic alkalosis, and electrolyte alterations. Several intestinal and extraintestinal complications and even death can occur. An optimal knowledge of the clinical features and best therapeutic strategies is mandatory for an effective management. METHODS Articles published between 1 January 1965 and 31 December 2019, reported in PUBMED and EMBASE, were evaluated for a systematic review analyzing four categories: anamnestic features, clinical features, management, and follow-up strategies. RESULTS Fifty-seven papers reporting information on 193 CLD patients were included. The most common anamnestic features were positive family anamnesis for chronic diarrhea (44.4%), consanguinity (75%), polyhydramnios (98.3%), preterm delivery (78.6%), and failure to pass meconium (60.7%). Mean age at diarrhea onset was 6.63 days. Median diagnostic delay was 60 days. Prenatal diagnosis, based on molecular analysis, was described in 40/172 (23.3%). All patients received NaCl/KCl-substitutive therapy. An improvement of diarrhea during adulthood was reported in 91.3% of cases. Failure to thrive (21.6%) and chronic kidney disease (17.7%) were the most common complications. CONCLUSIONS This analysis of a large population suggests the necessity of better strategies for the management of CLD. A close follow-up and a multidisciplinary approach is mandatory to manage this condition characterized by heterogeneous and multisystemic complications. IMPACT In this systematic review, we describe data regarding anamnestic features, clinical features, management, and follow-up of CLD patients obtained from the largest population of patients ever described to date. The results of our investigation could provide useful insights for the diagnostic approach and the management of this condition.
Collapse
Affiliation(s)
- Lavinia Di Meglio
- Department of Translational Medical Science, University Federico II, Naples, Italy.,Diagnostica Ecografica e Prenatale di A.Di Meglio, Naples, Italy
| | - Giuseppe Castaldo
- CEINGE Advanced Biotechnologies Research Center, University Federico II, Naples, Italy
| | - Caterina Mosca
- Department of Translational Medical Science, University Federico II, Naples, Italy
| | - Andrea Paonessa
- Department of Translational Medical Science, University Federico II, Naples, Italy
| | - Monica Gelzo
- CEINGE Advanced Biotechnologies Research Center, University Federico II, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Roberto Berni Canani
- Department of Translational Medical Science, University Federico II, Naples, Italy. .,CEINGE Advanced Biotechnologies Research Center, University Federico II, Naples, Italy.
| |
Collapse
|
8
|
Wang J, Ortiz C, Fontenot L, Mukhopadhyay R, Xie Y, Chen X, Feng H, Pothoulakis C, Koon HW. Therapeutic Mechanism of Macrophage Inflammatory Protein 1 α Neutralizing Antibody (CCL3) in Clostridium difficile Infection in Mice. J Infect Dis 2021; 221:1623-1635. [PMID: 31793629 DOI: 10.1093/infdis/jiz640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Clostridium difficile infection (CDI) causes diarrhea and colitis. We aimed to find a common pathogenic pathway in CDI among humans and mice by comparing toxin-mediated effects in human and mouse colonic tissues. METHOD Using multiplex enzyme-linked immunosorbent assay, we determined the cytokine secretion of toxin A- and B-treated human and mouse colonic explants. RESULTS Toxin A and toxin B exposure to fresh human and mouse colonic explants caused different patterns of cytokine secretion. Toxin A induced macrophage inflammatory protein (MIP) 1α secretion in both human and mouse explants. Toxin A reduced the expression of chloride anion exchanger SLC26A3 expression in mouse colonic explants and human colonic epithelial cells. Patients with CDI had increased colonic MIP-1 α expression and reduced colonic SLC26A3 (solute carrier family 26, member 3) compared with controls. Anti-MIP-1 α neutralizing antibody prevented death, ameliorated colonic injury, reduced colonic interleukin 1β (IL-1β) messenger RNA expression, and restored colonic SLC26a3 expression in C. difficile-infected mice. The anti-MIP-1 α neutralizing antibody prevented CDI recurrence. SLC26a3 inhibition augmented colonic IL-1 β messenger RNA expression and abolished the protective effect of anti-MIP-1 α neutralizing antibody in mice with CDI. CONCLUSION MIP-1 α is a common toxin A-dependent chemokine in human and mouse colon. MIP-1 α mediates detrimental effects by reducing SLC26a3 and enhancing IL-1 β expression in the colon.
Collapse
Affiliation(s)
- Jiani Wang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA.,Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - Christina Ortiz
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Lindsey Fontenot
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Riya Mukhopadhyay
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Ying Xie
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA.,Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hanping Feng
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Maryland, Baltimore, USA
| | - Charalabos Pothoulakis
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| | - Hon Wai Koon
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Adaptation to inflammatory acidity through neutrophil-derived adenosine regulation of SLC26A3. Mucosal Immunol 2020; 13:230-244. [PMID: 31792360 PMCID: PMC7044055 DOI: 10.1038/s41385-019-0237-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/07/2019] [Indexed: 02/04/2023]
Abstract
Acute intestinal inflammation includes the early accumulation of neutrophils (PMN). Based on recent evidence that PMN infiltration "imprints" changes in the local tissue environment through local oxygen depletion and the release of adenine nucleotides, we hypothesized that the interaction between transmigrating PMN and intestinal epithelial cells (IECs) results in inflammatory acidification of the tissue. Using newly developed tools, we revealed that active PMN transepithelial migration (TEM) significantly acidifies the local microenvironment, a decrease of nearly 2 pH units. Using unbiased approaches, we sought to define acid-adaptive pathways elicited by PMN TEM. Given the significant amount of adenosine (Ado) generated during PMN TEM, we profiled the influence of Ado on IECs gene expression by microarray and identified the induction of SLC26A3, the major apical Cl-/HCO3- exchanger in IECs. Utilizing loss- and gain-of-function approaches, as well as murine and human colonoids, we demonstrate that Ado-induced SLC26A3 promotes an adaptive IECs phenotype that buffers local pH during active inflammation. Extending these studies, chronic murine colitis models were used to demonstrate that SLC26A3 expression rebounds during chronic DSS-induced inflammation. In conclusion, Ado signaling during PMN TEM induces an adaptive tissue response to inflammatory acidification through the induction of SLC26A3 expression, thereby promoting pH homeostasis.
Collapse
|
10
|
Gene Expression Profiling of Mediators Associated with the Inflammatory Pathways in the Intestinal Tissue from Patients with Ulcerative Colitis. Mediators Inflamm 2020; 2020:9238970. [PMID: 32410873 PMCID: PMC7201440 DOI: 10.1155/2020/9238970] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Background Multiple genes have been associated with IBD, and many of these can be linked to alterations in autophagy, UPR, ubiquitination, and metabolic and immune response pathways. The aim of this study was to analyze a transcriptomic panel of mediators associated with the inflammatory pathways in the colonic mucosa of UC patients. Patients and Methods. We studied a total of 100 patients with definitive diagnosis of UC (50 active and 50 in remission) and a control group (50 subjects) without endoscopic evidence of intestinal inflammation. Colonic mucosal biopsies were taken by colonoscopy and preserved in RNA later. Gene expression were measured by real-time polymerase chain reaction (RT-PCR). Results The gene expressions of XBP1, AGR2, HSPA5, UBE2L3, TNFRSF14, LAMP3, FCGR2A, LSP1, CTLA4, SOD2, TDO2, and ALDOB mRNA levels were significantly higher in the colonic mucosa from UC patients (both quiescent and active) as compared to the control group (P < 0.05). Conversely, IRGM, ORDML3, UBD, CUL2, CYLD, FOXC2, FOXO4, DOK3, and SNX20 mRNA levels were found to be significantly lower in patients with active disease, as compared to those with active disease (P < 0.05). Gene expressions of IRGM, CTLA4, FOXO4, SLC26A3, SLC39A4, SOD2, TDO2, and ALDOB were associated with clinical outcomes, such as medical treatment in response to aminosalicylates, histological remission, clinical course, and evolution. Conclusions : The gene expressions of FOXO4, ALDOB, SOD2, TOD2, SLC26A3, and SLC39A4 were associated with the clinical course and histological activity and are of relevance since these provide the utility of new prognostic markers in IBD. Gene expression signature showed dysregulation in mediators associated with autophagy, ubiquitination, ER stress, oxidative stress, carbohydrate metabolism, solute transport, and T cell regulation in the colonic mucosa from patients with UC, suggesting that these genes could be involved in the pathogenesis of UC.
Collapse
|
11
|
Harris RE, Tayler R, Russell RK. Congenital chloride-losing diarrhoea and Crohn's disease: a diagnostic and therapeutic challenge. Frontline Gastroenterol 2019; 12:151-153. [PMID: 33613948 PMCID: PMC7873546 DOI: 10.1136/flgastro-2019-101283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/22/2019] [Accepted: 08/11/2019] [Indexed: 02/04/2023] Open
Abstract
We describe the case of a patient with congenital chloride-losing diarrhoea (CCLD), global developmental delay and intermittent transaminitis who was diagnosed with Crohn's disease after persistent anaemia and onset of rectal bleeding. CCLD is a rare autosomal recessive condition causing large-volume chloride-rich diarrhoea, metabolic alkalosis and potentially life-threatening electrolyte disturbance. A possible association between CCLD and inflammatory bowel disease (IBD) has recently become apparent; however, the underlying mechanism has not been identified, with the role of increased expression of tumour necrosis factor-alpha hypothesised. Early diagnosis and management are key for favourable outcomes within both CCLD and IBD, and understanding a potential link between the two conditions may lead to development of novel therapies and management strategies. We aim to highlight the pathophysiology, diagnosis and management of CCLD; its potential association with IBD; and the potential therapeutic difficulties within the management of patients with comorbid CCLD and IBD.
Collapse
Affiliation(s)
- Rachel Elizabeth Harris
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children Glasgow, Glasgow, UK
| | - Rachel Tayler
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children Glasgow, Glasgow, UK
| | - Richard K Russell
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Royal Hospital for Children Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Zhang N, Heruth DP, Wu W, Zhang LQ, Nsumu MN, Shortt K, Li K, Jiang X, Wang B, Friesen C, Li DY, Ye SQ. Functional characterization of SLC26A3 c.392C>G (p.P131R) mutation in intestinal barrier function using CRISPR/CAS9-created cell models. Cell Biosci 2019; 9:40. [PMID: 31114672 PMCID: PMC6518688 DOI: 10.1186/s13578-019-0303-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
Background Congenital chloride diarrhea (CCD) in a newborn is a rare autosomal recessive disorder with life-threatening complications, requiring early diagnostics and treatment to prevent severe dehydration and infant mortality. SLC26A3 rs386833481 (c.392C>G; p.P131R) gene polymorphism is an important genetic determinant of CCD. Here, we report the influence of the non-synonymous SLC26A3 variant rs386833481 gene polymorphism on the function of the epithelial barrier and the potential mechanisms of these effects. Results We found that P131R-SLC26A3 increased dysfunction of the epithelial barrier compared with wild type SLC26A3 in human colonic Caco-2 and mouse colonic CMT-93 cells. When P131R-SLC26A3 was subsequently reverted to wild type, the epithelial barrier function was restored similar to wild type cells. Further study demonstrated that variant P131R-SLC26A3 disrupts function of epithelial barrier through two distinct molecular mechanisms: (a) decreasing SLC26A3 expression through a ubiquitination pathway and (b) disrupting a key interaction with its partner ZO-1/CFTR, thereby increasing the epithelial permeability. Conclusion Our study provides an important insight of SLC26A3 SNPs in the regulation of the epithelial permeability and indicates that SLC26A3 rs386833481 is likely a causative mutation in the dysfunction of epithelial barrier of CCD, and correction of this SNP or increasing SLC26A3 function could be therapeutically beneficial for chronic diarrhea diseases.
Collapse
Affiliation(s)
- Nini Zhang
- 1Division of Gastroenterology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA.,4Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi China
| | - Daniel P Heruth
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA
| | - Weibin Wu
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA.,8Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Qin Zhang
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,5Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO USA
| | - Marianne N Nsumu
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA
| | - Katherine Shortt
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,6Division of Cell Biology & Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, MO USA
| | - Kelvin Li
- 7Department of Global Biostatistics and Data Science, Center for Bioinformatics and Genomics, Tulane University, New Orleans, LA USA
| | - Xun Jiang
- 4Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi China
| | - Baoxi Wang
- 4Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi China
| | - Craig Friesen
- 1Division of Gastroenterology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA
| | - Ding-You Li
- 1Division of Gastroenterology, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA
| | - Shui Qing Ye
- 2Division of Experimental and Translational Genetics, Department of Pediatrics, Children's Mercy Hospitals and Clinics, Kansas City, MO USA.,3Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO USA.,6Division of Cell Biology & Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, MO USA
| |
Collapse
|